
Efficient Synchronization: Let Them Eat QOLB’

Alain K8gi, Doug Burger, and James R. Goodman

Computer Sciences Department
University of Wisconsin-Madison

1210 West Dayton Street
Madison, Wisconsin 53706 USA

galileo@cs.wisc.edu - http://www.cs.wisc.edu/-9alileo

Abstract
EjFcient synchronization primitives are essential for achieving

high performance in he-grain, shared-memory parallel pro-
grams. One function of synchronization primitives is to enable
exclusive access to shared data and cn’tical sections of code. This
paper makes three contributions. (1) We enumerate thej?ve sources
of overhead that locking synchronization primitives can incul: (2)
We describe four mechanisms (local spinning, queue-based lock-
ing, collocation, and synchronizedprefetch) that reduce these syn-
chronization overheads. (3) u”ith detailed simulations, we show the
extent to which these four mechanisms can improve the perfor-
mance of shared-memory programs. We evaluate the space of these
mechanisms using seventeen synchronization constructs, which are
formed from six base types of locks (T.!?.YT&Sn, Ti?iT&TEsrdiSR;
MCS, LH, M, and QoD). We show that large performance gains
(speedups of more than 1.5 for three ofjive benchmarks) can be
achieved ifat least three optimizing mechanisms are used simulta-
neously. We jnd that QOL& which incorporates all four mecha-
nisms, outperforms all other primitives (including reactive
synchronization) in all cases. Finally, we demonstrate the superior
performance of a low-cost implementation of Qom, which runs on
an unmodified cluster of commodiry workstations.

1 Introduction

Shared-memory multiprocessors are rapidly becoming the
machines of choice for solving large, fine-grained scientific pro-
grams. Multiple factors support this trend. The advent of afford-
able desktop symmetric multiprocessors (SMPs) will increase the
application base. The successful development of shared-memory
multiprocessing standards [43] reduce the time to market by
decreasing design time and by letting manufacturers use commod-
ity parts. Both the Convex Exemplar [7] and the Sequent STING
[27] relied on these standards. The emergence of low-cost, fine

1. Pronounced “Colby.’

This work is supported in part by NSF Grant CCR-9509589 and by the
Intel Research Council.
Permission to make digital/hard copy of part or all this work tar

personal or classroom use is granted without fee provided that

copies are not made or distributed for profit or commercial advan-

tage, the copyright notice, the title of the publication and its date

appear, and notice is given that copying is by permission of ACM.

Inc. To copy otherwise, to republish, to post on servers, or to

redistribute to lists, requires prior specific permission and/or a fee.

ISCA ‘97 Denver, CO, USA

0 1997 ACM 0-89791-901-7/97/0006...$3.50

grain software implementations of shared-memory, such as SHASTA

[38] or TO 1351 further reduce the cost of supporting the shared-
memory model. Finally, successful research prototypes such as the
Stanford DASH [25] have shown that this class of machines can
obtain excellent speedups for a wide range of programs that use
fine-grained communication.

Traditional message-passing programming models force the
programmer to embed implicit synchronization with each commu-
nication of data. Such a requirement restricts the parallclization
strategy--dynamic task distribution becomes extremely difficult,
for example. The shared-memory programming model, conversely,
uses cache coherence protocols to keep shared data consistent. The
programmer judiciously employs explicit synchronization to pro-
vide mutual exclusion for data and code, as well as synchronlzlng
processors between phases of computation.

The two major classes of explicit synchronization opemtions fn
shared-memory multiprocessors are barriers and locks. Although
barriers are important to efficient shared-memory programs, they
are well-understood, and many efficient implementations hnvc
been proposed and/or built [15, 20, 23, 32, 441. In this study, WC

focus on providing more efficient mutual exclusion through better
locks.

Locks provide individual processors with exclusive access to
shared data and a critical section of code. This exclusive access is
particularly well-suited to the fine-grained nature of many shnred-
memory parallel programs. Fine-grained programs ideally associ-
ate as little data or code as possible with a critical section, mini-
mizing serialized processing, thus maximizing nvnilnblc
parallelism. Since access to critical sections is by definition scrinl-
ized among processors, large overheads when accessing a con-
tested critical section degrade both parallel performnncc and
potential scalability. To maximize both the performance of fine-
grain parallel applications that use locking, and the potential to
scale to larger numbers of processors, we must minimize the
delays associated with the transfer of exclusively accessed
resources.

The act of transferring control of a critical section is a complex
one, that may involve multiple remote transactions. Complex pro-
tocols have been proposed that perform this transfer efficiently,
&owing reasonable performance when there is high contention for
a lock. The compIexity of these protocols causes unnecessary
delays when accessing a lock that is not held. Conversely, simple
Iocking schemes that can access a free lock quickly mny perform
poorly in the presence of contention. This fundamental trndc-off
has resulted in proposals of numerous primitives in the literature
[3,13,16,26,28,30,37].

This paper contains a detailed and thorough evaluation of n
range of locking primitives. To understand where the opportunities
for optimization lie, we first decompose the time associated with n

170

complete locking period into three phases: Transfer, Load/Corn-
pute, and Release. Together, these phases form a synchronization
period, which determines the global throughput of synchronization
operations and thus determines scalability for codes that rely
heavily on locks. We then describe four mechanisms that locks
may incorporate to reduce the time spent in the three phases: local
spinning, queue-based locking, collocation (of a lock and data
within the same cache line), and synchronouspreftch.

Using detailed simulation with both microbenchmarks and real
applications (drawn from the SPLASH and SPLASH-2 suites), we
measure the performance of six base primitives: TEST&SET,
TEST&TEST&SFT [37], LH locks [28], M locks [28], MCS locks [30],
and Q~LB [13]. We extend these primitives with the mechanisms
listed above, plus exponential backoff and prefetches inserted
automatically by a compiler. We also measure the performance of
reactive synchronization schemes. In all, we study a total of seven-
teen primitive/mechanism combinations. We find that QOL.B, which
can incorporate all of the mechanisms listed above, outperforms all
other locks in all cases (including reactive synchronization). We
also see that very efficient locking can double the speedup of real
applications (for one of the five benchmarks that we measured).
Although QOLB outperforms the other primitives, it requires mech-
anisms that the others do not (which usually implies hardware sup-

port). We discuss exactly what support QOLB requires, and show
that much of the necessary support already exists in current sys-
tems. Finally, we present performance results of an all-software
implementation of QOLB running on an unmodified cluster of com-
modity workstations, and we show that this low-cost implementa-
tion still outperforms the alternatives.

In Section 2, we explain our decomposition of a synchroniza-
tion period in greater detail. In Section 3, we show how the four
optimizing mechanisms that we identified can reduce different
parts of the synchronization period. In Section 4, we explain the
primitives that we study in detail, and discuss how each of them
uses a different set of the four mechanisms. In Section& we
describe our experimental methodology. In Section 6, we present
and discuss our performance results from this experimental space.
In Section 7, we discuss the cost of hardware-supported synchroni-
zation. Finally, in Section 8 we provide a summary of our main
results and conclude.

2 Overhead of mutual exclusion

From the perspective of an individual processor, the time asso-
ciated with an access to a critical section consists of the time from
which the processor first requests access to the corresponding lock,
to the time at which the processor completes the release on that
lock. This time period does not directly correlate with global per-
formance, however. Multiple processors contending for entry to
the same critical section may overlap the time from the issue of
their requests to the first release of the lock. A good analogy to this
distinction is the difference between the latency of an individual
request to a memory system, and the throughput achievable by
pipelined accesses to that same memory system.

To determine how these critical section accesses limit global
performance and ultimately scalability, we define the notion of a
synchnwkation period. The synchronization period is the length
of time between completion of two successive synchronization
operations (e.g., two successive releases) on the same variable. The
successive synchronization operations may occur on different pro-
cessors. This synchronization period is the service time that the
processor incurs once the previous processor releases the lock.
Since access to this critical section is by definition serialized, the
synchronization period will place an upper bound on possible per-
formance (codes that do not access critical sections heavily will
see upper bounds on performance from other sources, of course).

