
Is SC + ILP = RC?

Chris Gniady, Babak Falsafi, and T. N. Vijaykumar
School of Electrical & Computer Engineering

Purdue University
1285 EE Building

West Lafayette, IN 47907
impetus@ecn.purdue.edu, http://www.ece.purdue.edu/~impetus

Abstract

Sequential consistency (SC) is the simplest program-
ming interface for shared-memory systems but imposes
program order among all memory operations, possibly pre-
cluding high performance implementations. Release con-
sistency (RC), however, enables the highest performance
implementations but puts the burden on the programmer to
specify which memory operations need to be atomic and in
program order. This paper shows, for the first time, that SC
implementations can perform as well as RC implementa-
tions if the hardware provides enough support for specula-
tion. Both SC and RC implementations rely on reordering
and overlapping memory operations for high performance.
To enforce order when necessary, an RC implementation
uses software guarantees, whereas an SC implementation
relies on hardware speculation. Our SC implementation,
called SC++, closes the performance gap because: (1) the
hardware allows not just loads, as some current SC imple-
mentations do, but also stores to bypass each other specula-
tively to hide remote latencies, (2) the hardware provides
large speculative state for not just processor, as previously
proposed, but also memory to allow out-of-order memory
operations, (3) the support for hardware speculation does
not add excessive overheads to processor pipeline critical
paths, and (4) well-behaved applications incur infrequent
rollbacks of speculative execution. Using simulation, we
show that SC++ achieves an RC implementation’s perfor-
mance in all the six applications we studied.

1 Introduction
Multiprocessors are becoming widely available in all

sectors of the computing market from desktops to high-end
servers. To simplify programming multiprocessors, many
vendors implement shared memory as the primary system-
level programming abstraction. To achieve high perfor-
mance, the shared-memory abstraction is typically imple-
mented in hardware. Shared-memory systems come with a
variety of programming interfaces—also known as mem-
ory consistency models—offering a trade-off between pro-
gramming simplicity and high performance.

Sequential consistency (SC) is the simplest and most
intuitive programming interface [9]. An SC-compliant
memory system appears to execute memory operations one
at a time in program order. SC’s simple memory behavior
is what programmers often expect from a shared-memory

multiprocessor because of its similarity to the familiar uni-
processor memory system. Traditionally, SC is believed to
preclude high performance because conventional SC
implementations would conservatively impose order
among all memory operations to satisfy the requirements
of the model. Such implementations would be prohibitively
slow especially in distributed shared memory (DSM)
where remote memory accesses can take several times
longer than local memory accesses.

To mitigate performance impact of long latency opera-
tions in shared memory and to realize the raw performance
of the hardware, researchers and system designers have
invented several relaxed memory models [3,2,6]. Relaxed
memory models significantly improve performance over
conventional SC implementations by requiring only some
memory operations to perform in program order. By other-
wise overlapping some or all other memory operations,
relaxed models hide much of the memory operations’ long
latencies. Relaxed models, however, complicate the pro-
gramming interface by burdening the programmers with
the details of annotating memory operations to specify
which operations must execute in program order.

Modern microprocessors employ aggressive instruction
execution mechanisms to extract larger levels of instruction
level parallelism (ILP) and reduce program execution time.
To maximize ILP, these mechanisms allow instructions to
execute both speculatively and out of program order. The
ILP mechanisms buffer the speculative state of such
instructions to maintain sequential semantics upon a mis-
speculation or an exception. The ILP mechanisms have
reopened the debate about the memory models because
they enable SC implementations to relax speculatively the
memory order and yet appear to execute memory opera-
tions atomically and in program order [5,14,7].

An aggressive SC implementation can speculatively
perform all memory operations in a processor cache. Such
an implementation rolls back to the ‘‘sequentially-consis-
tent’’ memory state if another processor is about to observe
that the model constraints are violated (e.g., a store by one
processor to a memory block loaded speculatively out of
order by another). In the absence of frequent rollbacks, an
SC implementation can perform potentially as well as the
best of relaxed models—Release Consistency (RC)—
because it emulates an RC implementation’s behavior in
every other aspect.

1063-6897/99/$10.00 (c) 1999 IEEE

162

Gharachorloo et al., [5] first made the observation that
exploiting ILP mechanisms allows optimizing SC’s per-
formance. Their proposed techniques are implemented in
HP PA-8000, Intel Pentium Pro, and MIPS R10000. Ran-
ganathan et al., re-evaluated these techniques [13] and pro-
posed further optimizations [14] but concluded that a
significant gap between SC and RC implementations
remains for some applications and identified some of the
factors contributing to the difference. Hill [7], however,
argues that with current trends towards larger levels of on-
chip integration, sophisticated microarchitectural innova-
tion, and larger caches, the performance gap between the
memory models should eventually vanish.

This paper confirms Hill’s conjecture by showing, for
the first time, that an SC implementation can perform as
well as an RC implementation if the hardware provides
enough support for speculation. The key observation is
that both SC and RC implementations rely on reordering
and overlapping memory operations to achieve high per-
formance. While RC implementations primarily use soft-
ware guarantees to enforce program order only when
necessary, SC implementations rely on hardware specula-
tion to provide the guarantee. So long as hardware specu-
lation enables SC implementations to relax all memory
orders speculatively and “emulate” RC implementations,
SC implementations can reach RC implementations’ per-
formance. Any shortcoming in the hardware support for
speculation prevents SC implementations from reaching
RC implementations’ performance.

In this paper, we identify the fundamental architectural
and application requirements enabling an SC implementa-
tion to perform as well as RC implementations:

• Full-fledged speculation: Hardware should allow both
loads and stores to bypass each other speculatively to
avoid stopping the instruction flow through the proces-
sor pipeline. Current techniques [14,5] allow only
loads to bypass pending loads and stores speculatively;
stores are not allowed to bypass other memory opera-
tions. We present novel mechanisms to allow both
loads and stores to bypass each other speculatively and
yet appear to execute memory operations in program
order.

• Large speculative state: Hardware should provide large
enough speculative state for both processor and mem-
ory to allow out-of-order operations to hide long
remote latencies. Without studying the required size of
speculative state for processor or memory, previous
studies proposed extensions to the re-order buffer for
speculative processor state [14], but did not provide
any support for speculative memory state beyond con-
ventional load/store queues. We quantify the required
size of speculative state for processor and memory, and
provide speculative state support for both processor
and memory.

