
avocado: A Variant Caller, Distributed

Frank Austin Nothaft, Peter Jin, Brielin Brown
Department of Electrical Engineering and Computer Science

University of California, Berkeley
{fnothaft,phj,brielin}@berkeley.edu

ABSTRACT
In this paper, we present avocado, a distributed variant
caller built on top of ADAM and Spark. avocado’s goal
is to provide both high performance and high accuracy in
an open source variant calling framework. To achieve this,
we implement both local assembly and pileup-based single
nucleotide polymorphism (SNP) calling. A key innovation
presented in our work involves the development of heuristics
for when to choose more expensive assembly-based methods
instead of pileup-based methods. Additionally, we introduce
the concept of “significant statistics,” a tool for performing
incremental joint variant calling.

Categories and Subject Descriptors
Applied Computing [Life and Medical Sciences]: Com-
putational Biology—Sequencing and Genotyping Technolo-
gies; Applied Computing [Genomics]: Computational Ge-
nomics; Computing Methodologies [Distributed Comput-
ing Methodologies]: Distributed Algorithms—MapReduce
Algorithms

General Terms
Algorithms, Performance

Keywords
Variant Calling, Genotyping, Genomics Pipeline, Local As-
sembly, Distributed Computing, MapReduce

1. INTRODUCTION
Modern genomics processing pipelines can be divided into
four primary ordered stages:

1. Sequencing: Gathering of read data from DNA

2. Alignment: Alignment of read data against reference
genome

3. Variant Calling: Statistical determination of differ-
ences against reference genome

4. Variant Annotation: Annotation of impact of vari-
ation

Currently, to run a genomics pipeline end-to-end for a single
high coverage genome1 consumes approximately 100 hours [27].
Of this 100 hour figure, both alignment and variant calling
consume approximately 50 hours each.

Although some applications that use genomic data are la-
tency insensitive (for example, population genomics), many
medical applications like genomic medicine, or genomic clas-
sification of viral outbreaks [26] are latency sensitive. How-
ever, it is unacceptable to sacrifice accuracy in the pursuit of
speed. Recent work has focused on the problem of acceler-
ating alignment [30]; in this paper, we address accelerating
variant calling.

As noted above, it is unacceptable to sacrifice accuracy for
performance. To achieve improved performance, we imple-
ment several enhancements:

• Current pipelines are penalized by I/O performance,
we address this by using an in-memory MapReduce
framework [31] to reduce I/O pressure

• Additionally, we leverage the new ADAM data for-
mat [19], a high performance file format for distributed
genomics

• Finally, we achieve high accuracy at a low performance
cost by using high fidelity assembly-based methods
only on complex segments of the genome

In this paper, we discuss this system, related work, and per-
form a performance analysis. We start with a discussion of
the related work in §2. We then describe our architecture
and algorithms in §3. Finally, we analyze the performance
of our system in §4, and propose future research directions
in §5.

1High coverage refers to having on average >30× bases
aligned to each location in the reference genome.

2. RELATED WORK
There has been significant work related to variant calling,
and towards accelerating the genomic processing pipeline.
In this section, we discuss other variant callers, and tools
that we use in our evaluation.

2.1 ADAM
ADAM [19] is a new data format for genomics meant to
replace the Sequence/Binary Alignment/Map (SAM/BAM)
formats for read data [18], and the Variant Call Format (VCF)
for variant/genotype data [8]. The original SAM/BAM/VCF
formats were designed for single-node processing, and do not
easily distribute across several machines. Although a library
was designed for processing BAM/VCF data in Hadoop [22],
this API does not scale well past 8 nodes. ADAM achieves
scalability beyond 100 machines by eliminating the central
file header, and by using the Parquet data store which is
optimized for parallel data access [29].

In the process of developing avocado, we contributed 3,500
lines of code (LOC) to the ADAM project. This contribution
comprised the variant and genotype format, code for calcu-
lating normalized variant data from genotypes, and convert-
ers to/from the VCF format. Additionally, this contribution
included code for translating between read and reference ori-
ented views of data.

2.2 Samtools Mpileup
Samtools Mpileup is a tool for single nucleotide polymor-
phism (SNP) calling and genotyping aligned read data. Given
a set of reads from several individuals aligned to reference
chromosomal position (a pileup), Mpileup determines

• Is there statistically significant evidence that some in-
dividuals in the population have a non-reference allele
at this position? (SNP calling)

• Given that there is a SNP, which individuals are ho-
mozygous for the reference base, which are heterozy-
gous, and which are homozygous for the non-reference
base? (genotyping)

Since reads from a single individual will contain sequencing
errors that do not represent true genetic variation, samtools
leverages the alignment and read quality from several indi-
viduals, and calls a site an variant if the probability that all
individuals in the sample are homozygous to the reference
is small enough [16].

2.3 GATK
The Genome Analysis Toolkit (GATK) [21, 9] is a variant
calling framework released by the Broad Institute of Har-
vard and MIT. GATK was designed for multi sample calling
of SNPs and short insertions and deletions, as well as geno-
typing, for human genomes, and appropriately it can use
existing knowledge of human genetic variants from reposi-
tories like dbSNP [24] or HapMap [28]. Originally, GATK
used a purely statistical model for genotyping, along similar
lines as Mpileup, although it has since moved to perform-
ing local assembly to resolve haplotypes. Architecturally,
GATK consists of a parallelizable pipeline for transforming

short read data into VCF output, where pipeline stages are
generically called“walkers”and are invoked on the read data
in a MapReduce style.

In practice, the performance of GATK suffers due to a com-
bination of architectural and engineering deficiencies:

• Actual parallelism among GATK walkers is limited.