We depict our breakdown of a synchronization period in
Figure 1. The figure shows events to synchronization variable X.
The first event depicted is the completion of the release of lock X
by processor A. Several processors are contending to gain access
to X. We assume that processor B wins the ensuing arbitration.
When the lock acquire completes, processor B enters the critical
section. Upon finishing the work in the critical section processor B
prepares to release X, and eventually completes this operation. Our
breakdown of a synchronization period consists of three phases:

. Transfer: the time at which processor A completes its release
of the lock to the time processor B completes its acquire. At the
point that the release completes; the releasing processor has atomi-
cally written the “unlocked” value to the lock. The contending
nodes may then issue or re-issue requests (depending on the lock-
ing primitive) to obtain the lock. A period of arbitration may
ensue. Once the next recipient of the lock is determined, the lock
must be sent to that node.

. Loaticompute: the time at which processor B completes its
lock acquire to the time processor B issues its lock release. Once a
processor obtains the lock, it enters the critical section. The pro-
cessor will most likely have to read some locked data, perform
some computation, and write some locked data. Accessing the data
to read and write will likely incur some remote accesses.

. Release: which is the time from processor B issuing the lock
release to the completion of the lock release. When the processor
issues a release operation for the lock, remote accesses may be
necessary before that operation may complete. Other processors
may have removed the lock from the releasing processor’s cache,
for example, or the releasing processor may have to re-obtain write
permission for the lock’s cache line. Some aggressive memory
models [I, 121 may allow some overlap between the Load/compute
and Release phases.

In addition to illustrating this decomposition in Figure 1, we
also list the components of each phase. The components marked
with an asterisk are the only ones that are fundamental, which
would be part of a truly minimal synchronization period. The com-
ponents marked with a ‘I+” are overheads that cannot be elimi-
nated, but whose latencies may be partially or entirely hidden.
Unmarked components are ripe for elimination through optimiza-
tion.

3 Synchronization mechanisms

We have isolated what we believe to be a fundamental set of
four mechanisms that synchronization primitives may incorporate.
In Table 1 we show the overheads (from Figure 1) reduced by each

PA r&me of
lock X completes

4

p”““i;” comp’etei

requests issued + exclusive data loaded lode reobtaine.d
arbitration * computation performed * lode r&asad

* !c& sent to new owner +exclusive data written

Time ’

Figure 1 Breakdown of one synchronization period.

171

PHASE OF THE swkx+oNmmoN PERIOD

TRANSFER LOAD/COMPUTE RELEASE

SYNCHRONIZATION MECHANISMS

Local spinning

Queue-based locking

Collocation

Arbitration Lock transfer Data read Data write Re-oblaln lock

J J /

J J

Synchronous prefetch J maybe

Table 1 How synchronization mechanisms reduce overhead.

of these mechanisms. The definitions and explanations of each
mechanism are as follows:
. Local spinning: allows a requesting node to spin on a local
copy of the lock. Although local spinning does not directly reduce
overheads on the critical path of the synchronization period, it does
greatly reduce the load on the network, particuIarIy for longer crit-
ical sections. When the lock is released, the coherence mechanism
will invalidate all local copies (since the releasing node needed an
exclusive copy to modify that line), and when they next access the
line, one requester will see that the lock has been freed and will
acquire the lock.

l Queue-based locking: eliminates arbitration overhead and
reduces lock transfer time, both in the Transfer phase. This mecha-
nism reduces synchronization overhead in the following ways: (i)
creates a queue of waiting requesters, thus performing arbitration
when the requests are received and not when the current holder
releases the lock; (ii) reduces lock transfer time by restricting com-
munication to be between the releasing node and the acquiring
node only (although the number of remote accesses required to
perform this transfer will vary among different primitives); (iii)
eliminates the overhead of re-obtaining the lock in the Release
phase, since no other nodes access the lock directly until the holder
releases the lock.

Collocation:’ lets protected data be transferred with the trans-
ier of the lock itself. Since the data arrive with the lock, collocation
eliminates read and write overheads in the Load/Store phase. The
implementations we study in this paper achieve collocation by
coupling a lock and critical data together in the same transfer block
(a cache line). If the critical data are larger than one cache line, col-
location will only partly reduce the read and write access over-
heads. If the critical data are determined dynamically, effective
colIocation is difficult.

Synchronous prefetch: allows a processor to issue a request
;br a particular lock in advance of its critical section. The memory
system will effect the transfer of the lock from the holder to the
prefetching requester only when the holder releases the lock. Thus
this mechanism will not impede the current holder’s progress in

1. col.lo.ca.tion (n) Ikal-*-‘ka-sh*n\: the act or result of placing or arrang-
ing together; specif: a noticeable arrangement or conjoining of linguistic
elements (as words) [45] (luordr in this context are 4-byte quantities of
data).

the critical section. If a node prefetches the lock and the holder
releases it before the requester reaches its critical section, tho
requester may be able to hide the lock transfer latency complctcly,

4 Synchronization primitives

The six base primitives we discuss in this paper are Tosr&Srsr
(abbreviated TS), TEST&TEST&SET (abbreviated TTS), MCS locks,
LH locks, M locks, and QOLB. Table2 shows which primltivcs
incorporate which of the mechanisms described in Section 3. In
Table3, we show the minimum number of remote mcssagcs
required for acquiring a lock. The counts correspond to mcssngcs
on the critica path only. Each pair of numbers shown represents
the number of messages required for a DASH-like [25] and an SCI-
like [43] protocol, respectively. In cases where the lock is not held
(columns one and two), the number of transactions is from issue to
completion of the lock acquire. If another node holds the lock, the
number of remote transactions shown is the number from ~SSUC of
the release by the lock holder to the completion of the acquire by
the requester. In the rest of this section, we define each base primi-
tive and describe each in terms of the mechanisms that it incorpo-
rates, as shown in Table 2.

4.1 TEST&SET

TEsT&sm (TS) was the sole synchronization primitive available
on numerous early systems (such as the IBM 360 series [17])* TS
performs an atomic read-modify-write on a memory location, It
reads the vaIue contained therein, and unconditionally sets the
value to be non-zero. TS returns the value that was obtained from
the read. It may be implemented with an atomic swap of as little as
one bit.

We see in Table 3 that the TS primitive is efficient when a lock
is not held; the primitive can immediately load the lock into the
processor’s cache and lock it. TS is less efficient when there is con-
tention for a lock, since the lock’s line is shifted from requester to
requester in “‘exclusive” state. When the holder wishes to release
the lock, it must re-obtain the lock from the requester that has
moved the line into its cache. Concurrently, all requesters continue
to send requests for writable copies of the lock. Although this
scheme technically guarantees that some processor makes forward
progress, it does not guarantee fairness, nor does it prevent stnrvn-
tion, Worse, it generates continuous remote transactions from the
requesters (if there are more than one), even while the lock is bdng
held. We see from Table 2 that the only optimization (of thoso in

SYNCHRONIZATION MECHANWA

SYNCHRONlZATlON PRlMlllVE Local spinning Queue-based locking Collocation Synchronous prefetch

TS no no oplfonal no

-ITS yes no optional no

MCS, LH, M yes yes partial no
oow yes yes optional Yes

Table 2 Synchronization primitives. For each synchronization primitive, this table shows which
synchronization mechanisms it incorporates. We deemed collocation to be optional, since the programmer may
choose not to exercise it.

MINIMAL NUMBER OF REMOTE MESSAGES

SY~~CHR~~~ZATI~N Pfls.4mva Lock idle in memory Unlocked, cached elsewhere Locked, single contestant Locked, N contestants
TS 2.2 3-6 5,ll 511
l-r.5 4,2 6.6 8,11 8,9+2xN

MCS 2,2 386 7,15 5,g
LH 2,2 9, 10 5,11 5,11

M 282 388 5,11 5,ll

0ol.e 292 3,4 131 181

Table 3 Number of remote transfers for acquire. The numbers in the table represent the minimal number of messages needed to acquire
a lock. The counts correspond to messages on the critical path only. We show numbers for several initial lock states and two cache-coherence
protocols. Each number on the left assumes a DASH-like protocol [25], and each number on the right assumes an SCt-like protocol [43]. We
assume that the acquiring node, the releasing node (if applicable), and the directory node are all different nodes. In cases where the lock is not
held (columns one and two), the number of transactions is from issue to completion of the lock acquire. If another node holds the lock, the
number of remote transactions is from issue of the release by the lock holder to the completion of the acquire by the requester.

the table) that TS may implement is collocation. Collocation may
be effective if requesters rarely attempt to obtain the lock while
held. When a request for a held lock occurs, however, the requester
and holder will ping-pong the lock (and collocated data) between
their caches, as the holder accesses the data and the requester spins
on the lock. The ping-ponging of the block will stall the holder,
increasing the length of its critical section and thus increasing the
global synchronization period.

