
Supporting Systolic and Memory Communication in iWarp

Shekhar Borkar, Robert Cohn, George Cox, Thomas Gross,
H. T. Kung. Monica Lam, Margie Levine, Brian Moore. Wire Moore,

Craig Peterson, Jim Susman, Jii Sutton, John Urbanski, and Jon Webb

School of Computer Science Intel Corporation, CO4-01
Carnegie Mellon University 5200 N.E. Elam Young Pkwy

Pittsburgh, Pennsylvania 15213 Hillsboro. Oregon 97124

Abstract

iWarp is a parallel architecture developed jointly by Car-
negie Mellon University and Intel Corporation. The iWarp
communication system supports two widely used interproces-
sor communication styles: memory comnaunication and
systolic communication. This paper describes the rationale,
architecture, and implementation for the iWarp communica-
tion system.

The sending or receiving processor of a message can per-
form either memory or systolic communication. In memory
communication, the entire message is buffered in the local
memory of the processor before it is transmitted or after it is
received. Therefore communication begins or terminates at
the local memory. For conventional message passing
methods, both sending and receiving processors use memory
communication. In systolic communication, individual data
items are transferred as they are produced, or are used as they
are received, by the program running at the processor.
Memory communication is flexible and well suited for
general computing; whereas systolic cortummication is ef-
ficient and well suited for speed critical applications.

A major achievement of the iWarp effort is the derivation
of a common design to satisfy the requirements of both sys-
tolic and memory uxnmunication styles. This is made pos-
sible by two important innovations in communication: (1)
program access to communication and (2) logical channels.
The former allows programs to access data as they are trans-
mitted and to redirect portions of messages to different des-
tinations efficiently. The latter increases the connectivity
between the processors and guarantees communication
bandwidth for classes of messages. These innovations have
provided a focus for the iWarp architecture. The result is a
communication system that provides a total bandwidth of 320
MBytes/xc and that is integrated on a single VLSI com-
ponent with a 20 MFLOPS plus 20 MIPS long instruction
word computation engine.

‘llte research was supported in part by Defense Advanced Research
Projects Agency (DOD) monitored by the Space and Naval Warfare
Systems Command under Contrad NOOO39-87-C-0251.

Authors’ affiliations: R. Cohn, T. Gross, H. T. Kung, and J. Webb
are with Carnegie Mellon University; S. Borkar, G. Cox, M. Levine,
B. Moore, W. Moore. C. Petersen, I. Susman, J. Sutton, and
J. Urbanski are. with Intel; M. Lam, who was a Ph.D. student at
Carnegie Mellon University, is now with Computer Systems
Laboratory. Stanford University, Stanford, CA 94305

1. Introduction
iWarp [5] is a distributed parallel computing system under

joint development by Carnegie Mellon University and Intel
Corporation since 1986. The architecture is derived from the
original Warp architecture developed by Carnegie Mellon [2].
The building block of an iWarp system is the iwarp ceN,
made out of a single-chip iWurp processor (or iWarp
component) connected to a local mcxnory. Parallel systems of
different scales and topologies can be built cost-effectively by
simply Iinking together iWarp cells. Figure 1 illustrates one
possible configuration.

Parallel System

iWarp Component

Figure 1. iWarp cell: a building block for parallel systems

The iWarp processor integrates both a high-speed computa-
tion and communication capability in a single component.
The processor is a powerful computation engine that employs
instruction-level parallelism to allow simultaneous operation
of multiple functional units. What makes iWarp unique,
however, is its interprocessor communication capability. An
iWarp processor can simultaneously communicate with a
number of other iWarp processors at very high speeds. More
importantly, the iWarp processor Ihas a highly flexible com-
munication mechanism that can support different program-
ming models, including the tightly coupled computing found
in systolic arrays and the message passing style of computa-
tion found in distributed memory machines. These com-
munication capabilities allow the effective use of iWarp for a
wide range of applications.

CH2887-8/90/0000/0070$01.00O1990 IEEE 70

The iWarp component consists of three autonomous subsys-
tems, as depicted in Figure 1. The computation agent, which
executes programs, can deliver 20 (or 10) MFLOPS for single
(or double) precision calculations plus 20 MIPS for
integer/logic operations. The corrmuuI ication agent, which
implements the iwarp’s communication system, can sustain
an aggregate intercell communication bandwidth of 320
MBytes/set by using four input and four outPut busses. The
memory agent, which provides a high-bandwidth interface to
the local memory, can transfer streams of data into or out of
the communication agent at a rate of 160 MBytes/set.

The first silicon of the iWarp component was fabricated in
December 1989. It consists of approximately 650,OOCl transis-
tors and measures about 1.4cm (551mil) on a side. Figure 2
shows a photo of the component, together with a floor plan
that highlights the major units. The iWarp component
operates at a frequency of 20 MHz, with the exception that the
data is transferred between processors at twice that frequency
(40 MHz). Three iWarp demonstration systems will be
delivered to Carnegie Mellon by the Fall of 1990. Each of
these systems consists of an 8x8 torus of iWarp cells, deliver-
ing more than 1.2 GFLOPS. The system can be readily
expanded to include up to 1,024 cells for an aggregate com-
puting power of over 20 GFLOPS and communication
bandwidth of 160 GBytes/sec.

The software for the initial iWarp systems includes optimiz-
ing compilers for C and FORTRAN as well as parallel
program generators such as Apply [1 l] for image processing.
A resident run-time system on each cell supports systolic and
memory communication. Included in this run-time system are
the message-passing services of the Nectar communication
system, originally developed for Carnegie Mellon’s Nectar
network [3].

This paper describes in depth the rationale, concepts, and
realization of the iWarp communication agent. In particular,
we describe the common design to support both systolic and
memory communications, and the innovative architectural
features needed to efficiently support these different types of
communication.

This paper complements earlier iWarp papers on other
topics: iWarp overview [5], architecture and compiler
tradeoffs for the computation agent [6]. and networks that can
be formed on an iWarp array [9]. General discussions on
interprocessor communication methods can be found in [14].
which describes a taxonomy of communication methods and
uses iWarp communication methods as part of the examples.
Further discussions on systolic communication can be found
in [12].

The organization of the paper is as follows. We first
describe the fundamental differences between systolic and
memory communication and point out that these two styles of
communication each has its own merit. We then discuss the
two unique architectural concepts in the iWarp communica-
tion system: (1) program access to communication and (2)
logical channels. These innovations were motivated
originally by systolic communication needs, but as described
in Section 3, they are also useful in improving the perfor-
mance of memory communication. We discuss the details of
the iWarp communication system in Sections 4 through 7.
starting with the physical intercell connections, the implemen-
tation of logical channels, routing and bandwidth reservation,
and finally, communication agent interaction with the com-
putation and the memory agents. We close the paper with
some performance figures on the latency of communication,
and some concluding remarks.