• There are significant overheads due to disk I/O be-
tween pipeline stages and due to poor algorithm or
data structure design.

• The GATK requires expensive read processing stages
like indel realignment, and base quality score recali-
bration.

Nonetheless, at the time we were developing avocado, GATK
remained the state of the art in variant calling human data.

2.4 FreeBayes
FreeBayes is a variant caller that uses pileup based calling
methods, and incorporates read phasing information when
calling variants [11]. Instead of performing graph based as-
sembly, the authors describe a heuristic approach that nar-
rows down the the interval on which phasing is captured
by selectively eliminating locations where alleles that have
unlikely evidence appear to segregate.

FreeBayes has several advantages over other variant calling
tools:

• FreeBayes does not have any limitations in terms of the
ploidy, nor does it put any assumptions on the ploidy.
This is important for working with samples with large
deletions, and is also a significant advantage for work-
ing with plant data. Plant genomes tend to have high
ploidy, and may have variable ploidy between samples.
This presents a significant advantage when compared
to the GATK, which assumes diploidy.

• Additionally, FreeBayes does not assume biallelism.
This is an improvement over Samtools mpileup, which
assumes biallelism when genotyping [16]. However, it
is worth noting that there are few sites where SNPs
segregate into more than two alleles [14].

FreeBayes has been indicated to have better accuracy than
the GATK by researchers at Harvard, but the authors of
FreeBayes do not report accuracy nor performance numbers.

2.5 SNAP
SNAP is a high performance short-read aligner that is opti-
mized for longer read lengths, and for distributed comput-
ing [30]. At the current moment, we have not integrated with
SNAP, but long term, we plan to incorporate SNAP as the
aligner in our read-alignment and variant calling pipeline.
This is significant, as variant callers typically optimize to
correct for the error models of the aligners that they coexist
with.

SNAP leverages the increasing length of reads to build a
large alignment index, which is similar to the method used
by BLAST [2], and which is dissimilar to the Burrows-Wheeler
transform based methods used by BWA [17]. Aligners which
use the Burrows-Wheeler transform perform very well in the
absence of mismatching data—however, they cannot handle
mismatches or inserts well. BWA has bad failure modes for
reads with mismatches within the first 20 bases of the read,
and Bowtie [15] does not handle insertions when aligning. As
SNAP will have better performance when aligning indels, it
is likely that we will be able to omit the local realignment
stage from ADAM [19]—this is significant as local realign-
ment is the most expensive phase of read processing before
variant calling.

2.6 SMaSH
SMaSH is a benchmarking suite for alignment and variant
calling pipelines [27], and was a key tool used for the evalu-
ation of avocado.

Traditionally, variant calling pipelines have been evaluated
on concordance2, and through using venn diagrams [12].
This is because genomics rarely has access to ground truth:
typical sequencing methods have insufficient fidelity to de-
tect all variants clearly, and extremely high fidelity sequenc-
ing methods are too expensive/slow to be used in clinical
practice. However, this method is fraught with risk: concor-
dance is not a good metric to use if variant callers or aligners
are making similar systemic errors.

To address this problem, SMaSH leverages synthetic data
which by definition has known ground truth, and rigorously
verified mouse and human genomes. The human genomes
and validation data come from the 1000 Genomes project,
a project which surveyed the genomes of 1000 individuals
using multiple sequencing technologies [25]. On top of this
curated data, SMaSH provides a VCF based interface for
determining the precision of a variant calling pipeline. Novel
to this benchmarking suite, the authors introduced a “res-
cue” phase, which is used to resolve ambiguities that are
caused by the VCF specification.

It is worth noting that SMaSH does not include any datasets
that are designed for joint variant calling. Because of this,
we fall back on concordance as a metric for evaluating our
joint variant calling algorithms which are described in §3.3.

3. ARCHITECTURE
When architecting avocado, we made a conscientious deci-
sion to prioritize modularity and extensibility. There are
several reasons behind this design choice:

• Current variant calling pipelines are not meant to be
extended. Because of this, anyone looking to proto-
type a new variant calling algorithm must implement
their own variant calling infrastructure, which is a sig-
nificant impediment to variant calling research.

• Although we have limited specialization in our cur-
rent pipeline (we specialize towards local assembly and

2Identifying overlap between the call set of multiple variant
calling pipelines.

pileup based SNP calling), long term we plan to add
increasingly specialized variant calling algorithms.

• Similarly, it is known that modern variant callers per-
form poorly when calling structural variants (SVs).
This is a critical area that we hope to attack through
specialized variant calling algorithms.

To improve modularity, we pushed as much functionality
into the ADAM stack as possible [19]. ADAM implements
several important transformations that are used on the read
processing frontend, including sort-by-reference position, du-
plicate marking, base quality score recalibration (BQSR),
and local realignment (see §2.5). Additionally, we have
moved portions of the variant calling stack into ADAM—
after genotyping samples, we use the ADAM pipeline to
transform genotypes into variant calls. We include a brief
discussion of the merits of this approach in Appendix B.

A diagram of the avocado architecture is included in Fig-
ure 1.

Filter and
Categorize

Reads

Filter
Input

Reads

Identify
Regions of
Complexity

Perform
Read Error
Correction

and
Remapping

Read
Based
Variant
Calls

Translate:
Read to

Reference
Oriented

Filter and
Categorize

Pileups

Pileup
Based
Variant
Calls

Combine
and

Validate
Calls

I/O Stages
Filtering

Variant Calling

Figure 1: System Architecture

avocado is roughly divided into four stages:

1. Read pre-processing: Applies transformations from
the ADAM pipeline, including sort, duplicate marking,
BQSR, and local realignment. Operates strictly on
read data.