A policy often applied to TS is exponential backoff, in which
after a failure to obtain the lock a requester waits for successively
longer periods of time before issuing another request for a lock [3].
We implemented a backoff scheme closely following the guide-
lines that appear in the original article: when an attempt to obtain a
lock is unsuccessful, the requestor waits for an amount of time ran-
domly selected from a uniform distribution; the algorithm doubles
the mean of the distribution after each failed attempt up to a maxi-
mum. At the start of a fresh synchronization period the initial mean
corresponds to half of the mean used in the previous period. The
maximum mean is set to 16K cycles, which is roughly the time
required to service a simple write miss (i.e., three network round
trips or approximately 600 cycles) times the number of nodes in
the system. We initialize the mean to one cycle, which corresponds
also to the minimum mean.

4.2 TEST&TEST&SET

Rudolph and Segall first proposed an extension to TS that per-
forms a read of the lock before attempting the actual TS operation
[37]. They called this primitive TEST&TEST&SET (lTS). This primi-
tive enables waiting requesters to spin on shared, read-only copies
of the lock (local spinning), waiting for the holder to release the
lock. When the holder issues the release, the read-only copies are
invalidated, the holder obtains a writable copy of the lock, and then
releases it. The requesters load readable copies into their caches,
and finding the lock released, attempt the TS. One of the requesters
will succeed in obtaining a writable copy of the lock and locking it.

Although ITS employs local spinning to reduce interconnect
traffic while the lock is held, the time needed to acquire the lock is
longer than TS (see Table 3), due to the requesters’ initial requests
for mad-only copies (instead of an exclusive copy, as with TS). The
contention when the lock is freed can be substantial, as all request-
ers attempt to acquire the lock at that point, and then all attempt to
upgrade the lock to a writable state. Exponential backoff may
therefore improve ‘ITS as well as TS. Collocation with TTS may
work better than with TS, since the lock holder can still read data
allocated in the lock’s cache line, as it is shared with the request-
ers. TTS collocation is not ideal, however, since the holder will
ping-pong the cache line with requesters whenever it writes to the
collocated data.

4.3 MCS locks

Several researchers have independently proposed locking prim-
itives that incorporate both local spinning and queue-based locking
in software [2,29,16]. One of them is the locking primitive called
MCS, developed by Mellor-Crummey and Scott [29]. The MCS
scheme inserts requesters for a held lock into a software queue at
the time of the request, using atomic operations such as SWAP and
COMPARE&SWAP to update the list correctly. With queue-based lock-
ing, arbitration for the eventual recipient of the lock is therefore
performed in advance, first-come, first-serve. Arbitration for TS
and TTS, conversely, occurs at the time of lock release, increasing
the synchronization period.

The price of maintahring the requester queue in software is
larger overhead, especially under contentionless conditions. When
a lock is released, however, communication occurs only between
the releaser and the requester at the head of the queue. Network
traflic is thus reduced to a constant number of network traversals
per synchronization access, while the other requesters in the queue
continue to spin locally.

Since each requester is spinning on a different address, these
software queue-based algorithms cannot easily benefit from collo-
cation. Partial collocation can be achieved by placing protected
data along with the data structure that tracks the queue insertion
point. If there is little contention, partial collocation may be effec-
tive. A more sophisticated approach could better exploit colloca-
tion by placing data either with the insertion pointer when there is
no contention, or with the appropriate queue element when conten-
tion exists. However, this approach requires copying of data which,
done carelessly, may sacrifice their integrity (e.g., in the context of
recursive data structures). We did not investigate this approach.
These algorithms are also unable to prefetch data without signifi-
cant changes that greatly add to their complexity.

4.4 LH and M locks

Magnusson, Landin, and Hagersten proposed two software
queue-based locking primitives, LH and M [28] (Craig indepen-
dently developed a lock identical to LH [S]). They claimed that
their primitives would require one fewer remote access to transfer
a lock than does MCS, enabling their schemes to outperform MCS
when lock contention exists. The LH lock achieves this behavior at
the expense of increased latency to acquire an uncontested lock.
The M lock achieves the more efficient lock transfer without
increased uncontested lock access latency, at the expense of signif-
icant additional complexity in the lock algorithm. We implemented
both locks according to the description in their paper, which pre-
sents the actual algorithms in detail [28].

‘,

:,.
L
:.,

173

4.5 Reactive synchronization

In 1994, Lim and Agarwal proposed “‘reactive synchronization”
schemes [26], which dynamically switch among software locks
that perform well under various levels of contention. For instance,
it may combine TS for low-contention phases of execution with
MCS for periods of high-contention. Reactive synchronization
attempts to achieve both low latency lock access and efficient
transfer at low cost (e.g., using only all-software primitives).

We implemented reactive synchronization, closely following
the guidelines in the paper [26]. For low-contention phases, we
used TS with exponential backoff. For high-contention phases, we
used MCS (our results show that MCS is the best-performing soft-
ware lock under high contention, of the locks that we measured).
Our implementation switched to MCS after five consecutive lock
acquisitions experienced higher levels of contention than a fixed
threshold (a mean delay of 32 clock cycles). We switched from
MCS to the low-contention lock when the queue was empty upon
lock release five consecutive times.

4.6 QOLB

Goodman, Vernon, and Wocst proposed the Queue-On-Lock-
Bit primitive (Qora--originally called QOSB) [13], which was the
first proposal for a distributed, queue-based locking scheme. QOLB
maintains a hardware queue of waiting processors, in which point-
ers to adjacent queue entries are held in the cache line. Waiting
processors spin locally on a “shadow” copy of the lock address,
preventing unnecessary network traftic or interference wrth the
lock holder. Because lock requesters spin on the same address as
that of the lock; without evicting or downgrading the lock holder’s
copy, effective collocation is possible (unlike the other primitives
that we have discussed). When the holder releases its lock, the lock
is sent directly to the requester at the head of the queue, incurring a
total of one network crossing to transfer the lock (see Table 3).

In addition to enabling local spinning, collocation, and efficient
handoffs through queueing, QOLB is a non-blocking primitive. This
characteristic permits a processor to use QOLB for performing syn-
chronous prefetching, allowing the processor to overlap data and
lock access times with other useful work. If the prefetch is issued
sufficiently far in advance, it is possibIe for the requester to see no
overhead associated with the critical section entry, either for
accessing the lock or the data. Figure 2 shows an example of how
QOLB is used to access data in a critical section. The first call to
ENQOLB (a non-blocking operation) allocates a shadow copy of the
cache line and sends a message that inserts the requester into the
hardware requester queue. This early request allows the processor
to overlap the fetch time with useful computation. The subsequent
calls to ENQorn in the loop spin locally until the owner releases the
lock and sends it directly to the waiting node. When ENQOLB
returns “true:’ the processor enters the critical section. The proces-
sor relinquishes the lock with the call to DEQOLB, at which point
both the lock and any data in the lock’s cache line are sent directly
to the next waiting processor. In this example, we assume that the
critical section data can fit in 63 bytes. This will not always be the
case, of course. Also, QOLB is fair in general, except in the unusual
cases when a processor’s shadow copy of the lock is replaced from
its cache, forcing the processor to rejoin the queue at its end.

5 Experimental methodology

We measured the performance of the six synchronization prim-
itives discussed in Section 4, varying mechanisms from Table 2
when possible, except that we did not simulate collocation in con-
junction with the LH and M locks (we will show later that MCS
generally performs better than LH and M, which are not inherently
more amenable to collocation than MCS). We also measured the
performance of reactive synchronization (also without collocation

174

struct Jocked data {
char lock;
char data16311

1:
I* 64-byte aache line l /

VOid

critical-section(struct -locked data l Ptr) (
I* Prefetch lock k data (assumao Droxmr alignment.) */
EnpOLB(&ptr->lock);
/* Various computation here l /
. . .
while (IEnpOLB(&Dtr->lock)) I I* spin *I
/* Critical section here */
. . .
DepOLB(&Dtr->lOck); /* Releasa look */

1

Figure 2 Qow code example.

since reactive synchronization is not inherently amenable to collo-
cation). Our seven main locking schemes (and their corresponding
abbreviations) are thus as follows: TEST&SET (TS), TEsrsrSrirCSm
(ITS), MCS locks, LH locks, M locks, reactive synchronization (R),
and QOLB. We used the following abbreviations for optional mech-
anisms or policies: collocation (+C), hand-inserted synchronous
prefetch (+P), compiler-generated synchronous prefetch (+CP), and
exponential backoff (+E).

