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ABSTRACT
With the growing need of processing “big data” in real time,
modern streaming processing systems should be able to op-
erate at the cloud scale. This imposes challenges to build-
ing large scale stream processing systems. First, processing
tasks should be efficiently distributed to worker nodes with
small overhead. Second, streaming data processing should
be highly available, despite that failures are common in dat-
acenters. In Spark Streaming [26], the DStream model is
proposed to cope the problems aforementioned. DStream
stands for discretized stream; data in the incoming stream
is divided into small batches for processing. Compared with
processing data at the granularity of a record, batch process-
ing has much lower overhead and has a cheaper fault toler-
ance model. Lineage information of each batch is kept for
recomputation when failure occurs. Therefore, fault toler-
ance can be achieved without duplicating processing nodes.

In this paper, we discuss how to optimize query process-
ing in the DStream model. Specifically, we consider the
case of Structured Query Language (SQL). SQL provides a
declarative interface for the users query on the data. The
declarative nature of SQL provides opportunity for query
optimization as the execution is decoupled from the seman-
tics of the query. In a streaming system, the same query is
executed on similar data over and over again. Hence, the
statistics of the data could be obtained for free, as long as
the incoming data pattern is not changing abruptly. We
study the performance of applying query optimization tech-
niques in the DStream model, and show the advantage of
dynamically optimizing stream processing.

1. INTRODUCTION
Processing big data in real time with bounded latency is
becoming an important task in various application scenar-
ios. With the incoming data and historical datasets in the
data warehouse, decisions must be taken based on the an-
alytic results. As an example, network intrusion detection
systems [21] need to aggregate traffic information in the net-
work to find out and drop the attacking flows. Twitter needs
to quickly find out the topic trend from millions of tweets
generated all over the world. Such workload must be pro-
cessed by stream processing systems in cloud scale clusters.

In large clusters, a stream processing system must be fault
tolerant, scalable and maintains a low processing latency.
In Spark Streaming [26], incoming data streaming is divided
into discretized batches for processing. Such a stream of dis-

cretized batches is called a DStream. The DStream model
has several advantages. Since the data is processed in batch,
the scheduling overhead is easily amortized, which increases
the throughput of the system. In cloud environment, node
failure is constant and hence, distributed computing engines
must be highly fault tolerant. In DStream, lineage informa-
tion is kept for fault tolerance. A job on a failed node can
be easily relaunched on other nodes with lineage. Further,
failed job usually blocks other jobs from proceeding when
there is an execution barrier. Spark Streaming allows par-
allel recovery by splitting the failed job to smaller jobs and
executing them on multiple nodes. This speeds up the entire
execution upon failure.

Besides scalability and fault-tolerance, a streaming process-
ing system should be robust enough to cope with the varying
workloads. Since most of the streaming processing system
is operating 24 × 7, the traffic pattern may change over-
time. For example, Twitter streams from Britain, India and
United States may show diurnal patterns with different peak
period. An efficient execution plan needs to adapt itself to
the change of traffic pattern. If we need to join three streams
to obtain a common set of popular keywords in the above
mentioned three countries, we should always first join the
two streams that are offpeak and then uses the result to join
with the third stream. However, note that the data rate of
the streams varies over time, a static execution plan will not
be efficient all the time.

In traditional stream processing systems, operators main-
tain states. Hence, to be fault tolerant, operators must be
replicated, which doubles the resource consumption. Fur-
ther, once the execution plan is decided at compile time, it
is fixed over the lifetime of the stream query. However, at
the compile time, the system usually do not have enough
statistics on the data stream to decide the optimal query
plan. Worse, the data streams are varying overtime; there is
no single query plan that is optimal for the data stream all
the time. Therefore, query plans must be adapted periodi-
cally to meet the ever changing data stream characteristics.
This is difficult in traditional streaming system due to the
internal states that operators needs to maintain.