2. Filtering: Selects the best algorithm for calling vari-
ants on a segment of data; transforms data to be reference-
oriented if necessary. This is discussed in §3.4.

3. Variant calling: Calls genotypes for samples in input
set on either read-oriented or reference-oriented data.
These algorithms are discussed in §3.1 and §3.2.

4. Variant filtering: Here, variant data is calculated
from genotypes using the ADAM API [19]. Addition-
ally, variants can be filtered for quality.

All stages are designed to be configurable, and easy to re-
place. Specifically, the filtering and variant calling stages
are designed with a specific eye towards modularity. For
variant calls, we provide a base class, and two specialized
subclasses for variant calls that operate on either read or
reference oriented data. A variant calling algorithm can be
added by implementing one of these class interfaces, and
then registering the call with a filter. For filters, we pro-
vide two filtering stages: the first operates on read data,
and is used to implement the filter described in §3.4. The

second filtering stage operates on pileup (reference oriented)
data—currently, we use this to filter out pileups that have
no mismatch evidence. For both of these filters, we provide
a simple interface for developers to implement.

To improve pipeline performance, we made a significant op-
timization to the reads-to-pileup transformation step. At
the start of transforming reads into reference oriented data,
the reads are sorted by reference position. However, due to
the partitioning used by Spark [31], after a näıve transforma-
tion of reads to single reference oriented bases, the reference
oriented bases are no longer sorted. This makes the ensuing
grouping of bases by position very expensive due to signifi-
cant disk shuffle I/O. Instead, we perform a quasi-streaming
transform on the read data. Here, the sorted read blocks are
chunked together. All of the reads in this window are then
converted into pileup bases, and then grouped together into
rods. This leads to significantly better performance, but has
tricky edge cases: reads that border the end of a group must
be duplicated into both read groups.

3.1 Local Assembly
Given a partition of reads, we can group them by their
starting locus in intervals of W , creating regions of length
W + L− 1 where L is the read length. Within each region,
we can evaluate the likelihood of observing the reads given
the reference haplotype:

L(Href) ≡ P({ri}|Href) (1)

=
Y

i

P(ri|Href)

where P(r|H) is obtained from aligning the read and the
candidate haplotype by a pairwise HMM alignment [10].
Note that, in practice, all probabilities are computed in units
of logarithm base 10, so products become sums, etc.

If a reference haplotype likelihood is below a fixed thresh-
old, the region corresponding to the haplotype is marked
active. Each active region is assembled independently and
in parallel. Note that our definition of an active region is
similar in spirit but not in implementation to the “active re-
gions” defined by the Complete Genomics variant caller [5]
and current versions of GATK [9].

The assembly of an active region is a kind of k-mer graph
or “Eulerian” approach [23]. We start by splitting all reads
assigned to the region into k-mers, where k is a fixed pa-
rameter for all assemblies. A read generates L− k+ 1 total
k-mers. Each k-mer is uniquely identified by the substring
of its originating read. Because of coverage overlap and se-
quence repeats, some k-mers will be duplicates; these are
consolidated, and the duplication factor is recorded as the
k-mer multiplicity. The k-mers define edges in the com-
pleted k-mer assembly graph. Within a read, each adjacent
pair of k-mers have an overlapping substring of length k−1;
these are seeded as the initial vertices in the k-mer graph.
Because there are duplicated k-mers, some vertices will be
“merged,” connecting the graph. Unlike an exact de Bruijn
graph, which connects all overlaps between k-mers, we only
connect the overlaps found in the reads, performing a simple
form of read threading.

Once the k-mer graph is complete, we perform a depth-first
traversal with an upper bound on the total path multiplicity,
defined as the sum of the edge multiplicities, to enumerate a
set of possible paths. The traversal begins at a graph source,
and a completed path must also end at a sink. Each path is
an assembled haplotype to be evaluated.

From the assembled haplotypes, we order them according to
the haplotype likelihood:

L(Hj) =
Y

i

P(ri|Hj). (2)

Among the ordered haplotypes, we pick the top scoring hap-
lotypes and ignore the low scoring ones. The likelihood of
observing the reads {ri}, given a pair of haplotypes Hj and
Hj′ , is defined to be [1]:

L(Hj , Hj′) ≡ P({ri}|Hj , Hj′) (3)

=
Y

i

»
P(ri|Hj)

2
+

P(ri|Hj′)

2

–
.

We compute the posterior probability of observing the pair
of haplotypes Hj and Hj′ from the haplotype pair likelihood
and a haplotype pair prior probability [1]:

P(Hj , Hj′ |{ri}) =
1

Z
L(Hj , Hj′)P(Hj , Hj′) (4)

where Z is a normalization:

Z =
X

j

X
j′

L(Hj , Hj′)P(Hj , Hj′)

and where we obtain the prior P(Hj , Hj′) by aligning the
haplotype pair with the same pairwise HMM alignment as
above, and taking the product of the prior probabilities for
each SNP and indel event.

We choose the maximum a priori estimate among haplotypes
with any variants as the called non-reference maternal and
paternal haplotype pair [1]:

(Hnonref
mat , Hnonref

pat) = arg max
Hj ,Hj′ :nvar(Hj ,Hj′)>0

P(Hj , Hj′ |{ri}).

(5)

Similarly, we may define the reference haplotype pair as
(Href, Href). The error probability of calling the non-reference
haplotype pair is:

Perror(H
nonref
mat , Hnonref

pat) (6)

=
P(Href, Href)

P(Hnonref
mat , Hnonref

pat) + P(Href, Href)
.

The quality score of all variants present in the nonreference
haplotype pair is defined as the Phred scaling of Perror.