• Fast common case: Hardware support for speculation
should not introduce overhead (e.g., associative
searches) to the execution’s critical path. Previous pro-
posals detect memory order violation for speculative
loads [5,14]. We present fast and efficient mechanisms
to detect memory order violation for both speculative
loads and stores without excessive deterioration of pro-
cessor pipeline critical paths.

• Infrequent rollbacks: The application should inherently
incur infrequent rollbacks of speculative execution. We
argue that well-behaved applications—i.e., applica-
tions benefitting from parallel execution on multipro-
cessors—indeed will not incur frequent rollbacks.
In our performance evaluation, we assume aggressive

remote caching mechanisms and a large repository for
remote data as suggested in most recent proposals for
DSMs [10,11,4]. Using simulation of shared-memory
applications, we show that our SC implementation, called
SC++, achieves an RC implementation’s performance in
all the six applications we studied.

In Section 2, we describe the current implementation
optimizations for SC and RC. In Section 3, we describe
SC++. We present a qualitative comparison of current SC
and RC implementations, and SC++ in Section 4. In
Section 6, we report experimental results of our simula-
tions, and in Section 7, we draw some conclusions.

2 Current ILP Optimizations
A memory consistency model defines the programming

interface for a shared-memory machine. Sequential con-
sistency (SC) provides the most intuitive programming
interface by requiring that all memory operations execute
in program order. To relax SC’s requirement on ordering
memory operations and increase performance, researchers
and system designers invented many relaxed memory
models. Relaxed memory models allow memory opera-
tions to execute out of program order but require the pro-
grammer to annotate those memory operations that must
execute in program order to result in correct execution.

Processor vendors vary with respect to the memory
models they provide [1]. HP and MIPS both adopt SC as
the primary programming interface. Others provide a vari-
ety of relaxed models varying in the extent to which they
relax memory ordering. Intel processors use Processor
Consistency (PC) which allows loads (to one block) fol-
lowing a store (to a different block) to execute out of pro-
gram order. Sun SPARC processors provide Total Store
Order (TSO) which only relaxes store followed by load
order and enforces order among all other memory opera-
tions. Sun SPARC, DEC Alpha, IBM PowerPC, all pro-
vide RC, which is the most relaxed memory model. RC
allows memory operations (to different addresses) to exe-
cute out of program order. All relaxed models include spe-
cial synchronization operations to allow specific memory
operations to execute atomically and in program order.

Conventional implementations of memory consistency
models executed the memory operations according to the
model’s constraint. For instance, SC implementations
would execute memory operations according to the pro-
gram order and one at a time. Modern microprocessors,
however, exploit high degrees of instruction level parallel-
ism (ILP) through branch prediction, execute multiple
instructions per cycle, use non-blocking caches to overlap
multiple memory access latencies, and allow instructions
to execute out of order. To implement precise exceptions
and speculative execution in accordance with sequential
semantics, modern microprocessors use an instruction
reorder buffer [15] to rollback and restore the processor
state on an exception or a misspeculation. Aggressive
implementations of a memory model can employ all these
ILP techniques, which enable memory operations to over-

1063-6897/99/$10.00 (c) 1999 IEEE

163

lap and execute out of order butappearto comply with the
memory model’s constraints [14,5].

2.1 Mechanisms for Speculative Execution
In this section, we fist describe speculative instruction

execution using ILP mechanisms in modern processors.
We then present current memory model optimizations
using these ILP mechanisms. We use the same pipeline
model as Ranganathan et al., [13], which closely approxi-
mates the MIPS R10000 pipeline [17]. Figure 1 depicts
the use of the reorder buffer (also referred to as an active
window, or instruction window) to implement speculative
execution and precise exceptions in modern microproces-
sors which issue instructions out of order.

The branch prediction and instruction fetch unit fetches
and issues instructions. Upon issue, instructions are
inserted in the reorder buffer. Upon availability of an
instruction’s operands, the instruction’s (architectural)
destination register is mapped to a physical register and is
forwarded to a reservation station at each functional unit.
The reorder buffer maintains the original program order
and the register rename mapping for each instruction.
Loads and stores are placed in the load/store queue, which
acts as a reservation station but also maintains the program
order among memory operations until the accesses are
performed in the cache.

The pipeline forwards new register values generated by
instructions to the reservation stations, and writes them to
the reorder buffer and/or the physical registers. Instruc-
tions retire from the head of the reorder buffer in program
order. Upon an exception or branch misprediction, all
instruction entries in the reorder buffer following the
mispredicted branch or the excepting instruction are rolled
back and not allowed to retire from the reorder buffer [15].
Register rename-maps modified by the rolled back instruc-
tions are restored and execution is restarted at the offend-
ing instruction.

2.2 SC
In conventional SC implementations, the processor

would faithfully implement SC’s ordering constraints, per-
forming memory operations atomically and in program
order by issuing one memory operation at a time and
blocking on cache misses. Such an implementation would
be prohibitively slow in today’s aggressive microproces-
sors because the processor must issue memory operations

one at a time and the first cache miss would block both the
cache and the instruction flow through the reorder buffer.

Gharachorloo et al., [5] proposed two ILP optimiza-
tions to improve shared memory’s performance by pre-
venting memory operations from frequently blocking the
reorder buffer. Several current SC implementations (e.g.,
HP PA 8000, and MIPS R10000) include these optimiza-
tions. The idea is to use hardware prefetching and non-
blocking caches to overlap fetching and placing cache
blocks in the cache (or fetching block ownership requests)
for the loads and stores that are waiting in the reorder
buffer. Upon availability of the blocks in the cache, the
loads and stores perform subsequently (and quickly) in the
cache. Because the loads and stores retire atomically and
in program order from the head of the reorder buffer, the
prefetching optimization does not violate the memory
model. Some implementations also retire pending stores
from the reorder buffer but maintain program order in the
load/store queue until they are performed.

Current aggressive SC implementations also allow
loads to execute speculatively out of program order. Spec-
ulative execution allows loads to produce values that can
be consumed by subsequent instructions while other mem-
ory operations (preceding the load in program order) are
pending. The speculative load optimization is based on the
key observation that as long as other processors in the sys-
tem do not detect a speculatively loaded block, all memory
operations appear to have executed atomically and in pro-
gram order.