Fi igure 2. Photo and floor plan of iWarp component

Integer/
Logic

unit

MelIlO~

4gent

FP-Mu1
I

Seduencer/
Control

I
Register
File

FP-Add

Communication Agent

I

2. Systolic vs. memory communication
An iWarp cell is said to perform systolic communication if

the program has direct access to the input or output port of a
message queue as the message is being sent or received, it is
said to perform mem01y communication otherwise. The send-
ing and receiving cells of the same message do not necessarily
use the same communication style; that is, one cell may
perform systolic communication while the other performs
memory communication. In the following we motivate and
elaborate on these two styles of intercell communication.

2.1. Memory communication
In conventional message passing, messages are delivered

from the local memory of the sending cell to the local
memory of the receiving cell. That is, a message is first built
in the local memory of the sending cell and then delivered (as
a unit) to that of the receiving cell. Only when the full
message is available in the local memory of the receiving cell
is it ready to be operated upon by its program. Thus, in

71

conventional message passing, both the sending and receiving
cells perform memory communication.

In memory communication. the program running on the cell
is insulated from communication. In the case of a sending
cell, the program just needs to build the message in its local
memory. After the complete message has been built, deliver-
ing it over the network is handled independently by some
network software. Similarly, in the case of a receiving cell,
the program is not involved in receiving the message, and will
operate on the data in the message only after the entire mes-
sage has been delivered to the local memory by the network
software.

Memory communication has the advantage that communica-
tion is decoupled from computation. While the message is
being delivered and buffered through memory, the program at
the sending or receiving cell can operate autonomously on its
local data. Moreover. communication protocols can be
developed independently from the program to handle
communication-specific issues such as deadlock avoidance
and recovery from transmission failures. This makes memory
communication the method of choice for applications which
do not assume detailed knowledge about intercell com-
munication. For these applications, message passing which
uses memory communication at both sending and receiving
cells is widely used.

2.2. Systolic communication
Systolic communication was motivated by systolic al-

gorithms. In a systolic algorithm, an array of cells perform
computations on long data streams flowing through the array.
To achieve high efficiency, each cell processes the data im-
mediately as each item arrives. We can view all data sent
along each directed connection in a systolic array as belong-
ing to one message. However, instead of waiting until all the
data in the message have arrived, each cell operates on the
data items within a message as they arrive individually. It
then sends the results of the computation to other cells on-the-
fly as data of out-going messages. Therefore, each cell per-
forms systolic communication as defined in the beginning of
this section.

Systolic communication has the following advantages over
memory communication:

l Fine-grain cummun icatiun. The program at the
sending cell can send out data items individually
as soon as they are produced; similarly the
program at the receiving cell can use data items
individually as soon as they are received. This
allows pros- t.0 communicate and
synchronize with each other at word-level rather
than message-level granularity. The message
routing and header information overheads are not
paid with each unit of synchronization. This low
communication cost makes it possible for the
cells to cooperate in fine-grain parallel process-
ing.

l Reduced access to local memory. Incoming and
outgoing data need not be buffered in the cell’s
local memory unless it is required by the com-
putation. Since memory access is typically a
bottleneck in the cell’s performance, the reduced
access to local memory may translate into in-
creased computation performance.

l Increased instruction-level parallelism. At each

cell, systolic inputs and outputs provide ad-
ditional parallel sources of operands for instruc-
tions. These operands can hellp keep the multiple
functional units busy and increase insmtction-
level parallelism. Optimizing compilers for
wide-word instruction set architectures, such as
the compilers for Warp and iWarp [6, 151. have
been developed to take advantage of this
instruction-level parallelism.

l Reduced size for local memory. Avoiding buffer-
ing data in the local memory also reduces the.
memory size requirement for s.ome applications.

However, systolic communication is harder to use than
memory communication with respect to the flexibility of data
access by a cell’s program. The local memory of a cell can be
accessed furufomly. while message queues in the communica-
tion agent can only be accessed sequentially. Consequently,
in systolic communication, one must make sure that the reads
and writes of message queues are properly sequenced. That
is, whenever the cell’s program reads from an input queue, the
right data item will appear at the front of the queue.
Similarly, whenever the program writes a data item to an
output queue, one must make sure that when the data item
emerges from the front of an input queue of the receiving cell,
that cell’s program will be ready to read it.

Furthermore, in systolic communication after an item has
been sent, it will no longer be available on the sending cell
and cannot be re-transmitted. Therefore the communication
system must guarantee reliable transmission.

3. Two iWarp architectural innovations in
communication

iWarp has two important architectural innovations: program
access to c-nicatiun, and logical channels. These in-
novations were motivated by the desire to support systolic
communication.

In addition, iWarp has many of the more “traditional”
architectural features [5] found in previous distributed
memory machines [4. 171. such as support for non-
neighborhood communication, message routing hardware,
word-level flow control between neighboring cells and spool-
ing (a DMA-like mechsnism). Tol;ether, the traditional fea-
tures and our two innovations make iWarp an effective
processor for both systolic and memory communications.

3.1. Program access to communication
iwarp’s communication is unique in that its low level com-

munication mechanisms are exposed and accessible by
programs. First, the communication agent supports word-
level flow control between connecting cells and transfers mes-
sages word by word to implement wormhole routing [7.8].
Exposing this mechanism to the computation agents allows
programs to communicate systolically. Second, a com-
munication agent can automatically route messages to the
appropriate destination without the intervention of the com-
putation agent. By allowing the computation agent to modify
the routing of messages in midstream, the program can imple-
ment some common message operations such as message
concatenation or distribution efficiently.

72

3.1.1. Program access to communication data
To implement systolic communication, iWarp allows

pros- running on the computation agent to have direct
access to the inputs and outputs of message queues in the
communication agent. These locations csn be bound to spe-
cial registers, called gates. in the register space of the instruc-
tion set architecture. Reading from the gate corresponds to
receiving data from the queue; similarly, writing to the gate
corresponds to sending data to the queue. Data me transferred
in FIFO order and reading from an empty queue or sending to
a full queue will block the operation.

Applications typically use message queues to smooth the
flow of data between cells and to delay one stream of data
with respect to others. The size of such queues is application-
specific and can be larger than the message queues that the
communication agent can provide in hardware. iWarp over-
comes this problem by providing the option of extending the
queue into the local memory of the cell. Although using this
mechanism increases the demand for memory bandwidth, it is
a software transparent method for providing queues that are
too long to implement with dedicated buffer space.