Batch streaming system, however, is at an unique position
for adaptive streaming query. As data is processed in batch,
query plan can be rewritten between the execution of two
consecutive batches. Furthermore, though data character-
istics change over time, in a microscopic view, the data is



usually similar in two consecutive batches. Therefore, with
the statistics collected in previous batches, we can optimize
the query plan for future executions. In database systems,
collecting statistics for query optimization is at the cost of
sampling. A small fraction of data is sampled to obtain the
statistics such as the size, mean, or histogram of the data. In
batch streaming system, such data can be obtained almost
for free. We can simply collect the statistics while processing
the previous batch, and use them to optimize the following
batches’ execution.

In this paper, we consider the case of SQL-like streaming
queries. We adopt SQL because it is declarative; users
only specify what they want instead of how to obtain them.
Query optimizer will figure out the cheapest way to perform
the computation. The declarative nature of SQL gives free-
dom for re-optimizing the query online. In an imperative
query engine such as Spark Streaming, optimization is dif-
ficult, as users already specified a static data flow for the
streams.

We used several types of optimization for streaming queries.

• Predicate Push-down Predicates are operators that
filter elements in a stream. For example, in the SQL
query“SELECT hash(user name), content FROM tweets
WHERE location = ‘USA”’, the predicate location =
‘USA’ should be executed before the hash(user name)
to avoid hashing redundant user name outside USA.

• Window Push-up Window operator is unique in stream-
ing query. It caches recent several batches and output
to another operator. Note that we can push-up win-
dow operator to reduce the amount of redundant work.
However, note that we can not push a window opera-
tor beyond a “group by” operator or a join operator.
We optimize the group by and join operators such that
they execute data incrementally.

• Join Operators Reordering A set of join opera-
tors could be reordered to increase the performance
while still maintain the semantic correctness. Usually,
smaller tables should be joined before large tables.

• Incremental Group By When the input stream of
a group by operator is windowed, we can do this in-
crementally to increase the efficiency of the operators.

• Incremental Join Similar to incremental group by,
join can be also done incrementally to improve the per-
formance.

We implement the streaming SQL query on top of Spark and
Spark Streaming. Since we need a dynamic rewritable query
plan, we implement all the operators instead of using Spark
Streaming’s operators. We only used Spark Streaming to
obtain input data flows.

2. BACKGROUND
The system is built on top of Spark and Spark Streaming.
Spark is a MapReduce-like execution engine that provides
an abstract interface called Resilient Distributed Dataset
(RDD). Computations are done by transforming RDDs to

new RDDs. DStream is proposed in Spark Streaming, a
stream processing system. Similar to RDD, DStream can be
transformed to another DStream with a predefined trans-
form function. Both Spark and Spark streaming provides
efficient fault tolerance model for in memory computation.

2.1 Spark
Spark is the a cluster compute engine similar to MapReduce
framework [9]. While MapReduce only allows a map stage
followed with a reduce stage, Spark can represent the execu-
tion logic as a Directed Acyclic Graph(DAG). Each node in
the DAG is a RDD and edges are functions that transform
RDDs to new RDDs. A RDD is divided to multiple par-
titions such that computation can be done in parallel. For
each partition, the lineage information is kept to trace how
it is generated. When a partition is lost on node failure, it
can be recomputed using the lineage information.

Hadoop spills intermediate data to disk to provide durabil-
ity guarantee. In Spark, RDDs can be cached in memory
for future use. This is reliable because lost data can be re-
covered by lineage information. This significantly improves
performance as memory has much higher bandwidth than
disk.

Recent research [20] shows that data analytic clusters are
running shorter and smaller jobs. This is true for streaming
tasks, as data is divided into small batches for processing.
Spark optimizes the performance of small tasks by launching
tasks efficiently. It is able to launch tasks with millisecond
latency, while Hadoop takes several seconds to launch a task.

2.2 Spark Streaming
Spark Streaming introduces a new programming model called
discretized streams (DStream). DStream treats streaming
computation as batches of deterministic tasks on small dis-
crete datasets. By batching the computation, the task schedul-
ing overhead can be reduced and hence improves the through-
put. Specifically, Spark Streaming has the following advan-
tages.