To guarantee the model’s constraints, the speculative
load optimization prevents other processors in the system
from observing a speculative block. It is conservatively
assumed that a speculatively loaded block may be exposed
if it leaves processor caches—e.g., due to an invalidation
message from or a writeback to the directory node in dis-
tributed shared memory (DSM). Therefore, the caches
must hold a speculatively loaded block until the load
retires. Upon a cache replacement signal from the L2
cache for a speculatively loaded block, however, the pro-
cessor rolls back the load and all subsequent instructions
(much as a branch misprediction) to restore the processor
and memory to a ‘‘sequentially-consistent’’ state.

Because speculatively performed loads cannot retire
from the reorder buffer until all pending memory opera-
tions are performed, a store at the head of the reorder
buffer may block the instruction flow due to long remote
latencies. But increasing the reorder buffer size to accom-
modate remote latencies may slow down processor critical
paths involving associative searches through the buffer in a
single cycle [12]. To alleviate this problem, speculative
retirement [14] moves speculatively performed loads and
subsequent instructions from the head of the reorder buffer
to a separate history buffer before they retire. The history
buffer maintains the information required to roll back, in
case of an invalidation to a speculatively accessed block.
Although speculative retirement narrows the performance
gap between SC and RC implementations, a significant
gap remains in some applications.

Store buffering [6] further enhances memory system
performance by removing pending store instructions from
the reorder buffer and placing them in the load/store
queue. Relaxed models may realize the full benefits of
store buffering by allowing loads in the reorder buffer to

Register
Files &
Map
Tables

Reorder
Buffer

LD/ST ALU ALU

L1 Cache

FIGURE 1: Speculative execution in current
microprocessors.

L2 invalidations/
replacements

1063-6897/99/$10.00 (c) 1999 IEEE

164

bypass pending stores. In conventional SC implementa-
tions, however, the reorder buffer stops retiring instruc-
tions at a load if there are pending stores and therefore,
store buffering may not be as beneficial. Nevertheless,
some commercial systems (e.g., HP processors) support
store buffering for SC.

Both SC and RC implementations rely on reordering
and overlapping memory operations to achieve high per-
formance. The key difference between SC and RC imple-
mentations is that while RC implementations use software
guarantees to guide the reordering and overlapping of
memory operations, SC implementations use hardware
speculation to reorder and overlap memory operations due
to lack of any software guarantees. In spite of the above
optimizations, SC implementations lag behind RC imple-
mentations because:

• the inability of stores to bypass other memory opera-
tions speculatively cause the load/store queue to fill up,
eventually stopping instruction flow;

• long latency remote stores cause the relatively small
reorder buffer (or the history buffer, in the case of spec-
ulative retirement) and load/store queue to fill up with
speculative processor and memory state, respectively,
stalling the pipeline;

• the capacity and conflict misses of small L2 caches
cause replacements of speculatively loaded blocks,
resulting in rollbacks.

2.3 RC
RC modifies the programming interface to allow the

programmer to specify the ordering constraints among
specific memory operations, so that in the absence of such
constraints memory operations can overlap in any arbi-
trary order. Many microprocessors provide special fence
instructions (e.g., the MEMBAR instruction in SPARC
V9, or the MB and WMB instructions in Alpha) to enforce
specific ordering of memory operations wherever needed.
Typical RC implementations use special fence instructions
at the lowest level to enforce memory ordering [6] but pro-
vide higher level programming abstractions for synchroni-
zation.

Conventional RC implementations achieved high per-
formance primarily by using store buffering in the load/
store queue to allow loads and stores to bypass pending
stores and would maintain program order among memory
operations only on executing a fence instruction. Modern
RC implementations can additionally take advantage of
hardware prefetching and non-blocking caches to fetch
multiple cache blocks or make block ownership requests
(for stores). Unlike SC implementations, RC implementa-
tions can use binding prefetches so that the loads can be
performed before reaching the head of the reorder buffer.
Moreover, RC implementations, like SC implementations,
can also speculatively relax ordering across fence instruc-
tions and use rollback mechanisms if a memory model
violation is detected by other processors.

3 SC++: SC Programmability with RC
Performance

SC++, our implementation of SC, is based on the
observation that SC implementations can approach RC
implementations’ performance if: (1) the hardware pro-
vides efficient mechanisms to relax order speculatively for
not only loads, as done in [5], but also stores, (2) the sys-
tem provides enough space to maintain not only specula-
tive processor state, as proposed in [14], but also
speculative memory state of reordered memory operations,
(3) the support for speculation does not add excessive
overhead to the processor pipeline, and (4) rollbacks are
infrequent so that in the common case memory operations
execute and complete with no ordering constraints, much
as in RC implementations.

3.1 Speculative Execution in SC++
To fully emulate an RC implementation, SC++ relaxes

all memory orders speculatively and allow instructions to
continue to issue and execute at full speed even in the pres-
ence of pending long-latency store operations. To guaran-
tee SC’s constraints, SC++ maintains the state
corresponding to all speculatively executed instructions
between a pending store and subsequent (in-program-
order) memory operations until the pending store com-
pletes. If there is an external coherence action (e.g., an
invalidation of speculatively loaded data or external read
of speculatively stored data) on speculatively accessed
data, a misspeculation is flagged and execution is rolled
back to the instruction that performed the speculative
access. Thus, speculative state of loads and stores is not
exposed to the other processors in the system, much as
speculative loads are handled in [5].

Figure 2 illustrates SC++. SC++ supplements the reor-
der buffer with the Speculative History Queue (SHiQ) to
maintain the speculative state for stores, much as specula-
tive retirement does for loads. The SHiQ removes com-
pleted instructions as well as issued or ready to issue store
instructions from the reorder buffer, allows instructions to
retire and update the processor state and L1 cache specula-
tively, and maintains a precise log of the modifications to
enable rolling back and restoring to the state conforming
to SC’s constraints. Thus, SC++ performs speculative
stores to the cache itself instead of buffering the stores in
the load/store queue, avoiding stalls caused by the filling
up of the store queue due to long remote latencies. Upon
completion of the earliest (in program order) pending store
operation, the hardware disposes of all of the SHiQ’s con-
tents from the head until the next pending store operation.
Since loads are moved to the SHiQ only after they com-
plete in the reorder buffer, stores are the only operations in
the SHiQ that may be pending; all other instructions in the
SHiQ are (speculatively) completed instructions.