Besides supporting systolic communication. the ability for
the program to access message queues directly can also speed
up memory communication. In conventional message passing
for distributed memory machines, messages are usually
copied from the user space to system space at the sending cell.
transmitted, and then copied from system space to user space
at the receiving cell. Reliable and safe service routines are
used to transfer messages between the system spaces. We call
this station-to-St&on delivery [S]. Making copies of data
back and forth between the application and the system spaces
incurs considerable overhead.

Direct access to message queues can be used to optimize the
communication protocol. That is, the application can transmit
the data itself using an application-specific protocol; the data
are sent directly between the user spaces of the sending and
receiving cells. We call this door-to-door delivery.

To implement door-todoor delivery. the application
program at the receiving cell needs to read the message
header before the entire message is buffered in the local
memory. Using the information in the header, the program
will explicitly control the memory allocation and tell the
communication system where to deposit messages.

These details can be readily handled by parallel program
generators such as Apply [lo] and AL [181. The extra protec-
tion provided by service routines for station-to-station com-
munication is not needed by such tools, since the programs
generated by the tools can be trusted to be correct in their
interactions with the run-time system. Furthermore, parallel
program generators can achieve additional efficiency by com-
puting and communicating concurrently. with the use of
instruction-level parallelism in iWarp.

3.1.2. Program access to data routing
Under normal operation, the communication agent es-

tablishes a route between the sender and the receiver, and all
the data in the message follow the same route. In iWarp, the
program may alter this route in the middle of a message so
that the rest of the data can be forwarded to another cell,
along another route. Program access to data routing reduces
the need to buffer data in memory.

The importance of this mechanism can be illustrated by the
“GetRow” and “PutRow” l/O methods [l], which have
been extensively used on Warp for image processing applica-

tions. GetRow is an input method of distributing data (e.g., a
row of an image) to a group of cells. All the cells participat-
ing in the GetRow operation are linked together by pathways,
The first cell, the left-most cell in Figure 3 (a), sends out the
data as a single outgoing message to cells to the right. Each
receiving cell in tum takes its potion of the message, and
then forwards the remainder, if any, to cells to the right. To
avoid buffering through the local memory of the receiving
cell, the destination for the remaining message is altered,
More precisely, after having read its portion of the incoming
message, the program at the cell will instruct the communica-
tion agent to redirect the remaining portion of the message to
the next cell. This redirection eliminates the need for the cell
to buffer up the remaining portion of the message before
forwarding it to the next cell. Note that the first cell does not
have to know how many cells will receive the data that it
sends out, nor how the data will be distributed among them.

(b)
Figure 3. (a) GetRow and (b) PutRow on iWarp

Corresponding to GetRow is the”PutRow” output method
of concatenating multiple messages from a group of celIs to
form one long message. All the cells participating in the
PutRow operation are linked by a set of pathways. In
PutRow, the last cell, the right-most cell in Figure 3 (b),
receives the data from all the other cells. Each of the other
cells sends out its data as a separate outgoing message to the
next cell. After having sent out its message, the program at
the cell. without closing the message, will peel off the header
of the incoming message and instruct the communication
agent to redirect the incoming message as the remaider of the
original outgoing message.

3.2. Logical channels
iwarp’s second innovation in communication is logical

channels. They have two important functions. First, in map-
ping computations onto iWarp arrays, logical channels
provide a higher degree of connectivity than that achievable
by physical means. Second. they provide a mechanism for
delivering guaranteed communication bandwidth for classes
of messages.

3.2.1. Increasing connectivity
When mapping computations onto iWarp arrays, it is

desirable for the cells to be highly interconnected. However,
the number of physical connections is limited by hard con-
straints such as the number of available pins and pads on the

73

iWarp component. Logical channels overcome this problem
by providing multiple “logical” connections over the same
physical connection. In iWarp, multiple logical channels can
time-multiplex a physical bus at word-level granularity (see
Section 5). Up to forty logical channels can be multiplexed
over the eight external and five internal physical busses in
each cell.

A high degree of connectivity is useful for systolic com-
munication. In systolic communication, a cell may need to
have simultaneous connections to several cells. Without logi-
cal channels, algorithms that require more physical connec-
tions than those provided in hardware cannot be implemented.
Consider, for example, mapping a hexagonal systolic array
onto a 2dimensional grid of iWarp processors. Whereas the
X and Y connections of the hexagonal array map directly onto
those of the iWarp array, each of the diagonal connections of
the hexagonal array can be implemented on the iWarp array
with one horizontal and one vertical channel.

In general, a high degree of connectivity is required when
mapping computations onto a physical array which has quite a
different intercell communication topology. Even when the
computation and the physical array have exactly the same
communication topology, extra connections may still be
needed to route around congested or faulty cells. Extensive
simulation has shown that a moderate number of logical chan-
nels (on the order of 10) can be highly effective in avoiding
faulty cells [161.

3.23. Delivering guaranteed communication bandwidth
Logical channels can be used to guarantee communication

bandwidth for special classes of messages between a set of
selected cells. The time-multiplexing of logical channels onto
physical busses uses a fair schedule. Therefore some min-
imum bandwidth is guaranteed to be available to each logical
channel, and thus to the messages carried by the channel,
since the total number of logical channels sharing the same
physical bus is bounded. Moreover, the multiplexing of logi-
cal channels to physical busses is designed such that idle
logical channels do not consume any physical bandwidth.
That is, when a logical channel is inactive, the physical
bandwidth reserved for it is not wasted and can be used by
other logical channels.

The ability to deliver guaranteed communication bandwidth
is important for both systolic and memory communication.
The need in the case of systolic communication is obvious.
The connection for systolic communication requires some
guaranteed minimum performance to ensure effective low
cost fine-grain communication. A systolic connection may
exist for an indefinitely long period of time, possibly for the
duration of an entire application program. If connections
exclude other communication on the same bus, then cells
engaged in systolic communication can potentially lock out
all other messages by monopolizing the connections. It is
important that some bandwidth be made available for memory
communication to support system-related functions such as
monitoring.

Guaranteeing communication bandwidth in the case of
memory communication is less clear but nonetheless impor-
tant. Messages received and sent using memory communica-
tion will compIete in a bounded amount of time for a given
available communication bandwidth. Provided that at least
one connection from any cell to any cell can be made at any
one time, all messages will eventually arrive at their destina-
tions. However, there is little guarantee as to when a par-

ticular message will be delivered. Reserving a set of logical
channels for a class of messages guarantees that some min-
imum bandwidth is reserved for them. For example, it is
useful to guarantee that special system messages can be
delivered in a timely fashion. TMs is especially useful for
debugging and diagnostic purposes.

