Scalability and Accuracy in a Large-Scale Network Emulator

Nov. 12, 2003 Byung-Gon Chun

1

3

Contents

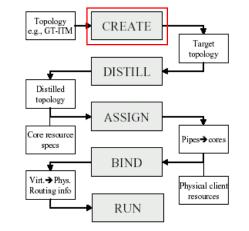
- Introduction
- Architecture
- Implementation and Evaluation
- Accuracy vs. Scalability Tradeoff
- Case Studies

Motivation

- Real-world experiments
 - It is hard to deploy and administer research software at distributed sites
 - Results are not reproducible
- Simulation
 - It misses important real system interactions
 - Tools do not support direct execution of software
- Emulation
 - Unmodified applications
 - Almost reproducible results
 - Important system interactions


Contribution

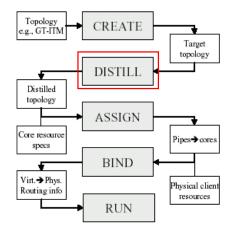
2


4

- *Large-scale* network emulator that can emulate *network dynamics* in a *topology*
- Techniques to trade increased *scalability* for reduced *accuracy*
- Evaluation of a range of systems

Architecture

ModelNet Phases

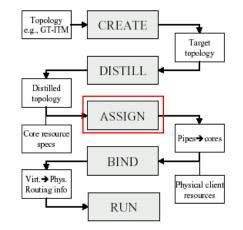

- Generate a network topology
- Source: Internet traces, BGP dumps, Synthetic topology

6

8

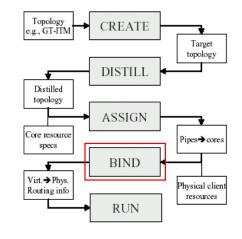
• Target: GML

ModelNet Phases



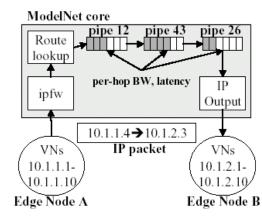
- Source: GML
- Target: Pipe topology

7


• Optionally, simplify the network

ModelNet Phases

- Map components of the distilled topology to core nodes
- Minimize the bandwidth demands
- Greedy algorithm


ModelNet Phases

- Assign VNs to ENs
- Multiplex VNs
- Bind an EN to a CR
- Generate configuration scripts
- Install pipes and routing tables to CRs
- Set up IP addr for VNs

9

Core Router

- Routing table
 - Memory vs Computation Tradeoff
- Descriptors referencing buffered packets
- Schedule descriptors on pipes using a heap
- Admission control of packets injected
- Multihop and multicore

10

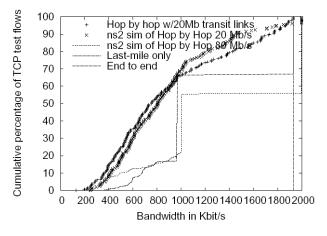
Discussion

- Resource isolation
 - UDP flows
- Routing protocol
 - Assumes shortest path routing and instantaneous repair of node and link failures
 - Routing protocol dynamics (update propagation)
 - Flexibility to inject routing algorithms
 - •Policy-based routing

11

Evaluation of Implementation

- Accuracy 1ms worst-case error per hop
- Capacity
 - 120000 packets/s with 1 hop
 - 90000 packets/s with 8 hops
- Core crossing
 - For 4 node configuration and 2 hop paths, 0% cross-core traffic – 462.5Kpkt/s
 100% cross-core traffic – 155.8Kpkt/s
 - Depends on target topology and application communication patterns