When an instruction retires from the reorder buffer, if
there is a preceding pending store with respect to the
instruction, the hardware inserts a modification log at the
end of the SHiQ, recording the old architectural state that
the instruction modifies. For instance, for an arithmetic
instruction, the log maintains the physical register number,
the old renaming map (i.e., the map prior to the instruc-
tion’s execution), and the old value of the instruction’s
destination register.

1063-6897/99/$10.00 (c) 1999 IEEE

165

To speculatively retire store instructions while a pre-
ceding program-order store is pending, the hardware per-
forms a read-modify-write cache access much as a
cachable synchronization instruction (e.g., SWAP in
SPARC) in modern microprocessors. Read-modify-writes,
however, typically require an additional cycle to access the
cache (e.g., Ross HyperSPARC). To prevent the slightly
longer access latency of a read-modify-write operation
from blocking access to the cache, the hardware can
employ several well-known bandwidth optimizations to
the L1 cache. Alternatively, by carefully scheduling specu-
lative stores, the hardware can prioritize cache accesses to
allow loads access the cache with a higher priority than
speculative stores and thereby minimize the load-to-use
latency among instructions.

3.2 Detecting Memory Order Violation
SC model requires the SC++ hardware to guarantee that

relaxing the memory order is not observed by or exposed
to the rest of the system. Our implementation (Figure 2)
provides this guarantee by rolling back all execution state
when a speculatively loaded or stored block is invalidated
(by the DSM home directory), read (by a remote node, in
the case of speculatively stored data), or replaced (due to
capacity or conflict misses) from the lower-level L2 cache.
In general, such an approach is conservative because
SC++ need only to ensure that a speculative block does not
leave a DSM node. Recent proposals for DSMs with
aggressive remote caching techniques provide a large spe-
cial-purpose remote access cache either in the network
interface [10], or in both main memory and the network
interface [11,4]. SC++ may limit the rollbacks to the less
frequent case of speculative blocks leaving the remote
cache.

Upon every invalidation, replacement or downgrade
from L2, the hardware must determine whether the block
has been accessed speculatively by a load or store.
Because the SHiQ must be large enough to store the com-
plete history of instruction execution during a pending
remote memory operation, the queue may be too large to
allow a fast associative search. Moreover, there may be
frequent invalidations or replacements from L2 to blocks
that are not speculatively accessed, necessitating a fast
lookup.

To provide a fast lookup, SC++ uses a small associative
buffer, called the Block Lookup Table (BLT), to hold a list
of all the unique block addresses accessed by speculative
loads and stores in the SHiQ. Unlike current SC imple-
mentations which identify speculatively loaded blocks by

directly searching the reorder buffer and the load/store
queues, the BLT decouples the search mechanisms to iden-
tify speculative blocks from the rollback mechanisms in
the SHiQ that maintain all the speculative processor and
memory state. The BLT is based on the key observation
that loads and stores are only a fraction of all executed
instructions and there is a high temporal and spatial local-
ity in near-neighbor load and store instructions. As a
result, a block lookup table can significantly reduce the
search space as compared to the SHiQ.

3.3 Rolling Back Processor & Memory State
SC++ must roll back the processor and memory state to

a “sequentially consistent” state upon a lookup match in
the BLT. To guarantee forward progress and avoid live-
locks/deadlocks, the hardware must restore all processor
and memory state up to the first instruction in program
order that speculatively accessed the matching block.
Restoring the processor state involves stopping the pipe-
line and accessing the appropriate hardware structures.
Restoring the speculatively stored data requires accesses
to the local cache hierarchy, which may move the data
from the lower levels to L1, if the speculative data is dis-
placed from L1 to the lower levels. Because all of the data
accessed by the instructions in the SHiQ are guaranteed to
be present on the node, restoring the data can proceed
without involving the coherence protocol.

Upon restoring the processor and memory state, the
hardware inhibits further speculative retirement of instruc-
tions into the SHiQ until all pending stores have been per-
formed. Such a policy guarantees forward progress by
allowing the instruction causing the rollback to execute
and retire (non-speculatively) in program order. During
rollback, the processor also inhibits further coherence
message processing to avoid deadlocks.

Depending on the rollback frequency and the desired
performance in the presence of frequent rollbacks, the
implementation can optimize the rollback process. A slow
rollback will slow down both the faulting processor and
any processors sending coherence messages to the faulting
processor. One way to accelerate the rollback process is to
exploit the processor ILP mechanisms to roll back multi-
ple instructions per cycle. Another optimization includes
allowing invalidation messages for read-only blocks to be
immediately serviced eliminating the rollback waiting
time for the response message. For blocks with specula-
tively stored data, a further optimization to eliminate the
waiting time includes restoring the requested block first
before the rollback process starts.

4 Qualitative Analysis
The primary difference between RC implementations

and SC++ is that RC implementations rely on software to
enforce the memory order necessary to guarantee correct-
ness, whereas SC++ relies on hardware to provide such a
guarantee. While RC changes the program interface to
relax memory order, SC++ employs speculative mecha-
nisms in hardware. In this section, we identify the applica-
tion and system characteristics that enable SC++ to reach
RC implementations’ performance.

To relax memory orders fully, SC++ must provide
enough space to maintain the processor and memory state

FIGURE 2: SC++ Hardware.

Register
Files &
Map
Tables

Reorder
Buffer

LD/ST
L1 Cache

L2 invalidations/
replacements

ALU ALU

Speculative History
Queue (SHiQ)

Block Lookup
Table (BLT)

1063-6897/99/$10.00 (c) 1999 IEEE

166

corresponding to all (out-of-program-order) speculatively
executed instructions while a memory operation is pend-
ing. The state includes the processor cache hierarchy (and
the remote cache) maintaining the speculatively accessed
remote blocks, and the special-purpose buffers (e.g., SHiQ
and BLT) maintaining the modification logs for the specu-
latively executed instructions. SC++ must also provide a
fast mechanism to detect rollbacks because there may be
frequent remote block replacements or invalidation mes-
sages in a communication-intensive application even
though rollbacks are infrequent because processors tend to
access different memory blocks at a given time.