The DStream model is highly fault tolerant, as it decouples
operator from operator state. In traditional stream process-
ing systems [5, 10], each operator needs to keep an internal
state. To be fault tolerant, each operator needs to be du-
plicated, which doubles the resource consumption. Another
approach is to use upstream backup. Each node buffers the
data and resends it if a downstream node fails. Recovery
takes a long time, since all buffered data needs to be re-
processed. DStream solves this problem by keeping lineage
information on each data partition, and recover them by
recomputing the task upon failure.

DStream can easily combine historical data with stream
data. Traditional systems such as Hadoop and Dryad [15]
fail to meet this goal as they keep historical data on disk.
Loading these data takes significant time and hence delays
the stream processing data flow. Spark allows data to be
cached in memory and bounds the processing latency for
each batch.

3. DESIGN
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Figure 1: The architecture for dynamic query optimization.

We discuss the design of our streaming system in this sec-
tion. The streaming system is composed of three compo-
nents: a SQL parser, a query optimizer, and an operator
graph. Queries are parsed by the parser to construct a
parse tree. The parse tree is then translated into an op-
erator tree. The operators in the operator tree collects the
streams statistics while processing the streams. The statis-
tics are feed back to the query optimizer after each batch.
If necessary, the optimizer will reorganize the operator tree
for more efficient execution. Figure 1 shows the architecture
of our system.

3.1 Batch Processing
We process data in batch granularity instead of record gran-
ularity to improve scalability and fault tolerance. The main
idea is to process streams in batches of small time intervals.
All incoming data is cached in the cluster until the end of the
time interval. At the end of each time interval, the cached
data is stored as a RDD and is processed in a deterministic
manner. A stream data query transforms input RDDs to
output RDDs base on the query the user written, such as
select, where, join, group by.

RDD keeps track of lineage information which describes how
the data is computed. In the case of a failure, lost job can
be recovered using the lineage information. For example, in
Fig 2, it shows the lineage graph of a map followed by a
reduce. If a map task fails, we can simply recover the data
using the lineage graph by recomputing the data.

3.2 Grammar and Semantics
We adopt the grammar and semantics from SQL and extend
the grammar to support window operations. In our gram-
mar, there are three types of query; (1) input query, that
parses the input to a stream of relational records (2) SQL
query, that transforms a stream of relational records to an-
other stream of records (3) an output query, that output the

map reduce

Failed
Recompute

Figure 2: Lineage graph of a map and a reduce. The lost
job can be simply recovered by recomputing the job.

relational records to string outputs.

Input Query: An input query parses strings in a stream
to a relation. Consider the following input query.

twitterstream = input user_id:int, tweet:string

from localhost:9999 delimiter ","

This query parses the content in the string to a user id and
the content of the tweet. The user id is of type integer and
the tweet is a string. The stream is split by a delimiter “,”.
The input source is a socket connection to server localhost
at port 9999. In general, an input query is composed in this
way:

<stream name> = input <schema> from <data source>

delimiter <delimiter string>

For example, the following stream of string

01234, "Happy Thanksgiving"

02345, "Nice weather"

will be parsed to a stream of relations called twitterstream

user id : Int tweet : String
01234 ”Happy Thanksgiving”
02345 ”Nice weather”

Each line in the input stream is parsed according to the
schema of the twitterstream. If one of the line in the input
source is misformatted and causes a parse failure, that line
will be skipped. In general, input query converts unstruc-
tured data to structured relations for further query.

SQL Query: A SQL query converts one structured rela-
tional stream to another structured relational stream. An
example SQL query could be like this.



tg_tweets = select * from twitterstream

where tweet like ’%Thanksgiving%’ window 10 seconds

This query selects records from the twitterstream where the
tweet content contains keyword “Thanksgiving”. By adding
the window clause, all records in the last 10 seconds will
be retained. The result is assigned to another stream called
“tg tweets”, which stands for Thanksgiving tweets. In gen-
eral, a SQL query is composed in this way.

<stream name> = <standard SQL query> <window size>

A standard SQL query is applied on previous streams, the
result is windowed with the given window size. The window
clause is optional. If no window clause is specified, a default
window size of 1 batch is applied. The name on the left side
of the = sign is the identifier of the stream.

Output Query: Output query converts structured rela-
tion stream into unstructured string stream. Following is an
example of an output statement:

output user_id, tweet from tg_tweets delimiter ","

This converts each relation back to a string. The user id
and tweet fields are converted to a string separated by “,”.