Reserving communication resources in iWarp is modleled by
the notion of pathwuys. each being a chain of linearly con-
nected logical channels (see Section 6). Logical channels in a
given set of pathways can be reserved to transport a class of
messages between the cells connected by the pathways. Con-
versely, all these messages are cctimed to use only those
logical channels within the pathways, guaranteeing the
availability of the rest of the resources for other usages.
Figure 4 shows some examples of networks of pathways
within a 2dimensional system, where each arrow denotes a
reserved logical channel.

t Net2

non
Net3

0 0 CI 0

fL!JQum.m
Figure 4. Examples of networks of pathways reserved

in a 2dimensional iWarp array

4. Physical busses
In the next few sections, we describe the architecture and

implementation of the iWarp communication system and, in
particular, show how they implement the two communication
concepts described in Section 3. We describe the system in a
bottom-up fashion, We start with the physical co~ections

and the logical channels, then proceed to describe how logical
channels guarantee minimum communication bandwidth for
classes of messages. Lastly, we describe how the low level
communication mechanisms are made accessible to the com-
putation and memory agents.

Each processor is connected via eight external busses to the
outside world, each delivering a bandwidth of 40 MBytes/set.
The busses are unidirectional, four are input busses and the
other four are output busses. We refer to these external

74

busses as XRight, YUp. XLeft, and YDown as shown in
Figure 5. The subscripts “in” and ‘*out” are attached when
necessary to distinguish between input and output busses.

The design of the physical busses is a tradeoff between
performance goals and implementation constraints. The com-
ponent is limited by the number of pins in the package and the
switching speed of the signals. Each of the eight external
busses consists of eight data lines and five control lines. The
data busses are unidirectional because they can operate at
higher frequencies than bidirectional busses. The unit of
transfer over a bus is a 32-bit data woTd; it takes four phases
of 25 ns each to complete a transfer. That is, the external
interface of the communication agent operates at a frequency
of 40 MHz. yielding a bandwidth of 40 MByte&ec for each
bus.

The partitioning of the total 64 data lines into byte parallel
busses is motivated by the desire to provide a high peak
bandwidth per bus. Dividing the data lines into more, yet
narrower, busses would increase the connectivity of the sys-
tem. However, narrower busses reduce the available
bandwidth for an individual message, and penalize programs
that need only a low dimension of connectivity. Instead of
taking this approach, we achieve both high individual bus
bandwidth and high connectivity by the use of logical chan-
nels, as described below.

Internal to each processor, the communication agent inter-
faces with the computation agent through four unidirectional
busses, two in and two out, each with a bandwidth of 40
MBytes per second. It interfaces with the memory agent via a
bidirectional bus that can deliver 160 MBytes per second.

Each bus is complete in the sense that it contains all the
necessary control lines to transfer data between two adjacent
cells. This includes the ability of the receiver to provide
status information to the transmitter, and vice versa. Thus the
busses are completely independent. For example, there is no
need to connect XRight, to the same neighbor cell as
XRightout. This feature is necessary to create, for example, a
special-purpose hexagonal anay in which each cell is con-
nected to six neighboring cells, as seen in Figure 6.

5. Implementation of logical channels
A logical channel is a unidirectional connection: it can be an

external connection between neighboring cells, or an internal
connection between a communication agent and either the
computation or the memory agent in the same cell. Multiple
logical channels are time-multiplexed onto a single physical
bus at word-level granularity. A logical channel is referred to
as a logical output channel for the transmitter and as a logical
input channel for the receiver. Each logical input channel has
a dedicated queue implemented in hardware (see Figure 7
(b)). The communication agent supports up to twenty logical
input channels and twenty logical output channels simul-
tanmusly.

5.1. Management of logical channels
Channels are jointly managed by the two end cells. There

are two phases in managing logical channels-static channel
allocation and dynamic channel assignment.‘ First, logical
channels on each cell are statically allocated among the dif-
ferent physical busses. Before execution begins, the set of
logical input channels for one cell is divided up among the
different input directions, thereby creating disjoint groups of
logical channels for each physical bus. That is. each logical

I wp

XL& :
*

-i Communication Agent *

.:._ XRight

II YDown

Figure 5. Physical busses

Figure 6. Hexagonal array

input channel on a cell is allocated either to one of the neigh-
bor cells or left unallocated so that this cell can use it to
initiate a message. When a logical input channel is allocated
to a neighbor cell, that neighbor cell allocates a matching,
logical output channel.

Figure 7 shows a possible allocation of logical input chan-
nels in a 2dimensional array of iWarp cells: the cell shown
has allocated four logical input channels to its right, left, and
lower neighbors and two logical input channels to its upper
neighbor. It has allocated six channels to generate messages.
Two of those currently directed at the computation agent, for
systolic communication, two are used for memory com-
munication, and the remaining two are unused at this point in
time. Also, this cell has four logical output channels to each
of its right and upper neighbors, and six logical output chan-
nels to its left and lower neighbors. It can use these channels
in any way that it sees fit, as described above. Each cell can
use up to 20 logical input channels and 20 logical output
channels at any given point in time.

For the second phase of dynamic channel assignment, the
transmitter of each physical bus is responsible for managing
the logical channels allocated to the bus. The transmitter can
initiate communication using any of its pre-ahocated free
logical channels without fist consulting the receiver. This
design minimizes the time needed to initiate communication.
More specifically, when a cell wants to connect one of its
logical input channels with a logical output channel in a
specific direction, it assigns a free logical output channel from
the set of channels allocated to it. This assignment is im-
plemented by linking the logical input channel to the logical
output channel, via a 20 x 20 logical crossbar in the com-
munication agent.

75

Communication Age,:

Figure 7. Logical channels

5.2. Multiplexing onto a physical bus
The multiplexing of logical channels over a physical bus is

designed to maximize utilization, when only one logical chan-
nel is active. it must be able to take advantage of the full
bandwidth of the physical bus. For example, the bandwidth
should not be wasted on trying to send data to a full queue. It
is undesirable to use schemes which require the receiver to
supply an ack/nack (acknowledge or not acknowledge) signal
to the transmitter to indicate whether the transfer is success-
ful.