Given all the speculative state, the only impediment for
SC++ to achieve RC implementations’ performance is the
fraction of execution time lost to rollbacks. Unfortunately,
the rollback penalty in SC++ may be rather high, because
long latencies of memory operations create potential for a
large number of speculatively executed instructions. How-
ever, we argue that rollback frequency in well-behaved
applications is negligible.

A rollback occurs because two or more processors
simultaneously access the same shared-memory blocks.
There are three scenarios in which rollback frequency can
be high: (1) there are true data races in the application, (2)
there is a significant amount of false sharing, and (3) inev-
itable cache conflicts. Applications for which a significant
fraction of execution time is spent accessing such data typ-
ically do not benefit from parallel execution in DSM
because the overhead of communicating memory blocks
across the processors dominates an execution time.

Table 1 compares the extent to which the memory
model implementations relax memory order. Current
aggressive SC implementations only relax memory order
with respect to loads and use existing architectural mecha-

nisms to execute instructions speculatively. RC implemen-
tations primarily relax order by requiring the software to
guarantee correct placement of fence instructions. SC++
uses extra hardware to relax all orders speculatively and
fully emulate RC implementations.

5 Experimental Methodology
Table 2 presents the shared-memory applications we

use in this study and the corresponding input parameters.
Em3d is a shared-memory implementation of the Split-C
benchmark.Lu (the non-contiguous version), radix, ray-
trace, water(the nsquared version) are from the SPLASH-
2 benchmark suite.Unstructured is a shared-memory
implementation of a computational fluid dynamics compu-
tation using an unstructured mesh.

We use RSIM, a state-of-the-art DSM simulator devel-
oped at Rice university, to simulate an eight-node DSM.
Every DSM node includes a MIPS R10000 like processor,
first and second level caches, and main memory. Table 3
shows the base system configuration parameters used
throughout the experiments unless otherwise specified.
Our application data set sizes are selected to be small
enough so as not to require prohibitive simulation cycles,
while being large enough to maintain the intrinsic commu-
nication and computation characteristics of the parallel
applications. Woo et al., show that for most of the
SPLASH-2 applications, the data sets provided have a pri-
mary working set that fits in a 16-Kbyte cache [16]. There-
fore, we assume 16-Kbyte (direct-mapped) processor
caches to compensate for the small size of the data sets.
We assume large L2 caches, as suggested by recent pro-
posals for DSMs [10,4], to eliminate capacity and conflict
misses, so that performance difference among the memory
models is solely due to the intrinsics of the models.

In our experiments, all the memory model implementa-
tions use non-blocking caches, hardware prefetching for
loads and stores, and speculative load execution. Neither
the SC nor RC implementation uses speculative retirement
(i.e., the history buffer). SC++ uses the SHiQ and BLT.
Rollbacks due to instructions in the reorder buffer take one

Relaxing
Orders

Mechanisms to
Guarantee Order

Potential
for
Order
Violation

SC loads bypass
loads and
stores

speculative execu-
tion using reorder
buffer, load/store
queue, and specula-
tive placement of
data in cache

lower

RC loads and
stores bypass
each other
between
fences, loads
bypass loads
and stores
across fences

fence instruction,
speculative execu-
tion as in SC across
fences

lower

SC++ loads and
stores bypass
each other

speculative execu-
tion using reorder
buffer, load/store
queue, and specula-
tive placement of
instructions in
SHiQ, data
addresses in BLT
and data in cache

higher

Table 1: Comparison of implementations.

Application Input Parameters

em3d
lu
radix
raytrace
unstructured
water

8192 nodes, 20% remote
256 by 256 matrix, block 8
512K keys
teapot
mesh 2K
343 molecules

Table 2: Applications and input parameters.

Processor Parameters

CPU
reorder buffer
Load/store queue

300MHz, 4-issue per cycle
64 instructions
64 instructions

L1 cache
L2 cache

16-Kbyte, direct-mapped
8-Mbyte, 2-way

L2 fill latency local
L2 fill latency remote
Cache line size

52 processor cycles
133 processor cycles
64 bytes

Table 3: Base system configuration.

1063-6897/99/$10.00 (c) 1999 IEEE

167

cycle to restart execution at the offending instruction. Any
rollback due to instructions in the SHiQ (for SC++) is per-
formed at the same rate as instruction retirement (i.e., 4
instructions per cycle).

6 Results
We start with a performance comparison of an SC

implementation, an RC implementation, and SC++ in
Section 6.1, which is the main result of this paper. We
show that with unlimited SHiQ, SC++ does reach the RC
implementation’s performance; SC++ performs as well as
the RC implementation even after limiting the SHiQ to a
finite size. Section 6.2 presents results on the impact of
network latency on the relative performance of the sys-
tems. Our results indicate that with larger network laten-
cies, SC++ still keeps up with the RC implementation,
albeit using larger speculative state, even though the gap
between the SC and RC implementations grows.

We show that to close the performance gap, SC++ must
closely emulate the RC implementation by overlapping all
memory operations that the RC implementation overlaps
and requiring the entire set of SC++ hardware—a large
SHiQ with the associated BLT and a large cache. Future
processor designs may have large reorder buffers, obviat-
ing the need for the SHiQ and BLT. Section 6.3 presents
results indicating that increasing the reorder buffer size
narrows the gap between the SC and RC implementations
for many applications; the rest of the applications still
require SC++ hardware to close the gap.

Our results in Section 6.4 indicate that performing
stores in strict program order causes SC++ to be consider-
ably slower than the RC implementation, confirming the
need to execute stores speculatively. Finally, in
Section 6.5, we show that with smaller L2 caches, roll-
backs due to replacements of speculatively accessed
blocks artificially widen the gap between the SC and RC
implementations.

6.1 Base System
In Figure 3, we show the speedups of the RC imple-

mentation, SC++ using an infinitely large SHiQ (shown as
SC++inf), and SC++ using a 512-entry SHiQ and a 64-
entry BLT (shown as SC++S512B64) measured against
the base case of the SC implementation. Although both the
SC and RC implementations are equipped with non-block-
ing caches, prefetching, and speculative loads, there is a
significant gap between the SC and RC implementations.
On the average, the RC implementation is 18% better than
the SC implementation, and at most, the RC implementa-
tion is 38% better than the SC implementation. The main
reason for this gap is that, unlike the RC implementation,
the SC implementation cannot retire any memory opera-
tions past a pending store. The gap is large in the case of
radix because store addresses depend on previous loads,
which stops the memory unit from issuing prefetches,
leading to pipeline stalls for as long as the entire store
latency. In the rest of the applications, the gap is less
because both the SC and RC implementations stall for
loads, making stores less important.