The relation tg stream is converted back to strings

user id : Int tweet : String
01234 ”Happy Thanksgiving”

01234, "Happy Thanksgiving"

We build our own custom parser to parse the query. The
query is then converted to an operator tree. Data stream
flows through the operators for processing. Note that our
underlying execution engine is Spark. All data is processed
in batch granularity instead of record granularity.

3.3 Operators
We introduce the operators we have implemented in our sys-
tem here. An operator takes a RDD as the input at the time
t and outputs a RDD. A RDD may be totally stateless, such
as a filter operator. The filter operator takes the input RDD
on each batch interval, filter the records with a given predi-
cate, and output the filtered RDD. Some other operators are
“stateful”, where some internal state is kept when process-
ing the data stream. Note that the “states” of an operator
are still RDDs, therefore, we do not need to duplicate op-
erators for fault tolerance. Instead, when there is a failure,
the “state” can be recovered by lineage graph. For exam-
ple, a window operator is stateful, where input RDDs in the
window are cached.

Each operator maintains an output schema that is defined
when the operator object is initiated. A schema is an array

of (column id, type) pair. The column id is a global unique
identifier of that column. We can easily identify a column
with column id even if they appear in output schema of dif-
ferent operators. For example, when two streams are joined,
the original column id’s are inherited from their parents.
Sometimes we need to create new column id. For example,
consider the following query:

select item, price + tax as totalcost from shopping

While item still maintains the old column id, totalcost will
be assigned with a new column id. With this global naming
scheme, we can identify a column easily when operators are
reordered at runtime. We discuss the details of the operators
we implemented here.

Select Operator: Select operator filters records in the data
stream with some predicate. Everytime a RDD is passed to
the operator, the operator perform calls .filter(predicate) to
filter the records in the RDD according to the predicate. The
output schema of select operator is the same as its parent’s
output schema.

Project Operator: Project operator selects the required
columns in the stream specified in the query. We implement
this operator by calling .map(func) on the input RDD. The
output schema of project operator is a subset of the output
schema of its parent operator.

Join Operator: Join operator joins the records in two
streams with the same join keys. In a join operator, records
from the two input streams are first converted to key value
pairs and then they are co-partitioned by the key. This shuf-
fles all the data in the two input stream, and guarantees the
records with the same keys are located on the same worker
nodes. Since data has already been partitioned by key in the
parent RDDs, the records in the corresponding partition can
now be joined locally.

We collect statistics of the join operation when executing
the join. The size of the two input streams, and the size of
the output stream is counted. The selectivity of this oper-
ator is derived from the input and output cardinality. The
statistics is collected using accumulator, that collects statis-
tics of a RDD efficiently in an incremental manner. The
output schema of the joined stream is the concatenation of
the input stream schemas.

Window Operator: A window operator takes the input
at the current timestamp and outputs the union of all the
RDDs within the window. When a new RDD arrives the
operator, we first persist it in memory. This is very impor-
tant because it avoids recomputing this RDD at the future
time. If the RDD is still within the window and need to be
used, instead of recomputing it using lineage graph, we can
simply get it from memory. The operator simply union all
the RDDs in the window and output it. The output schema
is the same as the input schema.

Aggregation Operator: Aggregation operators aggregates
columns to a single value by a specific aggregation function
(eg. SUM(), AVG()). Similar to join, aggregation operators



first partition the data by the aggregation key. The aggrega-
tion functions are then applied to the aggregation values to
obtain the results. All columns that belongs to the aggrega-
tion key maintains the same column id, while all aggregated
columns uses a new column id. The output schema is a com-
bination of the aggregation keys and aggregation values.

Input Operator: Input operator parses the unstructured
strings to construct a relation. The output schema is defined
by the user as appeared in the input query.

Output Operator: Output operator converts structured
data to strings separated by a delimiter. There is no output
schema for this operator.