On iWarp. the tmnsmitter keeps a count of the free slots in
each of the receiver’s queues. With every word it sends along
a logical channel, the transmitter decrements the f&e space
counter for the logical channel. Every time the receiver
removes data from one of its input queues, it informs the
transmitter with a dequeue signal that contains the index of
the logical output channel from which a word was read. The
transmitter then increments the free space counter for its cor-
responding logical input channel. The queue size of eight
32-bit words is designed to tolerate the feedback delay so that
the maximum bandwidth can be used for a single logical
channel.

The logical channel manager includes a round robin
scheduler that multiplexes data from the logical channels over
the physical bus. To preserve bandwidth, only those logical
channels that have a non-empty input queue and non-full
output queue participate in the scheduling decision. That is,
logical channels that are currently idle do not waste any
physical bus bandwidth. Consequently, if only one of the
logical channels allocated to the same bus is active, it can
utilize the full bandwidth of 40 MBytes/set. of the underlying
physical bus.

6. Routing and bandwidth reservation
The logical channels in the communication agent of an

iWarp cell are statically divided into two pools. The first

pool called the resefvution pod. is to implement “path-
ways” which can be reserved over a long period of time for
transporting classes of messages with some guaranteed
bandwidth. The second pool, called the open pool, is to
implement traditional message passing. For this pool, there is
no reservation of pathways; the logi.cal channels are dynami-
cally acquired and released for transporting each message. As
described in Section 3.2.2. these messages do not hold onto
resources indefinitely. It is well known that by dedicating a
pool for such messages. it is possible to guarantee that there is
no deadlock to Prevent these messages from being delivered.

Although the usages between the two pools are different,
they use the same basic hardware mechanism. For example,
the same hardware is used to mute pathways for the reser-
vation pool and messages for the open pool. In the following
we first describe the support for the reservation pool, then
show briefly how the same mechanism implements the open
pool.

6.1. The reservation pool
Intercell communication using the reservation pool consists

of two phases: (1) reserving the logical channels for com-
munication, and (2) sending the data as messages on those
reserved channels. The reservation is done dynamically by
setting up “pathways”. This can be likened to a railway
transportation system: first connect the track segments (logi-
cal channels) to form a pathway from a source to a destina-
tion, and then run trains (messages) over the pathway.

6.1.1. Setting up a pathway
A puthwuy is a unidirectional connection, built out of logi-

cal channels, that leads from a source cell to a destination cell.
Pathways are created using wormhole routing [7,8]. The
source cell generates a header containing a destination address
and additional routing information As the header is passed
along from the source to the destination according to the route
specified, the logical channels are linked up to build the

76

pathway. It is not necessary for the pathway to be completely
established before messages over the pathway are sent; the
sending cell can start sending a message as soon as the path-
way header leaves the cell.

6.1%. Pathway markers
Each data word that is transmitted between cells can carry

with it a tag. If a tag is present, we call the date word plus tag
a marker; the absence of a tag indicates a normal data item.
Markers are recognized by the communication system. There
are two markers for pathways, the pathway begin marker,
which includes a data field that carries pathway routing, and
the pathway end marker.

6.13. Specifying pathway route
iWarp uses “street-sign” routing. Pathway begin markers

have a default cOurse of travel. For example, markers arriving
on a logical input channel allocated to the XEeft bus default
to continuing onto a logical output channel leaving via the
XRight bus, and vice versa Similarly, markers arriving on
the YUp bus default to continuing onto the YDown bus, and
vice versa.

The source cell can change this default course of travel by
including in the header the addresses of all the cells at which a
different action is to be taken. There are two possible actions:
the pathway has either reached the destination, or it has to
“turn a comer” and head in the specified direction. This is
analogous to city street navigation where each cell is a street
intersection. The scheme is to follow the road in the same
direction until you reach the destination, or make a turn when
you come to a particular comer. For each comer turned. the
pathway must include a word in the header containing the cell
address and the direction to turn in the order in which the
cells are reached.

Street-sign routing takes advantage of the underlying topol-
ogy of the system. By incorporating the concept of a default
direction, headers can be kept short. A header contains only
the addresses of those cells where a specific action is to take
place (i.e., comer turning points and destination). Therefore
the header takes less time to generate, and fewer routing
decisions have to be made during the routing. In addition, a
shorter header means a smaller overhead to the load of the
communication system.

6.1.4. Pathway routing by communication agent
All begin markers arriving at the communication agent are

matched against a small content-addressable memory, called
the match CAM. The computation agent can “program” the
communication agent by loading different values into this
match CAM.

One of the uses of the match CAM is pathway routing. At
initialization time, the run-time system on each cell preloads
the match CAM with the address of this cell. Upon receiving
a pathway begin marker, the communication agent presents
the data field of the marker to the match CAM. If the marker
does not match. the pathway continues in the default diiec-
tion. If the marker matches, the current cell is either the
destination, or the pathway must turn a comer. The infor-
mation on the action taken is encoded in the marker. If the
destination is reached, the computation agent is notified of the
arrival of a new pathway. If a comer turning operation is
specified, part of the matching marker indicates the new
direction. The communication agent discards this marker and
converts the next word (i.e.. the destination or the next comer
at which to turn) into a new pathway begin marker and directs
the pathway to follow the specified direction.

The pathway header also indicates the reservation pool from
which the f%e logical channel should be drawn. Therefore, to
continue a pathway in a certain direction, the communication
agent must assign a free logical output channel among those
belonging to the reservation pool and allocated to the
specified direction. If such an outgoing logical channel is not
availabIe, then this request is blocked and repeated until a
logical channel becomes available.

If a pathway header reaches the last cell of the array without
reaching its destination, then the communication system on
this cell can notice the situation and take appropriate action,
for example, report an error or discard the data. However, if
the topology of the system is a ring or a torus, there is no
“last” cell. One way to avoid the “Flying Dutchman”
problem (i.e., the pathway header circulating around without
ever reaching a destination) is to set up the match CAM of
each cell to detect pathways originated by the cell itself.

6.1.5. Dismantling a pathway
Pathways are long-lived in the sense that they exist until

explicitly taken down. To dismantle a pathway, i.e., to free
up the resources reserved by this pathway, the source cell
sends a pathway end marker over the pathway. As this
marker is seen by each cell along the pathway, the logical
channels used in each cell are returned to the set of free
channels.

6.1.6. Joint cells and bandwidth reservation via pathways
A cell that is both a source and destination cell of two or

more pathways is called a joint cell for the pathways. In
Figure 8, Cells 1,3 and 6 are joint cells.

At a joint cell, the computation agent can configure the
communication agent to fink together a pair of incoming and
outgoing pathways. The output pathway is called the default
output pathway for the input pathway. Any message arriving
on the input pathway which is not intended for the cell is
automatically forwarded by the communication agent to the
default outgoing pathway. However, when a message des-
tined for the joint cell arrives, the communication agent will
notify the computation agent to process or route the message.
Therefore messages can be sent over a single pathway, or
multiple pathways via joint cells.