SC++inf performs as well as the RC implementation.
By allowing stores to bypass other memory operations,
SC++ closely emulates the RC implementation, closing

the performance gap. For all the applications, the number
of memory order violations due to speculation is too small
to have any effect on overall performance.

For all the applications, SC++S512B64 realizes the full
benefits of SC++ with an infinitely large SHiQ. Forem3d,
lu, water, andunstructured, a SHiQ with fewer than 512
entries suffices. Forradix and raytrace, 512 entries were
needed to reach the performance of SC++inf. A BLT of
size 64 was sufficient for all applications.

In the case ofraytrace, SC++ performs better than the
RC implementation by a wide margin. In this application,
rollbacks in the SHiQ actually result in performance
improvement! These rollbacks caused by looping reads of
lock variable, prevent the injection of more messages into
the network, reducing both network and lock contention.
Kägi et al., showed that by simply using exponential back-
off the performance ofraytracecan be increased two-fold
[8]. Although SC++ does not introduce exponential back-
off, the time taken to restore the state on a rollback pro-
duces a similar effect.

6.2 Network Latency
In this section, we study the effect of longer network

latency on the performance of the RC implementation and
SC++. We increase the network latency to four times the
remote latency of the base configuration described in
Table 3. In Figure 4, we show the speedups of the RC
implementation, SC++ using an infinitely large SHiQ
(shown as SC++inf), SC++ using a 512-entry SHiQ and a
64-entry BLT (shown as SC++S512B64), and SC++ using
a 8192-entry SHiQ and a 128-entry BLT (shown as
SC++S8192B128) measured against the SC implementa-
tion. All the experiments use the longer network latency.

Compared to the performance gap between the SC and
RC implementations shown in Figure 3, the gap in
Figure 4 is larger for all the applications. On increasing the
network latency by a factor of four, the gap increases from
18% to 31%, on the average. The RC implementation
hides the longer network latency better than the SC imple-
mentation by overlapping more store latencies. Forem3d,
raytrace, andunstructured,the overall performance of the
RC implementation (and the other implementations)
decreases four-fold when compared to the faster network

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

FIGURE 3: Comparison of SC, RC, and SC++.
This figure compares the speedups of the RC implementation
and SC++ normalized to that of the SC implementation.
SC++inf corresponds to an infinitely large SHiQ and BLT. The
SC++ S512B64 corresponds to SC++ with a SHiQ of 512
instructions and BLT of 64 entries.

S
pe

ed
up

em3d
lu

radix
raytrace

unstructured
water

RC
SC++ inf

SC++ S512 B64

1063-6897/99/$10.00 (c) 1999 IEEE

168

used in Section 6.1; forlu, radix, andwaterthe decrease in
performance is only by a factor of two, indicating that
these three applications are less sensitive to remote
latency.

In spite of the longer network latency, SC++inf keeps
up with the RC implementation, showing that SC++ can
closely emulate the RC implementation, achieving similar
overlap of memory operations. Not surprisingly, the longer
network latency creates a performance gap between
SC++S512B64 and the RC implementation forradix and
raytrace, indicating that a 512-entry SHiQ is insufficient
to absorb the extra latency of remote memory operations.
By increasing the SHiQ size to 8192 entries and the BLT
to 128 entries, SC++ can perform as well as the RC imple-
mentation forradix andraytrace. For the rest of the appli-
cations, the smaller SHiQ and BLT configuration of SC++
performs as well as the RC implementation. Note that in
the case ofraytrace, even SC++S8192B128 no longer per-
forms better than the RC implementation because the
longer network latency dominates the lock acquisition pat-
terns.

6.3 Reorder Buffer Size
To determine whether large reorder buffer sizes in

future ILP processors will obviate the SHiQ and BLT, we
study the effect of increasing the reorder buffer size on the
performance of the SC and RC implementations. In
Figure 5, we show the speedups of the SC and RC imple-
mentations at reorder buffer sizes of 64 and 1024 instruc-
tions, using the SC implementation with a 64-instruction
reorder buffer as the base case. Note that although both the
SC and RC implementations use non-blocking caches,
hardware prefetching, and speculative loads, the SC
implementation cannot retire stores out-of-order but the
RC implementation can.

With a 64-instruction reorder buffer, there is a signifi-
cant performance gap between the SC and RC implemen-
tations, as already mentioned in Section 6.1. Increasing
the reorder buffer size to 1024 instructions, the gap shrinks
for all the applications, except forraytrace and unstruc-
tured. Increasing the reorder buffer size from 64 to 1024
instructions shrinks the gap from 18% to 14%, on the aver-

age. By hiding more store latencies through allowing more
time for prefetches in a larger reorder buffer, the SC imple-
mentation performs closer to the RC implementation,
although the RC implementation’s performance improves
as well. Although the gap between the SC and RC imple-
mentations shrinks on increasing the reorder buffer size,
there is still a significant difference in performance
between the two, suggesting that the SC++ hardware—the
SHiQ and BLT—may be required to close the gap com-
pletely.

In the case ofraytrace, increasing the reorder buffer
size helps neither the SC nor RC implementation. A reor-
der buffer of 64 instructions already exposes the critical
path throughraytrace,so that larger reorder buffer sizes do
not result in more overlap of memory operations. Perfor-
mance ofraytraceis mostly determined by the time spent
in the critical sections of the program. Both the SC and RC
implementations overlap the instructions in the critical
section to the point where performance is limited by con-
tention for the lock. The RC implementation’s perfor-
mance is better than that of the SC implementation
because the RC implementation executes the critical sec-
tion faster than the SC implementation. The RC imple-
mentation retires the stores in the critical section at a faster
rate than the SC implementation, while the SC implemen-
tation incurs higher traffic due to more rollbacks. When
the reorder buffer size is increased from 64 to 1024
instructions, the total number of loads issued per processor
increases by 50% in the SC implementation, increasing the
traffic significantly.

In the case ofunstructured, the gap between the SC and
RC implementations grows on increasing the reorder
buffer size because the number of rollbacks in the case of
SC increases. When the reorder buffer size is increased
from 64 to 1024 instructions, the number of rollbacks
increase by a factor of 35. These rollbacks increase the
traffic in the case of the SC implementation, leading to a
wider gap between the SC and RC implementations.

