
NinjaMail: the Design of a High-Performance
Clustered, Distributed E-mail System

J. Robert von Behren, Steven Czerwinski, Anthony D. Joseph, Eric A. Brewer, and John Kubiatowicz
Computer Science Division

University of California, Berkeley
fjrvb,czerwin,adj,brewer,kubig@cs.berkeley.edu

Abstract

In today’s Internet era, electronic mail is replacing tele-
phony and postal mail as the primary means of commu-
nication for hundreds of millions of individuals. Free e-
mail services, such as Microsoft’s Hotmail and Yahoo’s Ya-
hoo! Mail, each have tens of millions of subscribers. How-
ever, these and other current e-mail systems unfortunately
are not capable of handling the scale of Internet e-mail
use, while still providing reliable, high performance and
feature-rich services to users. This limitation is the re-
sult both of suboptimal use of cluster computing resources,
and of highly variable performance of wide-area connec-
tions over the Internet. This paper presents NinjaMail, a
novel geographically distributed, cluster-based e-mail sys-
tem built on top of UC Berkeley’s Ninja cluster architecture
and OceanStore wide-area data storage architecture. Nin-
jaMail is unique in that it uses a collection of clusters dis-
tributed through the wide-area to provide users with highly
available, scalable and feature-rich services via a wide va-
riety of access methods.

1 Introduction

E-mail functionality has progressed a long way from its
original roots of simple text-based access to sophisticated,
feature-rich, multimedia access1. At the same time, the
number of users with e-mail access has grown exponen-
tially. For example, Hotmail alone has over 61 million ac-
tive users [8].

E-mail systems can be evaluated in several dimensions:
feature set or functionality, scale (in terms of users and per-
user data storage limits), wide-area performance, data per-

1In this paper, we consider the issues associated with user access to
e-mail through an endpoint system, and not system to system delivery of
e-mail, as addressed by systems and protocols, such as Grapevine [1] and
SMTP [9].

sistence (i.e., explicit or implicit time limits for data stor-
age), consistency model across multiple clients, and fault-
tolerance (in terms of server reliability and reachability).
Existing systems make tradeoffs along these dimensions.
For example, the popular free web-based services support
large numbers of users, but they provide limited features
and data storage, poor wide-area performance, limited per-
sistence (an indirect side effect of limited storage capabili-
ties), and limited fault-tolerance (overall relatively high for
servers, but poor for reachability). To date, systems have
not been able to deliver the best aspects of all dimensions,
primarily because of limitations with current cluster com-
puting models, and poor tools for dealing with wide-area
scalability. Thus, administrators are forced to make diffi-
cult tradeoffs.

Our solution to these problems is NinjaMail, a novel
distributed cluster-based e-mail system built on top of UC
Berkeley’s Ninja cluster and OceanStore wide-area data
storage architectures. NinjaMail is designed to reliably pro-
vide millions of users with high-performance access to a
rich set of e-mail handling and storage features.

In the rest of this section, we present a taxonomy of
current e-mail systems, in Section 2 we categorize design
tradeoffs and discuss the Ninja and OceanStore architec-
tures, in Section 3 we present the design for NinjaMail, fol-
lowed by a discussion of its implementation and evaluation
in Section 4. Finally, in Sections 5 and 6, we present related
work and conclusions.

1.1 Current E-mail Systems

Today’s e-mail systems range from small office servers
with a few hundred users, to server farms that handle web
e-mail accounts for the likes of Yahoo! Mail or Hotmail 2.
E-mail server designs are the byproduct of a complicated
set of tradeoffs between user access methods, server perfor-
mance, fault tolerance, and configurability. To better under-

2http://mail.yahoo.com and http://www.hotmail.com



stand the design decisions that face e-mail system develop-
ers, it is useful to categorize e-mail servers according to the
ways in which they allow users to access mail. These ac-
cess methods and the restrictions they impose on a system
are described below.