As stated earlier, pathways are built to reserve bandwidth
for classes of messages which are to be sent over the path-
ways. In Figure 8, there is one pathway connecting Cell 0 to
Cell 1. and another one connecting Cell 1 to Cell 5. Over
these two pathways two classes of messages can be sent
simultaneously, one from .Cell 0 to Cell 1 and one from Cell 1
to Cell 5. Via the joint cell (i.e., Cell 1) messages from Cell 0
to Cell 5 can be sent over the two pathways. These two
pathways reserve a set of logical channels solely for com-
munication between cells 0, 1 and 5. Conversely. messages
designated to use these pathways will not use other resources.
end as a result will not block out other messages which
critically depend on the other resources. For example, if a
message from Cell 0 to Cell 5 passes through Cell 1 in Figure
8. then Cell 1 cannot send messages over the pathway from
Cell 1 to Cell 5 until the ongoing message is complete.

Figure 8 also illustrates the use of the FIFO buffers in the
communication agent to implement message queues. These
FIFO buffers are associated with logical channels, and reserv-
ing the channels links the buffers together. So if Cell 4 wanta
to send a message to Cell 7. the buffers in all intermediate
cells implement a single message queue for this communica-
tion.

77

Cell 0 Cell 2

I-
..:::j:j:;::.,_.. . ‘Y:::::::..

@!

i q!&:
. *ii”-’

I
m+::.

-
-.-- ..I_

-_.--I

r _::: :j:j: ,.,, ..3
II c

c

Cell 4 Cell 5 Cell 6 Cell 7

Figure 8. Pathways and joint cells examples

6.1.7. Message routing over pathways
A message header contains the address of the destination

cell and information needed to route the message over a given
set of pathways. For each joint cell at which the message’s
route is to depart from the default, the header must include the
cell address and information to identify the intended output
pathway.

In the simple case of sending a message over a single
pathway. the destination of a message is the destination of the
pathway. The message simply follows the twists and turns of
the pathway route until the destination is reached

Routing messages over multiple pathways requires special
attention at joint cells. When the header of a message arrives
at a joint cell, the cell performs one of the following three
actions:

1. Forwarding the message by hardware. If the
destination in the header does not match in the
match CAM, the communication agent forwards
the message onto the default output pathway.

2. Receiving the message. If the destination in the
header matches in the match CAM. the com-
munication agent splits the incoming pathway
from the default outgoing pathway, and notifies
the computation agent. After receiving the
notification, the computation agent reads the
message header, recognizes that the message is
intended for the cell, and starts processing the
message. After the message is consumed, the
computation agent restores the link between the
incoming pathway and the default outgoing
pathway.

3.Routing the message by sojlware. Continuing
onto a pathway other than the default requires
software intervention. As above, the com-
munication agent notifies the computation agent
that the address on the header matches the

cell’s, the computation agent then interprets the
header and instructs the communication agent to
direct the message onto a specific outgoing
pathway.

In summary, routing of messages over reserved pathways is
not completely supported in hardware, unless the pathways
form a chain so that the default outgoing pathway can be take
at every joint cell. If another outgoing pathway other than the
default one is desired, the computalbn agent at the joint cell
must serve as a smart router. The computation agent can, in
fact, perform arbitrarily complex computation on the begin-
ning of the message before forwarding the rest of the message
onto another cell. The usefulness of this scheme is illustrated
by the GetRow and PutRow examples in Section 3.1.2.

6.2. The open pool
The open pool is reserved for message passing. Data sent

using the open pool of logical channels are encapsulated as
routing messages. Each of these messages has its own rout-
ing information in the header. These messages are routed in a
similar manner as pathways; therefore the routing is com-
pletely supported in hardware. To tie routing hardware, these
messages are identical to pathways, except that the logical
channels are assigned from among the open pool instead of
the reservation pool.

7. Communication agent interaction with
computation and memory agents

There are two types of interaction between the communica-
tion agent and the rest of the system: data and control. Data
in a message can be accessed directly by the computation
agent or it can be spooled through memory by the memory
agent. On the control side, the computation agent informs the
communication agent of the events it is interested in and the
communication agent notifies the computation agent when an
event occurs. In addition, the computation agent can redirect
messages by changing the connection of the pathways in the
communication agent’s logical crossbar.

78

7.1. Data interface to computation agent
In the computation agent’s register address space there are

special locations called systoric @es. There are two input
gates and two output gates. Under program control, these
gates can be bound to different logical channels in the com-
munication agent. Reading from an input gate corresponds to
receiving data from the message queue associated with the
logical channel bound to the gate. Similarly, writing to an
output gate corresponds to sending data to the queue.

Since these gates are in the processor’s register space, an
input gate can be used as a source operand of an instruction,
and an output gate can be used as a result register of an
instruction Any read of an input gate implies an input opera-
tion, and any write to sn output gate implies an output opera-
tion Specifying input and output instructions implicitly
through the use of these special registers greatly reduces the
instruction word width. For example, a three-address arith-
metic operation using input and output gates as operands will
imply two input operations. the arithmetic operation itself and
one output operation. If any of the input queues is empty or if
the output queue is full, the instruction execution is stalled
until the condition of the queues changes. In the long instruc-
tion word of iWarp, all four systolic gates may be used in one
instruction. The iWarp hardware can execute all four
input/output operations in two 50 ns clock cycles.

Through the systolic gates, data can be transferred between
the computation and communication agents at the rate of 160
MBytes per second. As computation can be specified in the
same (long) instruction word of the machine. this high com-
munication rate can be accompanied by an equally impressive
computation rate. The additional data operands supplied by
the input and output gates help reduce the memory bottleneck
and increase the utilization of the functional units. Using
systolic communication requires more programming effort to
ensure that cells do not stall frequently on empty or full
message queues; however, a well-designed systolic algorithm
can be extremely efficient.

7.2. Data interface to the memory agent
The memory agent transfers, or spools, data directly from

the message queues in the communication agent into consecu-
tive locations in the memory, and vice versa. It is like a DMA
device, with special hardware to keep the state and to se-
quence the spooling operation. The memory agent steals
memory and computation cycles when spooling data in or out
of memory. The memory agent is useful for memory com-
munication transfers as well as for simulating large queues for
systolic communication by buffering data in memory.