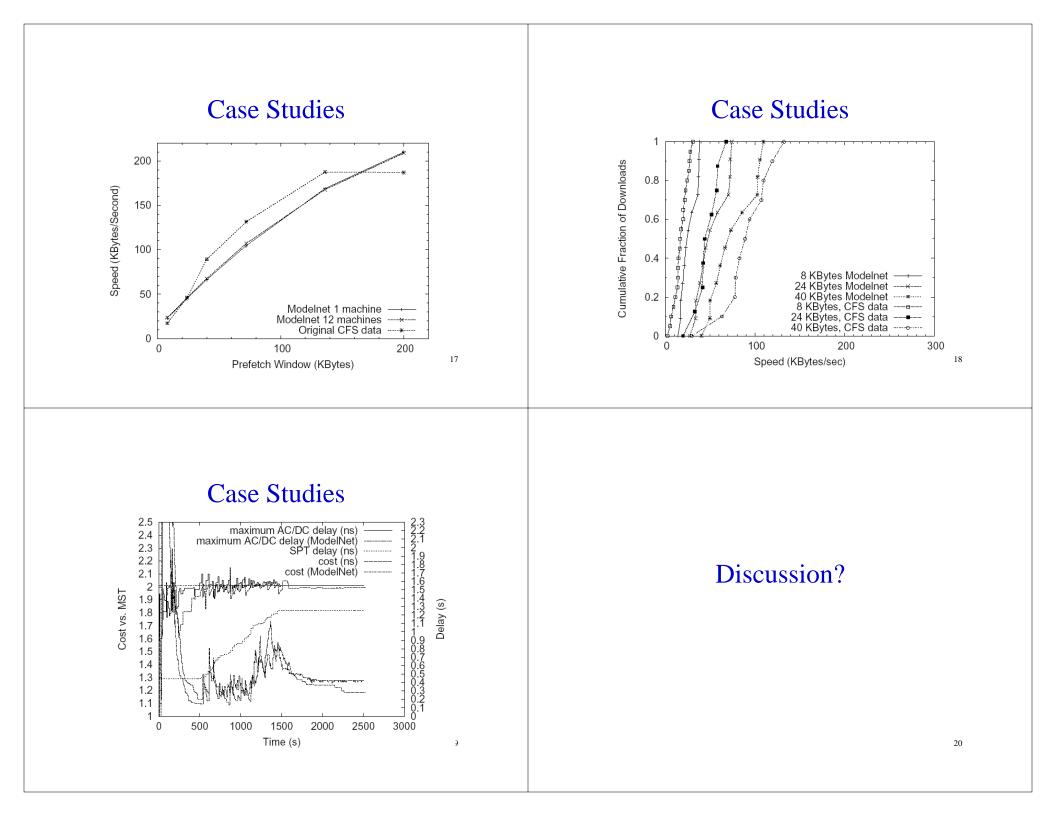

Accuracy vs. Scalability Tradeoffs

- Continuum balancing accuracy and cost
- Distillation
 - Reduce the diameter of the network
 - Hop-by-hop
 - End-to-end: bottleneck bandwidth, latency, loss rate
 - Walk-in and walk-out(?)
 - Other approaches? Flow-based [Narses]
 - Tradeoffs? --- No wall-clock time or network size?

13

15

Accuracy vs. Scalability Tradeoffs


Accuracy vs. Scalability Tradeoffs

- VN multiplexing
 - Howto? Mapping of multiple VNs to a EN
 - Context switch, scheduling and resource contention
 - Concurrency model
 - Number of processes $\uparrow \rightarrow Aggregate thp. \downarrow$
- Network characteristics
 - Howto? Synthetic background cross traffic in CRs
 - Do not capture all packet dynamics (TCP slow start, bursty traffic)
 - $-\,$ Network change recompute shortest paths
 - Fault injection like partitions, bandwidth change

Case Studies

- 10000 node gnutella network emulation
- CFS, Replicated web services, Adaptive overlays, Ad hoc networking(?)
- CFS: reproduce the published experimental results
- Replicated web services: support for realistic Internet topologies and emulation of contention of shared pipes
- Adaptive overlays: subject systems to dynamically changing network conditions

14