With the parse tree generated, the operator graph generator
takes the parse tree to generate an operator graph. Batches
of RDDs are generated by the stream receiver and the oper-
ator graph consumes the RDDs. All the RDDs generated at
the same timestamp is processed by the operators. Finally,
the output operators generate the processed data stream.
The execution engine evaluates RDD lazily; If the stream is
not output by any output operator, it will not be processed
at all.

3.4 Query Optimization
Query optimization can be done efficiently in batch stream-
ing system. Between each batch execution, there is a natu-
ral barrier to reoptimize the execution base on the statistics
collected from previous iterations. This is difficult in tradi-
tional streaming systems [5, 7, 10, 12]. In traditional stream
processing system, operators maintain states for incremental
processing. To be fault tolerant, operators are replicated and
states must be synchronized between the operators. In batch
processing system, the cost of replication can be avoided by
using lineage graph. All states are represented as RDDs, so
they are reconstructable by recomputing the lost task. We
consider applying several query optimization on the operator
graph.

We implement predicate pushdown on the operator graph.
Select operator can be pushed to the data source to reduce
unnecessary calculation on filtered records. We implement
this by swapping select operators with its parent until cer-
tain conditions:

• The select operator’s parent has multiple children.

• The select operator’s parent is an aggregation operator
and the select predicate is on the aggregation columns.

Predicate pushdown can reduce the amount of computation
if it is pushed below expensive operators such as join and
aggregation.

Unlike select operators, window operators should be pushed
up. Window operator unions all the RDDs in the win-
dow and outputs it. Therefore, a window operator can
increase the amount of redundant computation. This is
demonstrated in Figure3. If a stream is first windowed,
the following project operation have to recompute certain
amount of data every task. Therefore, instead of windowing
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Figure 3: Window operators should be executed after other
operators, if possible

the RDDs first, the project operation could be done before
the window operation. The window operator simply unions
the RDDs in the window, the operation cost is very low in
Spark.

We should avoid pushing up window operators in the follow-
ing condition to guarantee the semantic correctness.

• If there are multiple children for the window operator.
In this case, we could split the window operator and
push them to all children.

• If the child operator is an aggregation operator, the
window size affects the aggregation result.

• Similarly, the window operator affects join result, so
we should avoid pushing it below join operator.

Join operators could be reordered online base on the statis-
tics we collected. Ideally, join operator with small selectivity
should be applied first (Figure 4). We obtain the selectivity
of join operator by estimating the input data size and output
data size. These statistics are feedback to the query opti-
mizer right away. The join optimizer reorders the operator
according to the selectivity of the operators. Note that traf-
fic pattern is usually static in a short time period. Therefore,
it is unnecessary to obtain statistics every batch. Instead,
we could estimate the statistics every several batches. We
modify the query graph only if we are confident that the
data characteristics have been changed.

We implement incremental aggregation to reduce the amount
of redundant computation. As we have mentioned, window
operators could not be pushed beyond aggregation opera-
tors. However, we can merge the window and aggregation
operator such that only the new batch is aggregated. Con-
sider the following query:

windowed = select topic, tweet from twitter_stream
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window 300 seconds

topic_count = select topic, count(*) from windowed

By default, the last 300 seconds data will be windowed and
counted repeatedly. The optimized version would perform
a two level aggregation; Each batch in the time window is
aggregated and cached. The aggregated value is being ag-
gregated again as the final result. This method reduces the
amount of redundant computation by using the cached ag-
gregation value in the window.

The join operator can also be implemented incrementally.
Consider joining two streams X and Y to stream W : let
X(t) denotes the records at time t. X+(t+ 1) = X(t+ 1)−
X(t) and X−(t + 1) = X(t) −X(t + 1) are the records that
added to and remove from X at time t + 1. Then

W (t + 1) = W (t) + W+(t + 1) −W−(t + 1)

Variable W+(t + 1) can be obtained by

W+(t + 1) = Join(X+(t + 1), Y (t + 1))

+Join(Y +(t + 1), X(t) −X−(t + 1))

Similarly, variable W−(t + 1) can be obtained by

W−(t + 1) = Join(X−(t + 1), Y (t))

+Join(Y −(t + 1), X(t) −X−(t + 1))

Although the equations looks complicated, the semantic is
quite simple; Everytime the time advances, we remove the
records that are expired in the join results and add the new
join results. We are currently studying how to efficiently
implement incremental join. The current problem is Spark
can only manipulate data at RDD level, record level modi-
fication may not be efficient.