3.2 Genotype Calling
For one sample at a site, we can estimate the genotype likeli-
hood based on the number of reads that match the reference
genome and the quality of each of these reads. Let the num-
ber of reads at site a be k and the ploidy be m. Without
loss of generality assume the first l ≤ k bases match the ref-
erence, and the rest do not. Let εj be the error probability

of the jth read base. We have that,

L(g) =
1

mk

lY
j=1

[(m− g)εj + g(1− εj)]

×
kY

j=l+1

[(m− g)(1− εj) + gεj] (7)

Here we are only leveraging the data of a single sample.
Performance can be improved by considering statistics as-
sociated with other samples. If a study involves sequencing
many individuals from a population, it is beneficial to run
them jointly in order to determine population parameters
like per-locus allele frequency spectrum (AFS) and minor
allele frequency (MAF) (§ 3.3). However, when genotyping
a single individual computational time can be saved by look-
ing these parameters up in a database such as dbSNP. If the
population MAF at site a is φa, the likelihood can be com-
pensated by the prior probability of seeing a non-reference
allele, and the genotype is

ĝa = arg max
g

L(g)P [g|φa]P
g L(g)P [g|φa]

(8)

where P [g|φ] =
`

m
g

´
φg(1−φ)m−g is the pmf of the binomial

distribution.

3.3 Joint Variant Calling
When genotyping several individuals one may wish to geno-
type them jointly while determining population allele statis-
tics, especially when said individuals are from a specific pop-
ulation of interest. In this case, we can use the EM procedure
of Samtools Mpileup. Given the data for several individuals
and using the likelihood in (7), we can infer the population
MAF per site via iteration of

φ(t+1)
a =

1

M

nX
i=1

gL(g)P [g|φ(t)
a]P

g L(g)P [g|φ(t)
a]

(9)

where n is the number of individuals, M =
Pn

i=1mi is the
total number of chromosomes and P is the binomial likeli-
hood described above. This population MAF can then be
used in genotyping as above.

3.4 Algorithm Selection
As discussed in §3, we seek to improve the performance of
our variant caller without reducing accuracy by directing the
variant caller to use higher accuracy methods in areas that
show increased complexity. Loosely, we define a complex
region as an area that is highly similar to other areas of the
genome, or where it is likely that a complex variant (such
as an indel) is segregating. To identify those regions, we use
the following heuristics:

• Areas that are highly similar to other areas of the
genome can be distinguished by low mapping qual-
ity. Reduced mapping quality indicates that alignment
found several areas where the read could map with sim-
ilar quality.

• Complex variants lead to a change in coverage over the
effected area. Deletions will see reduced coverage, and
insertions lead to increased coverage.

We implemented our filter by stepping a window across the
reference genome. The window was stepped by 1000 base
pairs. In each 1000 base pair window, we would compute the
average coverage, and mapping quality. If a window violated
either of the mapping quality or the coverage threshold, we
would flag it as high complexity and pass it to the assembler.
If a window did not violate either of those two thresholds,
we built pileups out of the data on this interval, and then
used the genotyping methods described in §3.2.

We provided several tuning parameters to the end user.
Specifically, the end user could set the target mapping qual-
ity and coverage deviation percentage (percent change from
mean coverage). Table 1 summarizes the sensitivity of these
parameters.

Table 1: % Reads in High Complexity Region
MapQ,Cov 0.2 0.4 0.6

40 88% 54% 20%
50 90% 56% 22%
60 98% 91% 88%

As can be noted, mapping complexity begins to saturate as
the mapping quality threshold increases to 603, and as the
coverage variation coefficient decreases to 0.2.

4. EVALUATION
In this section, we present an evaluation of avocado. We
evaluate the accuracy of our variant calls using SMaSH,
which was introduced in §2.6. All of our variant calling was
run on Amazon Elastic Compute 2 (EC2), using the machine
types listed in Table 2.

Table 2: EC2 Machine Types Used

Machine CPU Memory4 Storage Cost5

m2.4xlarge 8 68.4GiB 2×840GB $1.64
cr1.8xlarge 32 244GiB 2×120GB $3.50
hs1.8xlarge 16 117GiB 20×2,048GB $4.60

The storage drive types were different between the two ma-
chines: the m2.4xlarge machines were backed by hard disk
drives (HDD), while the cr1.8xlarge machines are backed
by solid state drives.

The datasets used in testing avocado are listed in Table 3.

The Venter dataset is high coverage data (30×) coverage,
and was generated using simNGS [20]. The NA12878 dataset

3Phred-scaled 60 is equivalent to a probability of P =
0.999999 that the read is correctly mapped.
4One Gibibyte (GiB) is equal to 230 bytes, as opposed to a
Gigabyte (GB) which is equal to 109 bytes.
5Cost is per machine per hour.

Table 3: Datasets Used
Dataset Type Size From

Venter Synthesized Human 99GB [27]
NA12878 Human Whole Genome 15GB [25]

Chromosome 11 673MB [25]
Chromosome 20 297MB [25]

NA18507 Chromosome 20 236MB [25]

is low coverage (5×) data, and was sequenced on an Illu-
mina HiSeq2000. We chose these datasets because they al-
lowed us to view several different areas in the design space—
specifically, we have different coverage depths, as well as dif-
ferent file sizes. Long term, we are interested in adding the
high coverage (50×) NA12878 dataset to our experiments,
so that we can identify how strongly we perform on low vs.
high coverage reads for the same dataset. Additionally, we
plan to use avocado on cancer genomes starting in February
of next year, when the datasets become available.