5.1 Simulation environment

Our simulation platform was the Wisconsin Wind ‘Immcl
(wWT) [33], which uses a 32-processor Thinking Machines CM-5
[23] as its host machine. WWT executes SPARC binaries in nntfvc
mode on the CM-5, only trapping into the simulator upon a CaChC
miss. WWT assumes fixed execution time for the instructions (the
actual values correspond to the instruction delays listed in the
CY701 SPARC user’s guide [9]). WWT makes some assumptions
about the target system to simplify simulation-it assumes both a
perfect instruction cache, and that stack accesses always hit in tho
data cache.

The default WWT network model assumes a fully conncctcd
point-to-point target network, in which messages take a constant
number of cycles for a one-way network traversal. A large enough
constant latency provides sufficient lookahead for efficient parallel
simulation, as nodes stop and synchronize only once every C
cycles, where C is the constant network latency, Using a small C
(or variable-length messages) reduces the node lookahead, which
causes severe increases in simulation time [6].

Although we model contention at the node interfaces, memory,
and memory directories, using a constant network latency ignores
contention in the network itself. To account for network conten-
tion, we used an analytical model [41] (which takes the network
load as a parameter) to derive a different constant network latency
for each benchmark. We estimated this aggregate network load
from the traffic statistics of previous simulations and their totnl
execution times. Since the network latency affects execution time
and therefore aggregate load, we iterated this estimation until the
difference between the network latency constant and the value pro-
duced by the model converged to within one cycle (the final latcn-
ties for the benchmarks ranged from 85 to 91 cycles). To valldntc
this methodology, we simulated several points for each benchmark
using the WWT extended with a detailed, event-driven SC1 network
simulator. Our network simulator accurately simulates mcssago
buffering, message retransmission, and flow control [5]. The tnrgct
network that we used to derive the validation is an 8x4 mesh of
rings that routes requests in increasing dimension order (x, y) nnd
responses in decreasing order (y, x), The internal details of the
simulated network correspond closely to those of the SC1 transport
layer standard [43]. The mean difference between the execution
time of simulations using the constant network model nnd simuln-

tions using the detailed network simulator was 2%. The difference
was always under 5% [18].

Using a global mean to model contention tends to underesti-
mate execution time, since traffic often occurs in bursts that add
more queueing delay than if the same traffic was evenly distributed
over time. With our validation, we have bounded this discrepancy.
Even so, since our more aggressive synchronization primitives
(MCS, QOLB) generate less traffic than do the alternatives, accu-
rately modeling contention in the network would only serve to
increase the reported performance gap between the lower- and
higher-performing primitives. Our results are therefore conserva-
tive.

5.2 Target systems

The target systems that we simulate are all 32-processor, cache-
coherent shared-memory systems that use the Scalable Coherent
Interface (XI) [43] as their base cache-coherence protocol. SC1 is
a particularly appropriate choice for our base platform, since two
of the newest shared-memory multiprocessors on the market
implement cache-coherent SC1 (the Convex EXEMPLAR [7] and the
Sequent STING [27]), and numerous other vendors are exploring
SC1 as an option. Each node in our CC-NUMA target system is
workstation-like, containing a processor, a l-Mbyte four-way set-
associative cache memory with 64byte lines, a 64-entry transac-
tion queue, a network interface, and some fraction of the distrib-
uted, globally-shared memory with the associated directory
entries. The transaction queue is similar to a functionally extended
write buffer. It supports the following asynchronous operations:
writes, prefetches, coherence operations, and cache line flushes
caused by replacement (rollouts). A complete description of the
system parameters and their associated timings appears elsewhere
[IS]. WwT allocates private target pages locally, and distributes
shared target pages to the target nodes round-robin. Our simulated
memory system supports release consistency [12].

5.3 Microbencbmark experiment description

We repeat the method used by both Anderson [3] and Lim and
Agarwal[26] to measure raw critical section throughput. We con-
structed a microbenchmark that accesses a critical section in a loop
repeatedly (the benchmark accesses the critical section a total of
3,200 times; these accesses are distributed evenly among the pro-
cessors). Once in the critical section, a processor waits 800 cycles
before releasing the lock (this stall simulates access to, and compu-
tation of, protected data). After release, the releasing processor
waits for a random amount of time selected from a uniform distri-
bution. The mean of the distribution is five times the critical sec-
tion delay (4,000 cycles). As the number of nodes is increased, the
contention for the lock increases, and eventually the reduction in
execution time is stopped (and in some cases reversed) by the
increasing lock contention.

For this experiment we assumed a fixed network latency
between any two nodes of 100 cycles.

5.4 Macrobenchmark experiment descriptions

The benchmark applications that we used for our experiments
are Barnes, Mp3d, Ocean, Pthor, and Raytrace, drawn from the
SPLASH and SPLASH-2 suites [42, 461. Descriptions of these
benchmarks appear in the original articles. We compiled all bench-
marks using GCC version 2.7.2 with the option -03. We padded
data in each benchmark, where necessary, to eliminate false shar-
ing [14]. We modified Ocean both by translating it to C and by
skewing its array storage (slightly increasing the size of the work-
ing arrays into arrays of prime size, from 128 to 131 elements in
each dimension). We used the locking version of Mp3d for all
experiments. Pthor assigns a descriptor to each element of the dig-

BENCHMARK TYPE OF slh!utinoN

Barnes Barnes-Hut N-body

INPUT

2,046 bodies, 11 iter.

SYNCH.
PERIOD

1,840

Mp3d

Ocean

Pthor

- Hypersonic ilow 24,000 mols, 25 iter. 44

Hydrodynamic 98x98.2 days 17,469

Digital circuit RISC, 1,000 timesteps 7,633

Raytrace 3-D rendering TEAFor 490

Table 4 Macrobenchmarks.

ital circuit being simulated. Only a few fields of this descriptor are
frequently modified in the course of the simulation. To take advan-
tage of automatic replication of read-only data and reduce cache
misses, we collocated the frequently modified Pthor fields in a sin-
gle cache line.

We list the problems that the benchmarks solve and the inputs
that we used in Table 4. The fourth column of Table 4 lists the
period of critical section entry for each benchmark, computed by
dividing the benchmark execution time (discounting initialization)
by the total number of critical section entries (across all 32 proces-
sors). We computed this statistic from the sequentially consistent
mn of QOLEZ with all mechanisms enabled. The frequency at which
locks are obtained is an important metric, since improving the syn-
chronization primitive will have little benefit for an application that
uses locks infrequently.

For these macrobenchmarks, we varied the memory model as
well as the synchronization primitive. By using two memory mod-
els (sequential consistency and aggressive release consistency), we
show that the performance gained by improving the synchroniza-
tion primitive cannot also be gained solely by making the memory
model more aggressive. The memory models that we simulated are
two different implementations of release consistency: sequential
consistency (denoted SE@, and an aggressive implementation that
attempts to minimize the number of times that the processor is
stalled by memory operations (denoted REL). For the latter memory
model, we labeled all memory accesses as aggressively as possible
according to the structure proposed by Gharachorloo and others
[ll, 121, and inserted the appropriate memory fences to achieve
release consistency on our simulated hardware platform. Although
our system assumes blocking loads, we implement a merging write
buffer of up to 64 non-blocking stores, which allows multiple
stores to be combined and loads to be serviced by stores. This large
buffer permits very aggressive relaxation of the consistency model
for stores.