4. EVALUATION
We evaluate the performance of the query optimization tech-
nique in Amazon EC2. We set up a cluster with 6 worker
nodes using Spark 0.9.0 and deployed our system on top of
it.

4.1 Micro Benchmark
We first evaluate the benefits of predicate pushdown. The
query we execute is:

x = input key:int,value:int from localhost:9999

0

200

400

600

800

1000

1200

1400

1 51 101 151 201 251 301 351 401 451

P
ro

ce
ss

in
g 

D
e

la
y 

(m
s)

Batch

With Predicate Pushdown W/o Predicate Pushdown

Figure 5: Processing delay with and without predicate push-
down

delimiter ","

gb = select key, avg(value) as value from x

group by key

pred = select key, value from gb where key > 10

output key, value from pred delimiter ","

The source stream generates 500,000 key value pairs per
second. The key is generated from a random Gaussian dis-
tribution with mean equals to 0 and a standard deviation
of 5. The predicate key > 10 filters about 97.5% records
out. Without predicate pushdown, the group by operator is
evaluated before the predicate. We evaluate 500 batches of
data with a batch size of 1 second. Without predicate push-
ing, the average processing latency is 712ms. After predicate
pushing, the average latency is only 497ms, which reduces
the processing latency by 30%.

We evaluate the performance of window pushup using the
same experimental setting. The cluster processes 500,000
records every batch, with batch size 1 second. Following is
the query we executed:

x = input key:int,value:int from localhost:9999

delimiter ","

win = select key, value from x window 10 seconds

pred = select key from win where key = 20

output key from pred delimiter ","

Even with very small window size of 10 seconds, it takes over
2 seconds to process 1 second worth of data without opti-
mization (Figure 6 (A)). Since the processing rate is lower
than the incoming data rate, the tasks soon queued up and
the batch delay goes up to infinity. By using window pushup,
the processing latency of a batch can be maintained at a
low level (Figure 6 (B)). We reduce the data rate to 200,000
records per second and reevaluate the performance. By us-
ing window pushup, we can reduce the processing latency
by 65%.

To evaluate the performance of dynamic join operator re-
ordering, we execute the following query:

x = input key:int,value:int from localhost:9999
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Figure 7: Join with/without operator reordering

delimiter ","

y = input key:int,value:int from localhost:9998

delimiter ","

z = input key:int,value:int from localhost:9997

delimiter ","

joined = select x.key as xk, x.value as xv,

y.key as yk, y.value as yv,

z.key as zk, z.value as zv from x

inner join y on x.key = y.key

inner join z on x.key = z.key

ct = select count(xk) as c from joined

output c from ct delimiter ","

The key of streams y and z are generated from a Gaussian
distribution with mean 0 and 30, respectively. The key of
stream x is generated from a Gaussian Distribution with
varying mean; Every 20 seconds, the mean of x switches
between 0 and 30. Therefore, when x’s mean is 0, we should
join x and z first, and the join the result with y. The same
rule applies when x’s mean is 30. For all the three streams
x, y and z, the standard deviation is 10 and the data rate
is 2000 records per second. The joined stream produces
around 400,000 records per second.

Figure 7 shows the processing latency of the execution with
and without join operator reordering. With a static query
plan, the latency follows a bimodal distribution, with an av-
erage latency of 921 ms. With dynamic query optimization,
the latency distribution is more uniform, and the average
latency is 748 ms. We observe that every time the mean
of stream x switches, there is a spike on the latency even if
the dynamic query optimization is applied. This is because
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Figure 8: Processing delay using näıve aggregation and in-
cremental aggregation

there is a one batch delay when obtaining the statistics. In
practice, the stream characteristics changes less abruptly,
hence, the processing latency would be more stable.