6.4 SHiQ Size and Speculative Stores
In this section, we show the importance of a large SHiQ

and speculative stores to enable the SC implementation to
reach the RC implementation’s performance. In Figure 6,
we show the speedups of the RC implementation, SC++

RC
SC++ inf

SC++ S512 B64
SC++ S8192 B128

FIGURE 4: Impact of network latency.
The figure plots the speedups of the RC implementation and
SC++ normalized to that of the SC implementation. The net-
work latency was increased, for shown experiments, to eight
times the local memory latency. Numbers following the letters
‘S’ and ‘B’, in the legend, correspond to the sizes of the SHiQ
and BLT, respectively.

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

S
pe

ed
up

em3d
lu

radix
raytrace

unstructured
water

FIGURE 5: Impact of reorder buffer size.
The figure compares the speedups of the RC and SC implemen-
tations, for 64 and 1024 entry reorder buffer sizes, normalized
with respect to that of the SC implementation with a 64-entry
reorder buffer.

0.0

0.4

0.8

1.2

1.6

2.0

2.4 SC 64
RC 64

SC 1024
RC 1024

S
pe

ed
up

em3d
lu

radix
raytrace

unstructured
water

1063-6897/99/$10.00 (c) 1999 IEEE

169

using a 512-entry SHiQ and a 64-entry BLT (shown as
SC++S512B64), SC++ using a 512-entry SHiQ and a 64-
entry BLT without speculative stores (shown as
SC++oS512B64), and SC++ using a 64-entry SHiQ with-
out speculative stores (shown as SC++oS64) measured
against the base case of the SC implementation. The RC
implementation and SC++S512B64 were compared in
Section 6.1 and are shown here for reference.

Now, we compare SC++S512B64 with
SC++oS512B64, which isolates the importance of specu-
lative stores. SC++o can reach the RC implementation’s
performance forem3d, lu, unstructured, andwater, which
are not store-intensive. But for the cases ofradix andray-
trace, there is a significant gap of 9% and 22%, respec-
tively, between the RC implementation and
SC++oS512B64 because of their store-intensive nature. In
these two applications, the absence of speculative stores
causes significant performance loss. Not overlapping
stores with other memory operations in SC++o leads to the
filling up of the load/store queue which, in turn, blocks
instruction issue, exposing the pipeline to remote laten-
cies.

Reducing the SHiQ size from 512 to 64 entries in
SC++o causes significant performance degradation for
em3d and radix. The smaller SHiQ size significantly
reduces the overlap among (non-speculative) stores and
speculative loads, which exposes the pipeline to remote
latencies. In the cases ofem3dandradix, performance of
SC++oS512B64 is 7% and 16%, respectively, better than
that of SC++oS64.

6.5 L2 Cache Size
So far, we have compared the different implementa-

tions using large L2 caches for our simulations to avoid
any capacity and conflict misses, so that performance dif-
ferences among the memory models are solely due to the
intrinsic behavior of the models. In this section, we show
the importance of an L2 cache being large enough to hold
all the speculative state of the SC implementation, in order
for the SC implementation to reach the RC implementa-
tion’s performance. In Figure 7, we show the speedups of
the RC implementation and SC++ using a 512-entry SHiQ
and a 64-entry BLT (shown as SC++S512B64) measured

against the base case of the SC implementation, using a
64-Kbyte, 4-way associative L2 cache.

There are two effects of a smaller L2 cache on the per-
formance gap between the SC and RC implementations.
On one hand, the gap may widen because the cache is not
large enough to hold all of the SC implementation’s specu-
lative state. On the other hand, a smaller L2 cache may
incur many load misses which slow down both the SC and
RC implementations, resulting in a narrower performance
gap between the two. For all the applications, exceptlu
and radix, the higher load miss rate of the 64-Kbyte L2
cache degrades performance of both the SC and RC imple-
mentations, reducing the significance of the differences
between the memory ordering constraints of SC and RC.
Compared to the performance gap between the SC and RC
implementations using the 8-Mbyte L2 cache (Figure 3),
the gap between the SC and RC implementations using the
64-Kbyte L2 cache is wider forradix because conflicts on
stores exposes remote latencies in the SC implementation.

In the case oflu, the striking gap between the SC and
RC implementations using the 64-Kbyte L2 cache is pri-
marily caused by rollbacks due to replacements (due to
conflict misses in the cache) of speculatively accessed
blocks. The number of rollbacks due to replacements
increases inordinately (by a factor of 55,000), comparing
the 64-Kbyte L2 cache with the 8-Mbyte L2 cache. For
both lu and radix, although SC++ performs closer to the
RC implementation than the SC implementation, SC++ is
also sensitive to the rollbacks due to replacements.

7 Conclusions
This paper shows, for the first time, that SC implemen-

tations can perform as well as RC implementations if the
hardware provides enough support for speculation. Both
SC and RC implementations rely on reordering and over-
lapping memory operations to achieve high performance.
The key difference is that while RC implementations pri-
marily use software guarantees to enforce memory model
constraints, SC implementations rely on full hardware
speculation to provide the guarantee. Full-fledged hard-
ware speculation can enable SC implementations to relax
speculatively all memory orders and “emulate” RC imple-

FIGURE 6: Impact of speculative stores.
The figure compares the speedups of the RC implementation,
SC++ and SC++ without speculative stores (SC++o), normal-
ized with respect to that of the SC implementation.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4 RC
SC++ S512 B64

SC++o S512 B64
SC++o S64

S
pe

ed
up

em3d
lu

radix
raytrace

unstructured
water

FIGURE 7: Impact of the L2 cache size.
The figure shows the impact of cache size on the SC imple-
mentation, RC implementation and SC++ performance. The
L2 cache was reduced to 4-way 64-Kbyte size for shown
experiments. The results were normalized with respect to the
SC implementation.

2.65

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

S
pe

ed
up

SC RC

SC++ S512 B64

em3d
lu

radix
raytrace

unstructured
water

1063-6897/99/$10.00 (c) 1999 IEEE

170

mentations, enabling SC implementations to reach RC
implementations’ performance.