5.5 Prefetcbing compiler algorithm

We used an enhanced version of GCC that automatically inserts
prefetch operations, developed locally by Aboulenein. This com-
piler takes a critical section and the address of the associated lock
variable, and automatically inserts the ENQOLB and DEQOLB
instructions for the lock. More importantly, the compiler attempts
to move an ENQOLB instruction to a prespecified distance above the
entry point to the critical section, thus performing a synchronous
prefetch.

The compiler uses two methods for trying to insert the
prefetching ENQOLB instructions. It first attempts to move the
prefetch operation into a basic block that dominates [24] the basic
block containing the entry point of the critical section. If the com-
piler is unable to locate a basic block that dominates the critical
section entry point, the compiler resorts to a technique similar to
trace scheduling [lo], which inserts ENQOLB operations in non-
dominating basic blocks. To ensure correctness, the compiler must
also insert DEQOLB operations along all possible paths that do not
include the critical section.

6 Results

In this section we present our microbenchmark and mac-
robenchmark results. We then compare pairs of macrobenchmark
runs in an attempt to identify the effect that the individual synchro-
nization mechanisms have on performance.

6.1 Microbenchmark results

We plot completion time of the microbenchmark loop in
Figure 3. Since there is no shared data used in the critical section,
we do not explore collocation. We measure the throughput of TS
and TTS both with and without exponential backoff, MCS, LH and
M locks, QOLB, and reactive synchronization (using TS+E for the
low-contention case and MCS for the high-contention case). We
see that QOLB performs best in all cases, under both low and high
contention. TS and TTS perform second- and third-best under low
contention (one or two processors), but their performance quickly
degenerates for more than four. Adding exponential backoff makes
TS and ITS perform worse under low contention, but prevents a
severe performance degradation in the presence of numerous
requestors. The LH and M locks outperform all primitives other
than QOLB under medium contention (four processors).

Under high contention MCS outperforms both LH and M. The
difference in performance is attributable to the cache behavior of
these primitives and the cache coherence protocol we simulated.
Under MCS, a processor always reuses the same queue element (Or
memory address) to insert itself in the queue. Under both LH and
M, queue elements tend to migrate from releasing to acquiring
nodes [28]. In SCI, a write to a migrating cache block requires
more network transactions than does a write to a block accessed
mostly by one processor. Other cache-coherence protocols may not
display this behavior.

Magnusson, Landin, and Hagersten [28] state that under high
contention, MCS generates one extra cache miss than do LH or M.
Careful collocation of the MCS “next” pointer and the lock bit (as
implied in the original article [29]) prevents this extra cache miss.
Under high contention, this collocation permits two read accesses
to be satisfied by a single miss instead of two. For all our experi-
ments we assumed that the MCS tail pointer is indeed collocated
with the lock bit, which improves its performance under high con-

0.0 :
I

2 4 8 16 32

Number of processors

Figure 3 Microbenchmark performance.

tention but hinders performance slightly under medium contcnllon,
In MCS, placing the lock bit and tail pointer together can result in
extra remote accesses when a node is adding itself to a two-clc-
ment queue at the same time the head of the queue is freeing the
lock. Finally, we see that our reactive synchronization scheme is
successful in that it closely tracks the performance of the best soft-
ware alternative under both low- and high-contention conditions.

6.2 Macrobenchmark results

We present the results of the macrobenchmark experiments in
Table5. TS is the base case for each benchmark and memory
model. We list the simulated execution time of each base experi-
ment (in millions of cycles) in parentheses in the TS row and SEQ
column of Table 5. The other numbers in Table 5 are all speedups
reIative to their particular base case. The running times that WC
present correspond to the entire execution of the benchmarks.

What is most striking about these results is the magnitude of
the speedups, considering that the only parameter being varied is
the synchronization primitives. Raytrace executes twice as fast in

BENCHMARK

BARNES MP3D OCEAN PTHOR RAVT~~~GE

EXPERIMENT SEQ RR SEQ RR SEQ REL SE’2 REL SEQ REL
TS (190) 0.94 (231) 1.02 (16.5) 1.19 w3) 1.16 (626) 1.22
TStC 1.67 1.85 1.03 1.12 1.31 1.69 0.66 1.13 2.47 2.66
TStE 1.17 1.40 0.66 1.21 1.12 1.37 0.66 1.22 2.06 2.16
TStEtC 1.31 1.67 0.90 1.29 1.31 1.66 0.93 1.34 2.56 2-65
-ITS 1.02 1.11 1.05 1.11 1.02 1.22 1.04 1.23 1.03 1.12
l-rs+c 1.72 1.67 1.09 1.16 1.32 1.70 0.95 1.36 2.54 2.61
TTStE 1.17 1.40 0.63 1.16 1.11 1.40 0.07 1.21 2.03 2,16
TTStEtC 1.32 1.66 0.87 1.25 1.26 1.70 0.94 1.35 2.66 2.65
MCS 1.57 1.61 1.18 1.30 1.24 1.55 1.06 1.25 2.31 226
MCStC 1.58 1.63 1.25 1.36 1.25 1.65 1.17 1.37 2.29 2.33
LH 1.21 1.48 0.81 1.12 1.24 1.55 0.67 1.22 2026 2931
M 1.21 1.47 0.75 1.06 1.24 1.55 0.67 1.18 2.25 2.20
R 1.19 1.47 0.76 1.08 1.19 1.49 0.07 1.20 2.26 2.35
QOLB 1.79 1.83 1.46 1.60 1.31 1.65 1.11 1.34 2.56 2.64
Q0LetC 1.89 1.92 1.65 1.75 1.34 1.70 1.25 1.51 2.62 2068
QoLEtCtP 1.69 1.92 1.65 1.75 1.31 1.68 1.26 1.54 2.63 2.70
QoLE3tCtcP 1.69 1.93 1.64 1.74 1.35 1.70 1.25 1.53 2.63 2.70

Table 5 Speedups of different synchronization primitives. The numbers in parentheses represent the execution time (in millions of clock
cycles) for the particular benchmark running on sequentially consistent hardware. The other numbers represent speedups, calculated as the
ratio of the execution time of the base run to that of the optimized synchronization primitive.

176

30 cases. The smallest speedup, with all four mechanisms
employed, is sequentially consistent Pthor with 25%. Although
Pthor uses locks more than does Barnes or Ocean, Barnes has
bursty streaks of accesses to locks. Lock accesses in Pthor are
more evenly distributed, so they do not degrade performance
nearly so much as in Barnes (thus leaving less opporhmity for
improvement). The speedups for Ocean are small not because the
mechanisms are ineffective, but because Ocean uses locks less fre-
quently than do the other benchmarks (see Table 4). For all bench-
marks, however, QOLB with collocation consistently captures the
bulk of the performance improvement to be gained. Our imple-
mentation of synchronous prefetching is generally ineffective,
speeding up or slowing down the execution by at most 2%.

Three of the benchmarks (Barnes, Ocean, and Raytrace) exhibit
similar performance for QOLB and TS (or TTS) with collocation.
This is untrue for Mp3d and Ptbor, however. Using collocation
with ‘ITS improves the performance of Mp3d little, and makes the
performance of Pthor deteriorate. The lower performance of Pthor
with collocation results from the relatively long length of Pthor’s
critical sections. These long critical sections give requesters the
opportunity to attempt to obtain the lock, pulling both the lock and
critical section data out of the holder’s cache. This behavior does
not occur with QOLB because waiting nodes in a QOLB queue spin
on shadow lines, not the actual addresses.

Partial collocation with MCS improves the performance of all
benchmarks, except for Barnes and the sequentially consistent runs
of Ocean and Raytrace. In these cases collocation either has little
impact (Ocean and Barnes) or degrades performance slightly (Ray-
trace). Unlike TS, MCS causes only a fixed number of memory
operations to be issued per synchronization access, thus limiting
the disturbance caused by collocation.

Raytrace exhibits much larger speedups than does any other
benchmark. The Raytrace base case (TS) is extremely slow (as is
‘ITS). Adding any other mechanism besides local spinning
improves the performance of Raytrace substantially. These two
primitives perform so poorly because much of the locking is for
very small critical sections, for which there is heavy contention.
Collocation makes the small critical sections extremely fast.

Queue-based locking eliminates the large relative overhead that
occurs due to contention when the lock is released.

Adding exponential backoff improves performance moderately
for all benchmarks but Mp3d and Pthor in the sequentially consis-
tent runs, in which we observed slowdowns of up to 20%.