Window operators can only be pushed upto an aggregation
operator. Further pushing the window operator above ag-
gregation operator changes the semantic. However, by re-
placing the aggregation operator with an incremental aggre-
gation operator, we can efficiently execute the aggregation
without doing redundant work. We evaluate the following
query:

x = input key:int,value:int from localhost:9999

delimiter ","

xx = select key,vallue from x window 10 seconds

ct = select key, count(value) as count from xx

output key,count from ct delimiter ","

The keys in stream x are generated from a Gaussian Distri-
bution with mean 0 and standard deviation 5. The data rate
of stream x is 100,000 records per second. Figure 8 shows
the processing delay using näıve aggregation and incremen-
tal aggregation. By using incremental aggregation, we can
reduce the average processing delay from 715 ms to 310 ms.

We evaluate the performance of incremental join with fol-
lowing query:

x = input key:int,value:int from localhost:9999

delimiter ","

y = input key:int,value:int from localhost:9998

delimiter ","

xx = select key,value from x window 10 seconds

yy = select key,value from y window 10 seconds

joined = select xx.key as xk, xx.value as xv,

yy.key as yk, yy.value as yv from xx

inner join yy on xx.key = yy.value

ct = select count(xk) as count from joined

output count from ct delimiter ","

Window operators are pushed up to the join operator. The
join operator are then replaced with an incremental join op-
erator. The incremental join operator caches the join result



in the window. Figure 9 shows the processing latency of a
näıve join and an incremental join. The incremental join op-
erator checkpoints the data every 10 seconds. Therefore, the
processing delay spikes every 10 seconds. Figure 10 shows
the performance with varying window size. For window size
varying from 10 seconds to 40 seconds, incremental join op-
erator always performs better.
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Figure 9: Processing delay using näıve join and incremental
join

4.2 Road Traffic Benchmark
Linear Road Benchmark [6] is used in the STREAM [18]
project. The benchmark has the locations of the cars in
a simulated freeway system. The cars in the freeway sys-
tem reports the location of the car to a central repository.
Following is the schema of the data:

1. time The timestamp when the record enters the database.

2. vid An unique identification of the vehicle.

3. speed The speed of the vehicle.

4. hwy The highway ID. There are multiple highways in
the system.

5. lane The lane the vehicle is on.

6. dir The direction the vehicle is going.

0

200

400

600

800

1000

1200

1400

10 20 30 40 50

P
ro

ce
ss

in
g 

D
e

la
y 

(m
s)

 

Window Size (s)

Naïve Join Incremental Join

Figure 10: Average processing delay using näıve join and
incremental join with varying window size

7. seg The segment the vehicle is in. The highway is
divided into 1 mile segments.

8. pos The location the (in feet) the vehicle is from the
starting point of the highway.

The data is three hours long with varying incoming data
rates from 5 records per second to 1884 records per second.
To increase the workload, we replay the data 5 times faster.
The goal of the query is to count the number of cars that
are in the congested segments (average car speed < 40mph
in the last minute) in the last 15 seconds. Following is the
query:

records = input time:int, vid:int, speed:int, hwy:int,

lane:int, dir:string, seg:string, pos:string

from localhost:8888 delimiter ","

recWindow60 = select vid, speed, seg, dir, hwy

from records window 60 seconds

segSpeed = select seg, dir, hwy, avg(speed) as avgSpeed

from recWindow60 group by seg, dir, hwy

congestedSeg = select seg, dir, hwy, avgSpeed

from segSpeed where avgSpeed < 40

recWindow15 = select vid, speed, seg, dir, hwy

from records window 15 seconds

congestedCar = select recWindow15.vid as vid

from recWindow15 inner join congestedSeg

on recWindow15.seg = congestedSeg.seg

and recWindow15.dir = congestedSeg.dir

and recWindow15.hwy = congestedSeg.hwy

numCongested = select count(vid) as c

from congestedCar

output c from numCongested delimiter ","

Stream records are the raw input records with the location of
the vehicle and speed of the car. recWindow10 is a windowed
stream with the location and speed of the vehicle in the
last. segSpeed is a stream storing the average speed of the
vehicles in a segment. congestedSeg is the segments that are
congested (i.e. avgSpeed < 40). recWindow3 is a windowed
stream with the location and speed of the vehicle in the
last 15 seconds. By joining congestedSeg and recWindow15,
we obtain congestedCar, the cars that are in the congested
segments. numCongested counts the number of cars in the
congested segments.