There are eight 64-bit spooling gates that can be dynami-
cally reconfigured for either input or output and can he hound
to the logical channels in the communication agent. The
bandwidth of the memory bus is 160 MBytes/second. while
each physical bus within the communication agent has a
bandwidth of only 40 MBytes/second. Spooling one message
queue at peak rate consumes one quarter of the total memory
and computation bandwidth. The memory agent can spool
eight different message queues “concurrently” by interleav-
ing the transfers at double word granularity over the 64-bit
memory bus. The ability of the spooling unit to dynamically
select the next logical channel on a word by word basis is
especially useful when multiple messages are being spooled
into (or out of) memory. It is likely that the data words of the
messages will arrive at varying rates, either because of con-
tention on the physical busses or because systolic messages

come directly from the computation agent. Dynamically
selecting the next spool ensures that cell memory bus
bandwidth is never wasted.

Besides using a counter based termination condition, as in
the case of DMA, spooling to memory can also terminate on
receiving a message end marker. This is important for spool-
ing data that was generated by systolic communication, be-
cause the number of words in a message may not be known in
advance. Since spooled messages can be of arbitrary size. a
mechanism is needed to ensure that a spooled message does
not overflow its buffer. The current spool address is checked
against an address limit register to prevent this from happen-
ing.

Once spooled to memory, the computation agent can access
the data randomly using regular memory operations.
Similarly, it can fist prepare the message in memory before
requesting the memory agent to spool out the message. This
implements memory communication.

The computation agent can also access data spooled in
memory in a FIFO manner as if the data just arrived over a
logical channel systolically. This is achieved by connecting a
systolic input gate to a logical input channel that is bound to
an output spooling gate. As the computation agent reads data
from the systolic input gate, data are spooled from memory
and buffered in the queue associated with the logical channel.
This allows the computation agent to use implicit input opera-
tions to consume the data that were buffered in memory.
Simibuly, the data generated by the program can first be
spooled into memory from an outgoing message queue by
connecting an outgoing systolic gate to an input spooling gate.

It is not necessary to wait for the entire message to be
received before it can be spooled out as described above.
Thus, as the tail buffer of the message is spooled in, the head
buffer can be spooled out to the computation agent. Thii
mechanism of buffering through memory extends the length
of the message queues in the comrnunicafion agent, at a cost
of one clock cycle per word. This extension in memory is
necessary for those programs that will deadlock if the queues
at the receiving cell are too short [13]. Also. a long queue
reduces stalling. Since a spooled message can be read from
the systolic gates in the same manner as a message received
directly from another cell, the decision to buffer a message in
memory can be delayed until run time.

7.3. Control interface to the computation agent
The computation agent can inform the comtuunication agent

of events that are of interest by storing the appropriate infor-
mation into the communication agent’s match CAM. The
communication agent notifies the computation agent of these
events when they take place by storing the information in
status registers.

Sample events that are of interest to the computation agent
are:

l Arrival of a pathway begin marker

l Arrival of a pathway end marker

l Arrival of a message begin marker

l Arrival of a message end marker

l Arrival of an application marker
Some of these events can be registered on a per-logical

channel basis; for others, they are either registered for all
logical channels or not at all. An application marker is a

79

tagged data word that can be found anywhere within a mes-
sage. It is used by the application program to mark those
points within a message that demand special attention by the
computation agent.

When an event occurs for which the computation agent
wishes to be notified, the communication agent Posts this
event by setting the appropriate status register. These
registers are monitored by the master sequencer of the com-
putation agent and result in a control transfer to an appropriate
service routine.

The computation agent can also instruct the communication
agent to modify the connections of existing pathways. One
example is the joining of two pathways, as discussed in Sec-
tion 6.1.6, or to route around a faulty cell.

8. Communication latency summary
When a program creates a pathway, the originating cell’s

computation agent asks the local communication agent for a
logical channel in the direction of the destination. If a logical
channel is available, this request takes 150 ns to complete.
Next, the computation agent must generate and send a path-
way begin marker, which takes 100 11s. The creation of
additional addresses for corner turning (if required) takes 50
ns per address. At this Point, the computation agent can send
messages on the pathway. Tearing down a pathway requires
that a pathway end marker be generated and sent; this takes
100 ns. Note, however, that the above numbers assume that
the relevant data (i.e., data field of begin marker, additional
addresses for corner turning, etc.) are already in registers. In
practice, the run-time system imposes additional overheads
such as retrieving values from a configuration table, checking
for valid cell addresses, and updating various tables.

The communication agent of every intermediate cell in the
pathway must decide if the incoming pathway begin marker
matches on this cell or must be forwarded. If the marker does
not match, it will take 200 11s to forward to the next cell. If
the marker matches for comer turning, it will take 250 ns to
discard the current marker, convert the next data word into a
new marker and forward the new marker to the next cell.
Joining two pathways is inexpensive; after the join instruction
is issued, it will take 100 ns for the first data word to leave the
joint cell for the next cell. Once the pathways are joined
together, there is no additional latency involved for data pass-
ing through a joint cell.

Generating a message begin marker is fast because all the
necessary resources are reserved at the time when the under-
lying pathway was created. The message begin marker and
the message end marker are generated in 100 ns each, This
time does not include any run-time system overhead to look
up the destination address in the message header, or to main-
tain bookkeeping tables. The latency of a message header is
the same as the latency of a pathway header (200 ns, plus 50
ns for comer turning) if the message is routed by the com-
munication agent.

9. Conclusions
An iWarp system is a distributed memory machine, support-

ing two very different styles of communication, systolic and
memory communication, fully and efficiently. Housed in one
system, the two styles of communication can be easily inter-
mixed to adapt to the application needs.

The iWarp communication architecture Provides a wealth of

communication services. As a systolic array, iWarp allows
data to stream through the cells at high data rates, with each
cell cooperating at word-level granularity. This basic systolic
functionality is emiched by a set of features that simplify
programming without reducing efficiency. Processors can
communicate with non-neighboring cells directly without in-
volving Programs at intervening cells. An iWarp system can
efficiently implement intercell communication topologies
which are quite different from that of the hardware inter-
connect in the system. This capability is also useful in routing
data around faults and congestion. The size of input. queues
can be extended indefiitely by sPooling through memory, a
decision that can be made dynamically and is totally trans-
parent to the Program. By redirecting data messages, a cell
can have messages or portions of them forwarded to an ap
propriate destination automatically. This is especially useful
for overlapping the input/output phase of a systolic algorithm
with computation.

As a message passing machine, iWarp routes mess.ages be-
tween cells efficiently using wormhole routing. Its *‘street-
sign” routing minimizes routing overhead by imposing a
default direction at each hop of the routing. On iWarp, it is
possible to reserve communication bandwidth for specific
classes of messages. This management of the bandwidth is
important to implement system functions such as monitoring.
iWarp can implement “door-to-door” delivery by allowing
data to be stored into the user’s data space directly without
buffering through system space.