4.1 Accuracy
Due to an incompatibility with Hadoop-BAM and ADAM [19,
22], we were unable to export a VCF file from our variant
calling pipeline. This precludes us from running SMaSH on
our calls, and prevents us from determining accuracy and re-
call numbers against validated data. We are currently work-
ing very closely with the Hadoop-BAM team to resolve this
issue—specifically, the ADAM Variant and Genotype data
can be converted over to the internal representation used for
the VCF, but the internal representation for VCF data can-
not be written out to disk in Spark from Scala. It appears
that this issue stems from the Hadoop Job configuration,
and we hope to have this issue resolved by the beginning of
January.

However, we are able to obtain concordance data from run-
ning joint variant calling. We ran our standalone variant
caller on NA12878, and our joint variant caller on NA12878
and NA18507. The data on callset overlap from this run is
contained in Table 4.

Table 4: Joint Variant Calling Concordance
NA12878 Overlap Joint Calling

14.8M 13.7M 15.8M
92.5% — 86.7%

This concordance data is promising—however, it is worth
noting that since we do not currently support joint variant
calling on the regions that we assemble, the variant calls
resulting from assembly will be unchanged after joint calling,
and will thusly always have 100% concordance. We use the
default filtering settings for this run, which means that 22%
of the genome will be assembled (see Table 1). However,
due to the way we emit variant calls for assembled regions,
assembly accounts for less than 22% of the variant calls.
There are several other important items to note about this
data:

• The lack of joint assembly is partly accountable for

the 13.3% discordance from joint variant calling. Ad-
ditionally, we do not filter out the variant calls that
are called solely on NA18507, and not on NA12878.
These calls will not overlap with the calls made in the
single sample run using NA12878.

• We hope to experiment more with this data at a later
point, with more samples. Joint calling methods de-
pend significantly on the sample size used; by default,
we seed the single sample calling pipeline with data
from dbSNP [24]. dbSNP contains a significantly larger
set of data than used in this trial; it would be interest-
ing to see how many samples are necessary to approach
100% concordance between calling against dbSNP and
traditional joint calling.

We view these results as promising, but note that this sec-
tion requires additional progress. As soon as the ADAM
to VCF pipeline is complete, we plan to run the following
experiments:

• Use SMaSH to benchmark performance against vali-
dated datasets.

• Perform concordance measurements against established
pipelines including the GATK and Mpileup.

While the SMaSH benchmarking numbers will provide us
with feedback about the true accuracy of our pipeline, it
is also important to validate concordance with other estab-
lished tools. This is because low concordance would likely
point to issues with the way we are formatting our variant
calls. This would not be captured in SMaSH, as the rescue
phase will mark these calls as correct [27]. While these calls
may be correct, it is important to be syntactically similar to
existing tools, as variant annotation pipelines expect to see
data that is formatted in these styles.

4.2 Performance
In this section, we review the runtime performance of avo-

cado on varying dataset sizes, and machine configurations.
From this, we present areas for optimization, and recommen-
dations for people using the system. Additionally, we high-
light the factors that contribute to the performance charac-
teristics of the system.

4.2.1 Multi-node Scaling
A sample test case that demonstrates avocado’s ability to
scale to multiple nodes is illustrated in figure 2. In this test
case, we performed SNP-only genotyping on the NA12878,
chromosome 11 dataset. All tests used a single Spark master
node, and the number of computing slaves used was scaled
from 1 to 8 m2.4xlarge nodes.

As can be noted, we see superlinear speedup for the 4 and
8 node cases. This occurs due to two reasons:

1. The 4 and 8 node cases exercise higher disk parallelism
when reading and writing results, because the number
of HDFS replicas is increased from 1 to 3 once there
are more than three nodes [3].

20 21 22 23

Number of Machines

20

21

22

23

24

25
S
p
e
e
d
u
p

Speedup on NA12878, Chromosome 11

Figure 2: Multi-Node Processing: Speedup on
NA12878, Chromosome 11

2. Additionally, scaling beyond 2 nodes reduces memory
backpressure. In Spark, memory backpressure causes
data to be written to disk. Also, by increasing the
number of disks in the system, we increase the aggre-
gate disk throughput, which improves shuffle perfor-
mance.

As was reported in the ADAM technical report [19], sin-
gle node performance is improved the furthest by using a
machine with a very large memory, and with many disks.
Specifically, for processing a large file on a single node, we
recommend using the hs1.8xlarge machine with the HDDs
configured in redundant array of inexpensive disks (RAID)
0.

4.2.2 Scaling Across Datasets
Our performance changes as the size of data scales. This is
demonstrated in Table 4.2.2.

Sample Time Machines

Venter 6hr 20×cr1.8xlarge
NA12878, chr11 0.47hr 4×m2.4xlarge
NA12878, chr20 0.25hr 4×m2.4xlarge

We note the following about how our algorithm scales with
data size:

• For filtering, we must perform three large reductions
at the immediate start of variant calling. On the whole
genome Venter case, we noted several large stragglers
during these reductions. Additionally, Spark fails to
pipeline these reductions.

• We see greater scalability than expected when moving
from chromosome 20 on NA12878 to chromosome 11.
Although chromosome 11 is 2.26× larger than chromo-
some 20, it’s execution is only 1.8× slower. This is due
to limited parallelism at the beginning of the pipeline.

We are currently investigating the reduction issue—although
we are not sure of why there is significant skew, we can
reduce the impact of this skew by manually pipelining the
three reductions, as the operate on the same dataset. The
limited parallellism at the start of the pipelines is only a
limitation for smaller datasets. This limitation arises from
Parquet, and is due to the parameters passed to ADAM
when converting BAM files to the ADAM format. Currently,
we opt to increase the parallelism by coalescing the data
into more partitions. We choose to at least match the core
count of the machines we are running on. This increases
parallelism, but comes at a cost: this coalesce operation
requires data to be shuffled on disk.