The fundamental architectural and application require-
ments that enable an SC implementation to perform as
well as an RC implementation are: (1) hardware should
allow both loads and stores to bypass each other specula-
tively to hide long remote latencies, (2) hardware should
provide large speculative state, for both processor and
memory, to allow out-of-order memory operations, (3)
support for hardware speculation should not add excessive
overhead to processor pipeline critical paths, and (4) roll-
backs of speculative execution should be infrequent, as is
the case for well-behaved applications.

Employing novel microarchitectural mechanisms,
SC++ alleviates the shortcomings of current SC imple-
mentations to completely close the performance gap
between SC and RC implementations. SC++ allows specu-
lative bypassing of both loads and stores, yet appears to
execute memory operations atomically and in program
order. SC++ provides ample speculative state for the pro-
cessor in the Speculative History Queue (SHiQ), which
supplements the reorder buffer, to absorb remote access
latencies. SC++ ensures sufficient speculative state for
memory by placing speculative data in the local cache
hierarchy itself and using a large L2 cache, as suggested
by recent proposals for DSMs with aggressive remote
caching techniques. SC++ uses the Block Lookup Table
(BLT) to allow fast lookups of pending speculative
accesses in the SHiQ, on an invalidation, downgrades or a
replacement from the L2 cache. The SHiQ and BLT help
minimize additional overheads to the processor pipeline
critical paths.

Our experimental results obtained by software simula-
tion show that SC++ achieves an RC implementation’s
performance in all the six applications we studied. Even at
longer network latencies, SC++ can keep up with the RC
implementation, albeit using larger speculative state. For
SC++ to reach the RC implementation’s performance, all
the hardware of SC++—a large SHiQ with the associated
BLT and a large cache—is needed. Simply increasing the
reorder buffer size, without using the SHiQ or BLT, nar-
rows the gap between the SC and RC implementations, but
the extra mechanisms of SC++ are required to close the
gap completely. Performing stores in program order
causes SC++ to be considerably slower than the RC imple-
mentation, confirming the need to execute stores specula-
tively. Finally, smaller L2 caches cause rollback due to
replacements of speculative blocks, artificially widening
the gap between the SC and RC implementations.

8 Acknowledgements
We would like to thank Sarita Adve, Mark Hill, Alain

Kägi, Vijay Pai, and the anonymous referees for their valu-
able comments on earlier drafts of this paper.

9 References
[1] Sarita V. Adve and Kourosh Gharachorloo. Shared memory

consistency models: A tutorial.IEEE Computer, 29(12):66–
76, December 1996.

[2] Sarita V. Adve and Mark D. Hill. Weak Ordering - A new
definition. In Proceedings of the 17th Annual International
Symposium on Computer Architecture, pages 2–14, May

1990.
[3] M. Dubois, S. Scheurich, and F. Briggs. Memory access

buffering in multiprocessors. InProceedings of the 13th An-
nual International Symposium on Computer Architecture,
pages 434–442, June 1986.

[4] Babak Falsafi and David A. Wood. Reactive NUMA: A de-
sign for unifying S-COMA and CC-NUMA. InProceedings
of the 24th Annual International Symposium on Computer
Architecture, pages 229–240, June 1997.

[5] Kourosh Gharachorloo, Anoop Gupta, and John Hennessy.
Two techniques to enhance the performance of memory con-
sistency models. InProceedings of the 1991 International
Conference on Parallel Processing (Vol. I Architecture),
pages I–355–364, August 1991.

[6] Kourosh Gharachorloo, Daniel Lenoski, James Laudon,
Philip Gibbons, Anoop Gupta, and John Hennessy. Memory
consistency and event ordering in scalable shared-memory.
In Proceedings of the 17th Annual International Symposium
on Computer Architecture, pages 15–26, June 1990.

[7] Mark D. Hill. Multiprocessors should support simple mem-
ory consistency models. 31(8), August 1998.

[8] Alain Kägi, Nagi Aboulenein, Douglas C. Burger, and
James R. Goodman. Techniques for reducing overheads of
shared-memory multiprocessing. InProceedings of the 1995
International Conference on Supercomputing, pages 11–20,
July 1995.

[9] Leslie Lamport. How to make a multiprocessor computer
that correctly executes multiprocess programs.IEEE Trans-
actions on Computers, C-28(9):690–691, September 1979.

[10] Daniel Lenoski, James Laudon, Kourosh Gharachorloo,
Wolf-Dietrich Weber, Anoop Gupta, John Hennessy, Mark
Horowitz, and Monica Lam. The stanford DASH multipro-
cessor.IEEE Computer, 25(3):63–79, March 1992.

[11] Adrian Moga and Michel Dubois. The effectiveness of
SRAM network caches in clustered DSMs. InProceedings
of the Fourth IEEE Symposium on High-Performance Com-
puter Architecture, pages 103–112, February 1998.

[12] Subbarao Palacharla, Norman P. Jouppi, and J. E. Smith.
Complexity-effective superscalar processors. InProceed-
ings of the 24th Annual International Symposium on Com-
puter Architecture, pages 206–218, June 1997.

[13] Parthasarathy Ranganathan, Vijay S. Pai, Hazim Abdel-
Shafi, and Sarita V. Adve. The interaction of software
prefetching with ILP processors in shared-memory systems.
In Proceedings of the 24th Annual International Symposium
on Computer Architecture, pages 144–156, June 1997.

[14] Parthasarthy Ranganathan, Vijay S. Pai, and Sarita V. Adve.
Using speculative retirement and larger instruction windows
to narrow the performance gap between memory consistency
models. InProceedings of the Ninth ACM Symposium on
Parallel Algorithms and Architectures (SPAA), June 1997.

[15] J. E. Smith and A. R. Plezkun. Implementing precise inter-
rupts in pipelined processors.IEEE Transactions on Com-
puters, C-37(5):562–573, May 1988.

[16] Steven Cameron Woo, Moriyoshi Ohara, Evan Torrie,
Jaswinder Pal Singh, and Anoop Gupta. The SPLASH-2
programs: Characterization and methodological consider-
ations. In Proceedings of the 22nd Annual International
Symposium on Computer Architecture, pages 24–36, July
1995.

[17] Kenneth C. Yeager. The MIPS R10000 superscalar micro-
processor.IEEE Micro, 16(2), April 1996.

1063-6897/99/$10.00 (c) 1999 IEEE

171