This myriad of communication functionalities is provided
using only a few communication mechanisms in iWarp. The
two unique iWarp architectural features are logical channels
and Program access to the communication system. Having
only a small number of basic new ideas keeps the design
simple and easily optimized, and more itnPortantiy. makes it
Possible to integrate the communication agent with the com-
putation and memory agents in a single VLSI component.

The iWarp hardware supports a high communication
bandwidth, and more importantly, the iWarp architecture can
translate this raw data rate into a high communication rate
between programs through the various layers of communica-
tion abstraction. Fist, iWarp has a Peak communication
bandwidth of 320 MBytes Per second; the bandwidth for each
bus is 40 MBytes per second This bandwidth can be fully
utilized by one logical channel if it is the only active channel.
That is, reserving a logical channel only guarantees that the
bandwidth is available when needed. Dedicated communica-
tion hardware routes the messages through the system with a
minimum latency. To realize the efficiency at the program
level, iWarp has a unique, high bandwidth interface between
communication and computation. Data can be spooled into
memory at a rate of 160 MBytes Per second, or four messages
can be accessed directly via long instructions at a rate of 40
Mbytes per second. This high bandwidth is made Possible by
the integration of the communication and computation units
into a single component.

The complete iWarp communication architecture is
designed to deliver a high effective Program communication
rate to both systolic and memory communication models.
Integrating this communication capability with a computation
engine that delivers 20 MFLGPS and 20 MIPS into a single
component, iWarp is a Powerful building block for large-scale
distributed memory machines.

80

Acknoyledgements

We appreciate the contributions of Dave Nedwek and An
Nguyen, of Intel Corp. to the design and implementation of
the iWarp communication system. We also thank Abu
Noamsn and David Yam of Carnegie Mellon University for
assistance in design validation and performance evaluation.

References

1. Annaratone, M., Bitz. F., Chme. E.. Ktmg, H. T., Maul&,
P., Ribas, H.. Tseng, P. and Webb, J. Applications and
Algorithm Partitioning on Warp. COMPCON Spring ‘87.
IBEE Computer Society, 1987. pp. 272-275.

2. Annaratone, M.. Amould, E.. Gross. T.. Kung, H. T., Lam,
M., Menzilcioglu. 0. and Webb, J. A. “The Warp Computer:
Architecture, Implementation, and Performance”. IEEE
Transactions on Computers C-36.12 (December 1987).
1523-1538.

3. Amould. E. A., Bitz, F. J., Cooper. E. C., Kung. H. T.,
Sansom, R. D. and Steenkiste, P. A. The Design of Nectar A
Network Backplane for Heterogeneous Multicomputers.
Roceedings of Third International Conference on Architec-
tural Support for Programming Languages and Operating Sys-
tems (ASPLGS El). ACM, April, 1989. pp. 205216.

4. Athas, W. C. and Seitz, C. L. “Multicomputers: Message-
Passing Concurrent Computers”. Compufer 21.8 (August
1988). 9-24.

5. Borlcar, S., Cohn, R., Cox. G., Gleason. S.. Gross, T.,
Ktmg, H. T., Lam, M., Moore, B., Peterson, C., Pieper, J.,
Rankin, L., Tseng, P. S., Sutton, J.. Urban&i. J. and Webb, J.
iWarp: An Integrated Solution to High-Speed Parallel Com-
puting. Proceedings of Supercomputing ‘88, IEEE Computer
Society and ACM SIGARCH, Orlando, Florida, November,
1988,pp.330-339.

6. Cohn, R.. Gross, T.. Lam, M. and Tseng, P. S. Architec-
ture and Compiler Tradeoffs for a Long Instruction Word
Microprocessor. Roccedings of Third International Con-
ference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS Ill), ACM, April, 1989, pp.
2-14.

7. Dally, William J. A VUZArchitecture for Concurrent
Data Structures. Kluwer Academic Publishers. 1987.

8. Dally, W. I, and Seitz. C. L. “The Torus Routing Chip”.
Distributed Computing 1.4 (1986), 187-196.

9. Gross, T. Communication in iWarp Systems. Proceedings
of Supercomputing ‘89. November. 1989. pp. 436 - 445.

10. Hamey, L. G. C., Webb, J. A., and Wu, I. C. “An
Architecture Independent Programming Language for Lcw-
Level Vision”. Computer V&wt, Graphics, and Image
Processing 48 (1989). 246-264.

11. Hamey. L. G. C., Webb, I. A., and Wu, I. C. Low-level
Vision on Warp and the Apply Rogrammlng Model. In
Parallel Computation and Computers for Artifkcial
Intelligence. Kluwer Academic Publishers, 1987. pp.
185-199. Edited by J. Kowahlc.

12. Kung. H. T. Systolic Communication. Proceedings of
the International Conference on Systolic Arrays, San Diego,
California, May, 1988, pp. 695-703.

13. Kung. H. T. “Deadlock Avoidance for Systolic Com-
munication”. JorvM1 of Complexity 4.2 (June 1988), 87-105.
(A revised version also appears in Conference Proceedings of
the 15th Annual International Symposium on Computer Ar-
chitecture, June 1988, pp. 252-260)..

14. Kung, H. T. Network-Based Multicomputers: Redefming
High Performance Computing in the 1990s. Roceedings of
Decennial Caltech Conference on VLSI, MlT Press,
Pasadena, California, March, 1989, pp. 49-66.

15. Lam, M. A Systolic Array Optimizing Compiler. Ph.D.
Th., Carnegie Mellon University , May 1987. The thesis is
published by Kluwer Academic Publishers. Boston. Massa-
chusetts, 1988.

16. Meruilcioglu. 0.. Kung. H. T. and Song, S. W. Com-
prehensive Evaluation of a Two-Dimensional Configurable
Array. Proceediigs of the Nineteenth International Sym-
posium on Fault-Tolerant Computing, 1989, pp. 93-100.

17. Seitz. C. L., Athas, W. C.. Flaig, C. M., Martin, A. J.,
Seizovic, J., Steele, C. S. and Su. W-K. The Architecture and
Rogramming of the Ametek Series 2010 Multicomputer. The
Third Confererence on Hypercube Concurrent Computers and
Applications., Pasadena, California, January, 1988, pp. 33.36.

18. Tseng. P. S. A Parallelking Compiler for Distributed
Memory Parallel Computers. Ph.D. Th., Carnegie Mellon
University, May 1989.