4.2.3 Joint Variant Calling Performance
We tested our joint variant caller by jointly calling chromo-
some 20 of both NA12878 and NA18507; these two chromo-
somes account for 533 MB of data. In this test, we were
able to joint call the two samples in 0.45 hours. Readers
may note that this number is lower than expected, based off
of the data from Table 4.2.2; in this table, we illustrate that
we can call 673 MB of data in 0.47 hours. This discrepancy
can be explained by the inclusion of the EM algorithm de-
scribed in §3.3. This algorithm requires several iterations to
converge, and requires the creation of a matrix that is signif-
icantly larger than the vector used for genotyping. It is quite
likely that this would lead to decreased performance. Addi-
tionally, sort consumes more time for the two genome case.
We believe that this is because the act of appending two sets
of read data together eliminates any advantages that are ob-
tained from having the read data come in with reasonable
local sorting. Thusly, we require additional shuffling when
sorting the union of the data.

5. FUTURE WORK
Several points for future work are noted elsewhere in this
paper; the most significant necessary future work is noted
in §4.1. This section covers other areas that we hope to
address in a future revision of avocado.

As a project, avocado has a well defined path for future
research:

• A major driving goal for this project is to be able to
call variants across a full, very high coverage genome
within a couple of hours. Currently, we call variants
in 6 hours on 20 machines on a 30× coverage genome.
Within several months, we hope to call variants on a
60× coverage genome in less time.

• Although avocado currently is designed for germline
variant calling, we hope to use this tool for calling
variants on tumor genomes. A full discussion of the
changes necessary for tumor calling is out of the scope
of this paper, rather, we refer interested readers to the
Cibulskis et al, which discusses an adaptation of the
GATK for mutation calling [7].

From a timeline perspective, we hope to integrate avocado

with SNAP [30] by the end of January 2014. We expect that
this project will reach maturity in the spring of 2014, and
to use it on patient data by the middle/end of 2014.

5.1 Performance Bottlenecks
Currently, there exist several significant performance bot-
tlenecks in our pipeline. We need to address these bottle-
necks in order to hit the performance targets outlined above.
These performance bottlenecks include the following:

• Although read to pileup creation time has been re-
duced, there is still a significant latency hit taken be-
cause these steps appear to emit unsorted pileups. We
have tried to locally sort the pileups during creation,
but this does not impact the output. We believe this is
due to using an unsorted Spark partitioner. This is im-
portant because it is desirable to emit sorted variants—
additionally, we would prefer to have our variants sorted,
as this minimizes shuffle traffic when performing vari-
ant filtering. One approach we are considering to ame-
liorate this issue involves refactoring the mechanism we
use for distributing data between the calling methods.
We hope that we can change the signature for our vari-
ant callers to operate on partitions of read data, which
would allow us to assign calls to sorted read partitions,
and perform the calling in situ. As long as the calls
emitted per partition are sorted, this would maintain
sorted order on the variants.

• As discussed in §4.2.2, we struggle when computing
basic statistics on larger datasets. We propose a solu-
tion to the problem of reductions not being pipelined
in that section, but we also must point out that key
skew remains an issue. What may help to address this
issue is to perform these reductions after reads have
been reduplicated and sorted. The sorting process has
optimizations that reduce key skew across partitions.
These optimizations came about due to problems en-
countered when sorting sets of reads that include un-
mapped reads [19].

• Our current genotype to variant conversion code re-
quires a group-by on the genotype data. As noted
two bullets above, this is problematic because we do
not currently guarantee ordering on the genotype data,
which leads to poor group-by performance. One ap-
proach that may improve this is to refactor this code
to not require coordination between the variant con-
text object, the variant, and the genotype. This would
eliminate a group-by, which would lead to a significant
performance gain when emitting variants.

We hope to address these performance issues in release 0.0.2
at the beginning of 2014.

5.2 Structural Variant Calling
Structural variant calling presents a great area for improve-
ment in variant calling; modern structural variant callers are
correct less than 25% of the time [27]. Long term, we would
like to improve on this performance by using specialized al-
gorithms, as this is a key benefit of the modular toolkit we
have designed. We see several significant opportunities:

• As demonstrated by GQL [13], there is significant op-
portunity to use algorithms like BreakDancer [6] along

with filtering. BreakDancer is an algorithm for detect-
ing long deletions and translocations using a split-read
aligner. To support BreakDancer, we would need to
have aligner support—this would require modifications
to SNAP [30].

• Another opportunity could come from using a full de
novo assembler for areas where indels are segregating.
De novo assembly does not rely on a reference6, and
is a more expensive formulation of the local assem-
bly problem. Although de novo assembly is more ex-
pensive, it presents much higher accuracy for complex
portions of the genome, such as near telomeres and
centromeres [4].

By integrating these algorithms into avocado, we hope to
achieve significantly higher structural variant calling accu-
racies than existing pipelines.

5.3 Improving Local Assembly
Since assembly depends on the exact sequences of the input
data, the quality of the reads is critical for performing an
accurate assembly. One error correction method is spectral
filtering [23], which depends on the observation that the dis-
tribution of k-mers from all reads with respect to multiplicity
is bimodal, one due to the Poisson sampling of reads (with
high multiplicity), the other due to errors (with low multi-
plicity), so that splitting the reads between the two modes
and keeping the reads near the mode with higher multiplic-
ity serves to prune the poor quality reads. Empirically, we
have found during other work that utilizing mate pair infor-
mation greatly improves the quality of an assembly. We also
do not employ mate pair threading, which requires collect-
ing the insert size distribution of the data, but we expect
that implementing it has the potential to vastly improve the
accuracy of variant calls.