Reactive synchronization is generally within 25% of the best
performing synchronization primitives (disregarding the colloca-
tion mechanism and the QOLB runs). The exceptions are the
sequentially consistent run of Barnes and Mp3d, where reactive
synchronization is 32% and 53% slower than MCS, respectively.

6.3 Individual mechanisms

This section isolates the performance contributions of the indi-
vidual mechanisms in Section 3. Figure 4 shows performance dif-
ferences between eight pairs of experiments (for each benchmark).
Each pair of experiments isolates one particular mechanism. There
is doubtless interaction between an “isolated” mechanism and the
other components of the synchronization primitive. This decompo-
sition is not intended to quantify the performance contribution of
individual mechanisms definitively, but to aid in understanding of
how their combinations affect performance. We also isolate the
exponential backoff policy. We list the isolated mechanisms or pol-
icies below, along with their corresponding experiment pairs:

EXPERIMENT PNR

tSOlATE0 MECHANISM OR POLICY With

Local spinning l-m

without

TS
Exponential backoff

Queue-based locking

Collocation

Synchronous prefetch

lTStE Trs

MCS l-l-S

mu3 TL9

TS+C TS

lTStC TLS

c?oLe+c Qcxe

QCiBtC+CP CQLEtc

All runs in Figure 4 assume a sequentially consistent memory
model. The y-axis plots speedup. Figure 4 shows that local spin-

67% 147% 106% 69% 146% 53% 124% 75% 150%

25 -

5
P

H
ae

0 -

location
(TS)

1111 u Local spinning
(l-B VS. TS)

I

Queue-based locking
(clae vs. l-c)

Queue-based locking
(MCS vs. TrS)

Compiler prefetch
(Q-)

Collocation
(Q-1

-25

Figure 4 Effects of individual mechanisms.

177

.

ning is generally ineffective. Queue-based locking (using MCS)

increases speedup for’all benchmarks. Using collocation with TS
and ‘ITS causes very different behavior across the benchmarks:
reducing speedup (Pthor), having a negligible effect (Mp3d), caus-
ing a moderate increase (Ocean), and causing a large increase
(Barnes and Raytrace). This high variance with collocation exists
because requesters may either steal the data from the lock holder,
hurting performance, or prevent extra remote transfers into a net-
work filled with arbitration traffic, thus mitigating exceptionally
poor performance.

Synchronization prefetching is ineffective, never affecting the
IUMing time by more than 2%. We suspect that there is much more
opportunity for improvement with synchronous prefetch, as the
compiler algorithm was not as aggressive as possible, and we did
not restructure the codes or algorithms to exploit the power of the
QOLB prefetch operator.

7 Cost of QOLB

In Section 6, we showed that QOLB outperforms all other syn-
chronization primitives in all cases. This performance comes with
an associated cost. Most of the other primitives that we discuss can
be implemented almost entirely in software, requiring only an
atomic memory operation, such as SWAP, in hardware. QOLB, con-
versely, requires additional hardware support In this section, we
enumerate the additional mechanisms that QOLB requires, discuss
the cost spectrum of possible implementations of these mecha-
nisms, and present performance results of a low-cost implementa-
tion of QOLB that runs on a cluster of commodity workstations.

QOLB requires four mechanisms for a fully functional imple-
mentation: non-blocking synchronizing instructions, direct node-
to-node transfer of the lock (from lock releaser to acquirer), stor-
age of the queue state information (such as the next node in the
queue), and the capability for multiple nodes to perform operations
on the same address without invoking the coherence protocol (the
“shadow line” described in Section 4.6). The highest-performance
implementation of QOLB requires hardware support in both the pro-
cessor and the memory system: specialized non-blocking QOLB

instructions in the processor, plus extra state, direct cache-to-cache
transfer of the lock, and “shadow copy” support in the cache. The
SC1 standard’s implementation of QOLB incorporates the latter three
mechanisms,’ for example, and leaves the processor implementa-
tion undefined.

Much lower-cost implementations, which achieve much of the
potential performance of QOLB, are possible. QOLB instructions in
the processor may be replaced with generic non-blocking loads or
stores, eliminating the need to modify a commodity processor. To
use generic memory operations, the memory controller must be
able to recognize the issued instructions as synchronization opera-
tions. These operations may be “flavored,” if the processor sup-
ports such loads and stores, or they may be memory-mapped into a
special “synchronization space.” These operations must also be
marked uncachable, lest they hit in on-chip caches and never reach
the memory controller.

In addition to the processor support, low-cost memory system
alternatives for QOLB exist. Recent multiprocessor implementations
have begun to use protocol processors at individual nodes to han-
dle inter-node communication. These implementations may use a
custom protocol engine, such as Wisconsin ‘typhoon [34], Stanford
FLASH [21], or Sequent STrNG [27], or a commodity protocol pro-
cessor with some additional off-chip hardware support [35]. These
protocol engines can store the QOLB state in either specialized stor-
age or main memory, send direct messages to ship the lock bit to

1. To our knowledge the SC1 standard is the only design that includes QOLB.

the next waiting processor in a queue, and bypass (or supplement)
the global coherence protocol to permit shadow spinning.

To determine if low-cost implementations of Qot.o will still out-
perform other primitives, we compared the performance of QOLD,
MCS, and a message-based centralized queue lock (CQL) [39]
implemented on an unmodified cluster of commodity worksta-
tions. The workstations used the Blizzard run-time system [40] to
provide the illusion of shared memory. Blizzard is an implementa-
tion of the Tempest interface [34] which, through user-level soft-
ware, lets users customize the behavior of shared memory to suit
the needs of their parallel applications. MCS and CQL arc part of
the locally available Blizzard distribution and arc implcmcntcd
directly on top of the Tempest interface. We implemented QOLU

using the Tempest interface. Our implementation follows closely
the QOLB specification in the SC1 standard [43]. Specific details on
the lock implementations are described elsewhere [191. Our cluster
of workstations consist of 40 unmodified dual processor Sun
SPARCStation 2Os, each with two 66-MHz HyperSPARC procc~-
sors [36] and a Myricon Myrinet interface [4]. For our measurc-
ments, we used only a single processor per node; that processor is

responsible for executing both the program and the Tempest hnn-
dlers. The detection of message arrival is achieved through polling,
A binary rewriting tool [22] automatically inserts polling instruc-
tions in the parallel program.2 The time spent polling is minimized
by exploiting the coherence protocol in the memory bus, The poll-
ing code checks the status of the network interface through no
access to a cachable location, thus limiting the number of these
accesses that require the bus to complete. The network interface
uses its DMA interface to update the polled location [31]. WC set
the cache block size to 128 bytes.

To evaluate these implementations, we used a microbenchmnrk
similar to that described in Section 5.3. To explore the impact of
collocation, this mlcrobenchmark does not wait a fixed amount of
time in the critical section; instead, it writes a value into a shnrcd-
memory location. If the synchronization primitive permits collocn-
tion, this Iocation may be collocated with the lock. As before, once
a processor exits the critical section, it waits for a randomly gcncr-
ated amount of time (seIected from n uniform distribution with n
mean of approximately 135Oi.@. The benchmark executes tho loop
body 100,000 times, divided evenly among the contending nodes,

In Figure 5, we show the elapsed time (in seconds) of the
microbenchmark loop under contention levels ranging from one to
16.3 The figure depicts the elapsed time for four synchronization
configurations: MCS, CQL, QOLB, and QOLB with the lock and the
variable collocated (QoLBtC). When there is no contention, MCS
performs better than either CQL or QOLB. The difference is due to
the fact that the latter two implementations require invocation of
protocol handlers to acquire or release a lock, while MCS cnn pcr-
form the same operations using simple loads and stores that hit in
the cache. Under high contention, QoLBtC outperforms the other
primitives. In the 16-node configuration, QoLBtC complctcs the
loop 5.6 as fast as MCS and 2.6 times ns fnst as CQL. CQL and QoLu
perform similarly, with CQL being nbout 10% fnstcr thnn QoLn
(without collocation) under high contention.