The optimizer automatically applies predicate pushdown,
window pushup and incremental aggregation in this query.
Figure 11 shows the results of the experiment. At the begin-
ning, both approaches have similar performance as the input
data rate is small. With the increase of input data rate, the
query plan without query optimization has larger latency
than the optimized query plan. The average execution la-
tency of the query plan without optimization is 960 ms with
a standard deviation of 445 ms. The optimized query plan
has an average latency of 679 ms and the standard deviation
is 250 ms.

4.3 Twitter Dataset
We use the Twitter API to sample small fraction of Tweets
and dump them to a local file. We replay the Tweets with
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Figure 11: Executing Query with/without optimization on Linear Road Benchmark
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Figure 12: Throughput vs Latency. The blue squares are
from the query plan without optimization. The orange dots
are from optmized query plan.

varying data rate to measure the throughput of the query
plan. We evaluate the following query:

raw = input time:string, tweetId:string,

scrName:string, language:string, userId:string,

userLoc:string, userName:string, text:string

from localhost:7777 delimiter "\t"

win = select lang from raw window 10 seconds

g = select language, count() as c from win

group by language

output language, c from g delimiter ","

Figure 12 shows the evaluation results. Without query opti-
mization, latency grows quickly with the increase of through-
put. To maintain a latency bound of 1 second, the query
plan without optimization can only process about 7,000 records
per second. With optimization, the throughput can be as
high as 40,000 records per second.

5. RELATED WORK
Stream Processing Systems: Stream processing engines,
such as STREAM [18], TelegraphCQ [10], TimeStream [22],
Storm [1], Naiad [19], and Borealis [2] are all continuous
operator model. The data flow is expressed as a graph of
operators. Data is processed by operators and sent to other
operators for further processing. In fact, in these systems,

batching is a common technique to increase the performance
of stream processing. In these systems, operators maintain
states. When an operator fails, the state of the operator is
gone. To reconstruct the state, either the operator needs to
be duplicated or the upstream backup needs to be applied.
In DStream, operator is decoupled from operator state by
keeping the lineage information. Therefore, lost state can
be simply recovered by recomputing the lost partition. All
these stream process system applies a static execution graph.
Our system allows the operators to be reordered base on the
execution information from previous batches. Statistics of
the stream data is collected from executed batches, and these
data is applied to optimize the execution of new batches.

Adaptive Streaming: Existing papers have extensive dis-
cussion on optimizing query execution in traditional record-
based stream process engine. [23] discusses how to place
the operators in the query plan. When the processing ca-
pacity is not enough to processing the incoming data, some
fraction of the data needs to be discarded [8,24]. While this
technique guarantees the processing time, it is lossy in na-
ture and the quality of the query may be sacrificed. Other
papers have proposed to elastically adjust the amount of re-
source according to the incoming workload [4,16,17,25]. We
would like to study how to adjust the degree of parallelism
in the data processing flow in response to the varying incom-
ing data rate. Deciding the optimal degree of parallelism is
a difficult question. Making the degree of parallelism too
small increases the processing time of the tasks, while mak-
ing it too large increases the task launching overhead. We
will incorporate this in our future work.

Query Optimization: Optimizing query execution is a
well studied topic in database management system [11, 13,
14]. To estimate the cost of an operator, sampling is neces-
sary to obtain the statistics of the data. However, sampling
is costly, especially for “big data”. A recent proposal [3]
argues that if a task is executed on the same data again,
statistics can be obtained from the first execution. In our
system, although data between batches is not the same, they
often show similar statistical properties. Therefore, we could
collect data statistics from previous executions to optimize
future execution. In this paper, we implement this idea and
show the benefits of optimizing the execution online.

6. CONCLUSION



We presented several techniques to optimize query execution
in batch streaming system. We implemented incremental
operators and a query optimization framework that dynam-
ically reoptimize the data parallel execution on the fly. We
show the benefits of such optimization with micro bench-
mark and real dataset. In the future work, we would like
to investigate elastically adjust the parallelism of the oper-
ators to provide performance guarantee in batch streaming
system.
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