5.4 Improved Region Filtering
There are several efforts underway to improve variant calling
outcomes through the filtering of reads. These methods are
similar to the methods we implement in §3.4, but provide
deeper formulations for their work. These methods include:

• Similar Region Detection: In this unreleased work,
the reference sequence is evaluated to find regions that
expose high similarity. This is done by forming a con-
tig graph, and identifying highly connected regions.
This detection is not performed at runtime; rather, it
is performed once per region. The output of this tool
includes regions where alignments cannot necessarily
be trusted. To incorporate this, we would add a filter-
ing block that would identify reads which group into
similar regions, and then we would assemble the requi-
site number of haplotypes from this region, using the
reference sequence as anchors.

• Changepoint Detection: This work uses an im-
proved, more statistically rigorous set of heuristics to

6Some de novo assemblers are reference assisted, which
means that they take some hints from a reference genome
assembly.

determine whether a region presents high complexity.
Similar to our work, we would use assembly in these
regions. We hope that this will improve the filtering,
as we do not always catch indels in our filtering stage.
However, it may be cheaper to use a simple heuristic
and to then revert a block to assembly if we encounter
indel evidence.

Thanks to the modular decomposition of our system, these
two filtering implementations should be straightforward to
implement. Additionally, the similar region detection sys-
tem may necessitate the addition of a new schema to the
ADAM toolkit for describing ranges in a genome.

6. CONCLUSION
In this paper, we presented avocado, a distributed variant
caller implemented using Spark and ADAM [31, 19]. We
illustrate the performance of the system across a variety
of datasets including both high coverage sampled human
genomes and low coverage human genomes. Major contri-
butions of this system include the development of an open
source local assembler, the use of filtering to determine when
it is efficient to use local assembly instead of pileup based
calling methods, the development of a system which can ap-
proximate joint genotyping with a single sample, and the
development of a modular, open source platform for devel-
oping and prototyping new variant calling algorithms. We
review the performance of this system on computing clus-
ters containing up to 20 nodes; from these measurements,
we identify areas for performance optimization, and plot a
course for the continued development of this toolkit.

APPENDIX
A. AVAILABILITY
avocado is open source and is licensed under the Apache 2
license. The source code is available at:

http://www.github.com/bigdatagenomics/avocado

B. GENOTYPE/VARIANT REFACTORING
Traditionally, variant calling has involved genotyping n sam-
ples, and then determining which of the genotypes of these
samples contain true variants. This involves the calculation
of a variant quality score7, and filtering variants.

Semantically, all of the information necessary for the cre-
ation of variant data can be extracted from the genotypes
of the samples. Therefore, the step of packing/unpacking
genotype data to create variant calls is unnecessary. To re-
duce the likelihood of making errors, we have migrated code
to do this into the ADAM [19] framework. Then, to get
variant calls, we must just genotype the samples we see, and
call the ADAM library.

This does not preclude joint variant calling—although joint
variant calling implies that multi-sample data is being used

7Loosely defined as the likelihood that there is at least one
genotype with this variant out of all haplotypes seen in the
call set. However, notably, FreeBayes [11] uses a different
definition for variant quality.

to influence the filtering of variants, this is a bit of a mis-
nomer. Practically, as discussed in §3.3, joint variant calling
involves the use of data from multiple samples to refine geno-
type probabilities across a population to support genotypes
that are frequently seen in this population.

C. REFERENCES
[1] C. A. Albers, G. Lunter, D. G. MacArthur,

G. McVean, W. H. Ouwehand, and R. Durbin. Dindel:
Accurate indel calls from short-read data. Genome
Research, 21:961–973, 2011.

[2] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and
D. J. Lipman. Basic local alignment search tool.
Journal of molecular biology, 215(3):403–410, 1990.

[3] D. Borthakur. The hadoop distributed file system:
Architecture and design, 2007.

[4] M. Bresler, S. Sheehan, A. H. Chan, and Y. S. Song.
Telescoper: de novo assembly of highly repetitive
regions. Bioinformatics, 28(18):i311–i317, 2012.

[5] P. Carnevali, J. Baccash, A. L. Halpern, I. Nazarenko,
G. B. Nilsen, K. P. Pant, J. C. Ebert, A. Brownley,
M. Morenzoni, V. Karpinchyk, B. Martin, D. G.
Ballinger, and R. Drmanac. Computational techniques
for human genome resequencing using mated gapped
reads. Journal of Computational Biology,
19(3):279–292, 2012.

[6] K. Chen, J. W. Wallis, M. D. McLellan, D. E. Larson,
J. M. Kalicki, C. S. Pohl, S. D. McGrath, M. C.
Wendl, Q. Zhang, D. P. Locke, et al. BreakDancer: an
algorithm for high-resolution mapping of genomic
structural variation. Nature methods, 6(9):677–681,
2009.

[7] K. Cibulskis, M. S. Lawrence, S. L. Carter,
A. Sivachenko, D. Jaffe, C. Sougnez, S. Gabriel,
M. Meyerson, E. S. Lander, and G. Getz. Sensitive
detection of somatic point mutations in impure and
heterogeneous cancer samples. Nature biotechnology,
31(3):213–219, 2013.

[8] P. Danecek, A. Auton, G. Abecasis, C. A. Albers,
E. Banks, M. A. DePristo, R. E. Handsaker,
G. Lunter, G. T. Marth, S. T. Sherry, et al. The
variant call format and VCFtools. Bioinformatics,
27(15):2156–2158, 2011.

[9] M. A. DePristo, E. Banks, R. Poplin, K. V. Garimella,
J. R. Maguire, C. Hartl, A. A. Philippakis, G. del
Angel, M. A. Rivas, M. Hanna, et al. A framework for
variation discovery and genotyping using
next-generation DNA sequencing data. Nature
genetics, 43(5):491–498, 2011.