Considering message counts only we could conclude thnt QOLU
should clearly outperform CQL. Indeed, under high contention,
QOLB has a single message on the critical path (see lhblc 3), while
CQL has two (one message from the releaser to the lock mnnngcr
and another one from the manager to the acquirer). The observed
behavior is due to the transmission times of the messages used by
these implementations; CQL uses short messages to communicntc

2. That tool is also responsible for inserting checks before ench shnrcd-
memory access [39].
3. Due to a shortcoming in the Myrinet interface we could not cokct mm-
hers with more than 16 nodes.

178

0.0 : I
2 4 8 16

Number of processors

Figure 5 Performance of software QOLB.

with the node managing the centralized queue, while QOLB trans-
fers entire cache lines of 128 bytes. On our system, the round trip
time of a message carrying a cache line is roughly twice the round
trip of a short message.

8 Summary and conclusion

This paper focused on providing efficient locking primitives to
improve the performance and scalability of fine-grain shared-
memory parallel programs. Instead of focusing on the individual
latencies associated with mutually exclusive accesses to critical
sections, we focused on the global throughput of critical section
accesses. We defined the notion of a synchronization period: one
“cycle” of multiple serialized accesses to a critical section. We
broke this time into three phases (Transfer, LoaaP’compute, and
Release), and classified the components of each of these phases as
either unavoidable latencies or removable overheads. We identified
four optimizing mechanisms (local spinning, queue-based locking,
collocation, and synchronous prefetch) that can assist in eliminat-
ing the removable overheads of critical section accesses.

We performed a thorough evaluation of this space, simulating
the performance of seventeen locking constructs (formed from six
base primitives: TEST&SET, TEST&TEST&SET, MCS, LH, M, and
QOLB) in detail with both real parallel applications and the more
traditional microbenchmarks. We also demonstrated the perfor-
mance of our synchronous prefetching compiler. Finally, we com-
pared the performance of three queue-based locking schemes
running on an unmodified cluster of workstations, the results of
which support our simulation results.

Our results showed that local spinning consistently aids perfor-
mance but not very much. Queue-based locking was very effective,
except in the cases where the overhead of MCS, LH, and M locks
hurt low-contention critical section access latencies. Collocation of
the lock and locked data in the same cache line showed wildly dif-
ferent effects with Tasr&Sar and Tusr&TEsT&Srrr; collocation may
greatly increase or decrease performance, depending on the bench-
mark. Collocation consistently improved the performance of QOLB.
Synchronous prefetching was the least effective of any of the
mechanisms.

The most important result of our experiments is the consistent
and large performance gain that Qorn achieves, which is further
increased by collocation. Graunke and Thakkar [16] concluded
that I‘... elaborate hardware [synchronization] schemes are unnec-
essary even when considering larger non-bus-based [systems].”
Mellor-Crummey and Scott stated [30] that “special purpose syn-
chronization mechanisms, such as QOLB, are unlikely to outper-

form our MCS lock by more than 30%: Our results refute these
assertions; QOLB outperforms MCS by 40% for Mp3d.

Lim and Agarwal claimed [26] that reactive synchronization
“reduces the motivation for providing hardware support for queue
locks.” Since QOLB outperforms the best software locks under
either low- or high-contention conditions, it should also outper-
form reactive synchronization schemes. Our results confirm this
hypothesis-QoLa speedups were from 10% to 92% higher than
reactive synchronization, and this disparity only increased by add-
ing collocation and synchronous prefetch to QOLB.

Finally, we claim that the inherent cost requirements of QOLB
are not prohibitive. Hardware queue-based locking is not prohibi-
tively expensive, as DASH implemented one such synchronization
scheme [25] (it differs from QOLB in that the centralized memory
directory kept track of queued requesters). QOLB is an integral part
of the SC1 standard [43], and uses many of the same mechanisms
needed to implement the coherence protocol. As we showed in
Section 7, many current- and next-generation multiprocessors
already contain most of the hardware support needed to implement
hardware-supported QOLB. We also showed that a low-cost, lower
performance version of QOLB can be implemented on current sys-
tems with no additional hardware support and still outperform the
alternatives.

Acknowledgments
We are also thankful to the following people: David Wood first

proposed to decompose synchronization primitives into mecha-
nisms. Mary Vernon commented on drafts of this paper. Satish
Chandra, Babak Falsafi, Steve Reinhardt, Ioannis Schoinas, Brian
Toonen helped clarify some fine points of Tempest and Blizzard.
We benefited from discussions with T. N. Vijaykumar.

References
111

PI

I31

t41

t51

f61

I71

181

191

IlO1

1111

Sarita V. Adve and Mark D. Hill. Weak Ordering-A New Defini-
tion. In Pmceedings of the 17th Annual International Symposium on
Computer Architecture, pages 2-14, May 1990.
Thomas E. Anderson. The Performance Implications of Spin-Wait-
ing Alternatives for Shared-Memory Multiprocessors. In Proceed-
ings of the 1989 International Conference an Parallel Processing,
volume II Software, Pages 170-174. August 1989.
Thomas E. Anderson. The Performance of Spin Lock Alternatives
for Shared-Memory Multiprocessors. IEEE Transactions on Parallel
andDistributed Systems, I(I)&16, January 1990.
Nanette J. Boden. Danny Cohen, Robert E. Feldermann, Alan E.
Kulawik, Charles L. Seitz, Jakov N. Seizovic, and Wen-King Su.
Myrinet: A Gigabit-per-Second Local Area Network. IEEE Micro,
15(1):29-36, February 1995.
Douglas C. Burger and lames R. Goodman. Simulation of the SC1
Transport Layer on the Wisconsin Wind Tunnel. In Proceedings of
the Second International Workshop on SCI-Based High-Perfor-
mance Law-Cost Computing, March 1995.
Douglas C. Burger and David A. Wood. Accuracy vs. Performance
in Parallel Simulation of Interconnection Networks. In Proceedings
of the Ninth International Parallel Processing Symposium, pages
22-31, April 1995.
Convex Computer Corporation, Richardson, TX. SPPIOOO Systems
Overview, 1994.

r

Travis S. Craig. Building FIFO and Priority-Queueing Spin Locks
from Atomic Swap. Technical Report 93-02-02, Department of
Computer Science and Engineering, University of Washington,
Seattle, WA, February 1993.
Cypress Semiconductor, San Jose, CA. CIX60J SPARC RISC
User’s Guide, second edition, 1990.
Joseph A. Fisher. Trace Scheduling: A Technique for Global Micro-
code Compaction. IEEE Transactions on Computers, C-30(7):478-
490, July 1981.
Kourosh Gharachorloo, Sarita V. Adve, Anoop Gupta, John L. Hen-
nessy, and Mark D. Hill. Programming for Different Memory Con-

,- r

.-

!

179

;i .- -- --?%?;a -' 88

sistency Models. Journal of Parallel and Distributed Computing,
15(4):399-407, 1992.

[12] Kourosh Gharachorloo, Daniel Lenoski, James Laudon. Philip Gib-
bons, Anoop Gupta, and John Hennessy. Memory Consistency and
Event Ordering in Scalable Shared-Memory. In Proceedings of the
17th Annual International Symposium on Computer Architecture,
oages 15-26. May 1990.

1131 ,Aes R. Goodman, Mary K. Vernon, and Philip J. Woest. Efficient
Svnchronization Primitives for Large-Scale Cache-Coherent
Siamd-Memory Multiprocessors. In Proceedings of the Third Sym-
posium on Architectural Support for Programming Languages and
Operating Systems, pages 64-75, April 1989.

[14] James R. Goodman and Philip J. Woe.%. The Wisconsin Multicube:
A New Large-Scale Cache-Coherent Multiprocessor. In Proceedings
of the 15th Annual International Symposium on Computer Axhitec-
ture, pages 422-431, May 1988.

[15] Allan Gottlieb, Ralph Grishman, Clyde P. Kruskal, Kevin P. McAu-
liffe, Larty Rudolph, and Marc Snir. The NYU Ultracomputer-
Designing an MIMD Shared Memory Parallel Computer. IEEE
Transactions on Computers, C-32(2):175-189, February 1983.

1161 Gary Gram&e and Shreekant Thakkar. Synchronization Algorithms
for Shared-Memory Multiprocessors. IEEE Computer, 23(6):60-70,
June 1990.

[17] International Business Machines, Inc., Poughkeepsie, NY. IBM Sys-
ten/360 Principles of Operation, ninth edition, May 1970.