[10] R. Durbin, S. R. Eddy, A. Krogh, and G. Mitchison.
Biological Sequence Analysis: Probabilistic Models of
Proteins and Nucleic Acids. Cambridge Univ Press,
1998.

[11] E. Garrison and G. Marth. Haplotype-based variant
detection from short-read sequencing. arXiv preprint
arXiv:1207.3907, 2012.

[12] T. Jiang, G. Sun, Y. Wu, W. Wang, J. Hu, P. Bodily,
L. Tian, H. Hakonarson, W. E. Johnson, et al. Low
concordance of multiple variant-calling pipelines:
practical implications for exome and genome
sequencing. 2013.

[13] C. Kozanitis, A. Heiberg, G. Varghese, and V. Bafna.

http://www.github.com/bigdatagenomics/avocado

Using Genome Query Language to uncover genetic
variation. Bioinformatics, 2013.

[14] L. Kruglyak et al. The use of a genetic map of biallelic
markers in linkage studies. Nature genetics,
17(1):21–24, 1997.

[15] B. Langmead, C. Trapnell, M. Pop, S. L. Salzberg,
et al. Ultrafast and memory-efficient alignment of
short DNA sequences to the human genome. Genome
Biol, 10(3):R25, 2009.

[16] H. Li. A statistical framework for SNP calling,
mutation discovery, association mapping and
population genetical parameter estimation from
sequencing data. Bioinformatics, 27(21):2987–2993,
2011.

[17] H. Li and R. Durbin. Fast and accurate short read
alignment with Burrows-Wheeler transform.
Bioinformatics, 25(14):1754–1760, 2009.

[18] H. Li, B. Handsaker, A. Wysoker, T. Fennell, J. Ruan,
N. Homer, G. Marth, G. Abecasis, R. Durbin, et al.
The sequence alignment/map format and SAMtools.
Bioinformatics, 25(16):2078–2079, 2009.

[19] M. Massie, F. A. Nothaft, C. Hartl, C. Kozanitis,
A. Schumacher, A. D. Joseph, and D. A. Patterson.
ADAM: Genomics formats and processing patterns for
cloud scale computing. Technical Report
UCB/EECS-2013-207, EECS Department, University
of California, Berkeley, Dec 2013.

[20] T. Massingham. simNGS and simLlibrary.
http://www.ebi.ac.uk/goldman-srv/simNGS/, 2012.

[21] A. McKenna, M. Hanna, E. Banks, A. Sivachenko,
K. Cibulskis, A. Kernytsky, K. Garimella,
D. Altshuler, S. Gabriel, M. Daly, et al. The Genome
Analysis Toolkit: a MapReduce framework for
analyzing next-generation DNA sequencing data.
Genome research, 20(9):1297–1303, 2010.

[22] M. Niemenmaa, A. Kallio, A. Schumacher, P. Klemelä,
E. Korpelainen, and K. Heljanko. Hadoop-BAM:
directly manipulating next generation sequencing data
in the cloud. Bioinformatics, 28(6):876–877, 2012.

[23] P. A. Pevzner, H. Tang, and M. S. Waterman. An
eulerian path approach to dna fragment assembly.
Proceedings of the National Academy of Sciences,
98(17):9748–9753, 2001.

[24] S. T. Sherry, M.-H. Ward, M. Kholodov, J. Baker,
L. Phan, E. M. Smigielski, and K. Sirotkin. dbSNP:
the NCBI database of genetic variation. Nucleic Acids
Research, 29(1):308–311, 2001.

[25] N. Siva. 1000 genomes project. Nature biotechnology,
26(3):256–256, 2008.

[26] E. S. Snitkin, A. M. Zelazny, P. J. Thomas, F. Stock,
D. K. Henderson, T. N. Palmore, J. A. Segre, et al.
Tracking a hospital outbreak of carbapenem-resistant
Klebsiella pneumoniae with whole-genome sequencing.
Science translational medicine,
4(148):148ra116–148ra116, 2012.

[27] A. Talwalkar, J. Liptrap, J. Newcomb, C. Hartl,
J. Terhorst, K. Curtis, M. Bresler, Y. S. Song, M. I.
Jordan, and D. Patterson. SMASH: A benchmarking
toolkit for variant calling. arXiv preprint
arXiv:1310.8420, 2013.

[28] The International HapMap Consortium. The
international HapMap project. Nature, 426:6968, 2003.

[29] Twitter and Cloudera. Parquet.
http://www.parquet.io.

[30] M. Zaharia, W. J. Bolosky, K. Curtis, A. Fox,
D. Patterson, S. Shenker, I. Stoica, R. M. Karp, and
T. Sittler. Faster and more accurate sequence
alignment with SNAP. arXiv preprint
arXiv:1111.5572, 2011.

[31] M. Zaharia, M. Chowdhury, M. J. Franklin,
S. Shenker, and I. Stoica. Spark: cluster computing
with working sets. In Proceedings of the 2nd USENIX
conference on Hot topics in cloud computing, page 10,
2010.

http://www.ebi.ac.uk/goldman-srv/simNGS/
http://www.parquet.io

	Introduction
	Related Work
	ADAM
	Samtools Mpileup
	GATK
	FreeBayes
	SNAP
	SMaSH

	Architecture
	Local Assembly
	Genotype Calling
	Joint Variant Calling
	Algorithm Selection

	Evaluation
	Accuracy
	Performance
	Multi-node Scaling
	Scaling Across Datasets
	Joint Variant Calling Performance

	Future Work
	Performance Bottlenecks
	Structural Variant Calling
	Improving Local Assembly
	Improved Region Filtering

	Conclusion
	Availability
	Genotype/Variant Refactoring
	References