[18] Alain K@i, Nagi Aboulenein, Douglas C. Burger, and James R.
Goodman. Techniques for Reducing the Overheads of Shared-Mem-
ory Multiprocessing. In Proceedings of the 199.5 International Con-
ference on Supercomputing, pages 1 l-20, July 1995.

[19] Alain KZgi and James R. Goodman. SoftQOLB: An Ultra-Efficient
Synchronization Primitive for Clusters of Commodity Workstations.
Technical Report 1327, Computer Sciences Department, University
of Wisconsin, Madison, WI, November 1996.

[20] R. E. Kessler and J. L. Schwartzmeier. CRAY T3D: A New Dimen-
sion for Gray Research. In Proceedings of the 38thIEEE Computer
Society International Conference (COMPCON], pages 176-182,
February 1993.

[21] Jeffrey Ku&in, David Ofelt, Mark Heinrich, John Heinlein, Richard
Simoni, Kourosh Ghamchorloo. John Chapin, David Nakabira, Joel
Baxter, Mark Horowitz, Anoop Gupta, Mendel Rosenblum, and
John Hennessy. The Stanford FLASH Multiprocessor. In Proceed-
ings of the 21st Annual International Symposium on Computer
Architecture, pages 302-313, April 1994.

[22] James R. Lams and Eric Schnarr. EEL: Machine Independent Exe-
cutable Editing. In Proceedings of the 1995Conference on Program-
ming Language Design and Implementation. pages 291-300, June
1995.

[23] CharlesE. Leiserson, Zahi S. Abuhamdeh, David C. Douglas,
Carl R. Feynman. Mahesh N. Ganmukhi, Jeffrey V. Hill, W. Daniel
Hillis, Bradley C. Kuszmaul, Margaret A. St. Pierre, David S. Wells,
Monica C. Wong, Shaw-Wen Yang, and Robert Zak. The Network
Architecture of the Connection Machine CM-5. In Proceedings of
the Fourth Annual ACM Symposium on Parallel Algorithms and
Architectures, pages 272-285, June 1992.

[24] Thomas Lengauer and Robert E. Tarjan. A Fast Algorithm for Find-
ing Dominators in a Flowgraph. Transactions on Programming L.an-
guages and Systems, 1(1):121-141, July 1979.

[25] Daniel Lenoski, James Laudon, Kourosh Gharachorloo. Wolf-
Dietrich Weber, Anoop Gupta, John Hennessy, Mark Horowitz, and
Monica Lam. The Stanford DASH Multiprocessor. IEEE Computer,
25(3):63-79, March 1992.

[26] Beng-Hong Lim and Anant Agarwal. Reactive Synchronization
Algorithms for Multiprocessors. In Proceedings of the Sixth Sympo-
sium on Architectural Support for Programming Languages and
Operating Systems, pages 25-35. October 1994.

[27] Tom Lovett and Russell Clapp. SliNG: A CC-NUMA Computer
Svstem for the Commercial Marketolace. In Proceedings of the 23rd -.------
Annual International Symposium dn Computer Arch&&e, pages
304-315, May 1996.

[28] Peter Magnusson, Anders Landin, and Erik Hagersten. E!licient
Software Synchronization on Large Cache Coherent Multiproces-

sors. Technical Report T94:07, Swedish Institute of Computer Sci-
ence, Kista, Sweden, February 1994.

[29] John M. Mellor-Crummey and Michael L. Scott. Algorithms for
Scalable Synchronization on Shared-Memory Multiprocessors,
ACM Transactions on Computer Systems, 9(1):21-65, February
1991.

[30] John M. Mellor-Crummey and Michael L. Scott. Synchronizotlon
Without Contention. In Proceedings of the Fourth Symposbm 011
Architectural Support for Programming Languages and Operating
Systems, pages 269-278, April 1991.

[31] ShubhenduS. Mukhejee, Babak Falsafi, MarkD. Hill, and
David A. Wood. Coherent Network Interface for Fine-Grain Com-
munication. In Proceedings of the 23rd Annual International Sytn-
posium on Computer Architecture, pages 247-258, May 1996.

[32] &I? Pfister, W. C. Brantley, D.A. George, S. L, Harvey, W, J.
Kleinfelder. K. P. McAuliffe, E. A. Melton, V. A. Norton, and
J. Weiss. The IBM Research-Parallel Processor Prototypo (RP3):
Introduction and Architecture. In Proceedings of the 1965 Inlenta-
tional Conference on Parallel Processing, pages 764-771, August
1985.

[33] Steven K. Reinhardt, Mark D. Hill, James R. Lams, Alvin R. teb-
eck, JamesC. Lewis, and David A. Wood. The Wisconsin Wind
Tunnel: Viiual Prototyping of Parallel Computers. In Proceedings
of the I993 ACM Sigmetrics Conference on Measttremettls attd
Modeling of Computer Systems, pages 48-60, May 1993,

1341 Steven K. Reinhardt, James L. Lams, and David A. Wood, Tompc~t
and Typhoon: User-Level Shared Memory. In Proceedings of t/to
21st Annual International Symposium on Computer Archlteclttrc,
pages 24-33, April 1994.

[35] Steven K. Reinhardt, Robert W. Pfile, and David A. Wood. DCCOU-

pled Hardware Support for Distributed Shared Memory, In Proceed-
ings of the 23rd Annual International Symposium on Contpttter
Architecture, pages 354, May 1996.

[36] ROSS Technology, Inc., Austin, TX. SPARC RISC Cker’s Gttlde:
hyperSPARC Edition, third edition, September 1993.

[37] Lany Rudolph and Zary Segall. Dynamic Dccentrnlizcd Cncho
Schemes for MIMD Parallel Processors. In Proceedings of /he 11/h
Annual International Symposium on Computer Architectttre, pngcs
340-347, June 1984.

[38] Daniel J. Scales, Kourosh Gharachorloo, and Chandramohnn A,
Thekkath. Shasta: A Low Overhead, Softwnrc-Only Approach for
Supporting Fine-Grain Shared Memory. In Proceedings of /he SW
enth Symposium on Architectural Support for Progmnrtttlrrg tin-
guages and Operating Systems, pages 174-185,Octobor 1996,

[39] Ioannis Schoinas, Babak Fnlsaii, Mark D. Hill, Jnmcs R. Latus,
Christopher E. Lukas, Shubhendu S. Mukhejeo, Steven K. Rein-
hardt, Eric Schnarr, and David A. Wood. Implementing Fino-Gmfn
Distributed Shared Memory on Commodity SMP Workslntions,
Technical Report 1307, UWCS, March 1996.

[40] Ioannis Schoinas. Babak Falsafi, Alvin R. Lebeck, Steven K. Reln-
hardt, James R. Lams, and David A. Wood. Fine-Gmin Access Con-
trol for Distributed Shared Memory. In Proceedings of /he SIX//I
Symposium on Architectural Support for Prograntming Lnnguagcs
and Operating Systems, pages 297306, October 1994.

[41] Steven L. Scott, James R. Goodman, and Mary K. Vomon, Pcrfor-
mance of the SC1 Ring. In Proceedings of the 19th Atuttrrtl btlertra-
tional Symposium on Computer Arcltitecture, pages 403414, Mny
1992.

[42] Jaswinder Pal Singh, Wolf-Dietrich Weber, and Anoop Gupln.
SPLASH: Stanford Parallel Applications for Shared Memory. Co!)!-
puter Architecture News, 20(1):5-44, March 1992.

[43] IEEE Computer Society. Scalnble Coherent Interface (SC& ANSI/
IEEE Std 1596-1992, August 1993.

1441 Teruo Utsumi, Masayuki Ikeda, and Moriyuki Tnknmum. Architcc-
ture of the VPPSOO Parallel Supercomputer. In Proceediftgs Of

Supercomputing ‘94, Washington, b.C., November 1994.
[45j Webster. Webster’s Seventh Dictionary. 1965.
[46] Steven Cameron Woo, Moriyoshi Ohara, Evan Torrie, Jnswlnder Pnl

Singh, and Anoop Gupta. The SPLASH-2 Programs: Cbnrnckrizn-
tion and Methodological Considerations. In Proceedings of /he 22ttd
Annual International Symposium on Computer Architecture, pngcs
24-36, June 1995.