1.1.1 Store and Forward Servers

Historically, most Internet mail servers have offered only
store and forward mail service3. The canonical example is
a Post Office Protocol (POP) [6] server, in which messages
are kept on the server only until the user first accesses and
downloads them4.

This simple design offers two advantages. It simpli-
fies performance prediction (as discussed in [10]), since
each message has a limited lifetime on the server and goes
through very little processing. Additionally, since users
download and store messages on their local machines, they
are able to access old messages even when the mail server
is unavailable due to a server failure or a network partition.

Unfortunately, storing messages on the client machine
has a number of undesirable side effects. When users ac-
cess the server from multiple client machines, they must
manage and administer inconsistent views of their separate
local mail repositories. Furthermore, the administrators of
those machines must be separately responsible for backing
up and restoring any important messages. When these ma-
chines are laptops or home computers, this choice really
means that users’ mail repositories are not backed up at all,
and would be completely lost if the client machine were to
fail or be stolen. Another disadvantage of store and for-
ward systems is that all of the interesting mail operations
(such as searching, automatic filing, etc.) are performed on
the client machine after messages have been downloaded,
placing a heavy computational burden on the machines of
users who have large mail repositories. Finally, store and
forward servers do not provide users any way to access new
messages if they are separated from the mail server by a
network partition.

1.1.2 Server-Only Mail Repositories

A clear alternative to store and forward message access is to
simply keep all of the messages on the server. This is the ap-
proach used by web based mail servers, such as Hotmail and
Yahoo! Mail, and by traditional enterprise mail severs, such
as Microsoft Exchange and Lotus cc:Mail. These servers
provide a central repository for a user’s mail, which can be
accessed from many different client machines.

3Note that store and forward e-mail service is an end user service and
thus is different from store and forward delivery of e-mail between servers
(e.g., using SMTP [9]).

4Although the POP protocol does allow for messages to be left on the
server, access to older messages on the server is very cumbersome.

This approach offers several advantages over store and
forward mail servers. Firstly, by accessing all mail through
the server, users always have a consistent view of their
mail repository from any client machine. Secondly, central
management of the message repository enables centralized
backup or replication of data by the e-mail service provider.
A centralized mail repository also enables the addition of
features (full text indexing and searching, for example) that
may be difficult for the client to perform itself. This capa-
bility is particularly useful for supporting small clients, such
as PDAs. Finally, server-only repositories have the opportu-
nity to provide other features — such as pager notifications
for important messages — that would be impossible from a
disconnected client.

The drawbacks of server-only mail repositories are two-
fold. Firstly, they are heavily dependent on the network
connection between the client and the server, and a fail-
ure of this connection will prevent users from accessing ei-
ther new or old mail. Similarly, poor client-server network
performance renders these systems virtually unusable. Sec-
ondly, most of the work is performed by the server, making
it difficult to design a server-only repository that can scale
to large numbers of users and still provide a wide variety
of features. For example, office e-mail servers such as Ex-
change provide rich feature sets at the expense of scalability.
At the opposite extreme, web-based e-mail systems such as
Yahoo! Mail optimize for scalability at the expense of fea-
ture richness.

1.1.3 Client-Side Caching Systems

The final option employed by present-day email systems is
to combine a client-side message cache with a permanent
message repository on the server, the approach taken by In-
ternet Message Access Protocol (IMAP) [2] servers5.

Client-side caching systems capture many of the advan-
tages of both store and forward systems and server-only
mail repositories. Like store and forward systems, client-
side caching systems support disconnected access to mail.
Like server-only repositories, they provide users with a con-
sistent message store view from different clients, can be
centrally managed and backed up, and can include sophisti-
cated server-side features, such as full text searching.

The primary disadvantage of these systems is the com-
plex client-server synchronization protocol required to sup-
port disconnected clients, which increases development
time and may introduce bugs. Additionally, the overhead
of synchronization operations may reduce runtime perfor-

5Hotmail is currently offering a beta service that supports client-side
caching. A quick calculation based on Hotmail’s per-user storage limits
and an estimate of how many messages users receive per day indicates
that Hotmail users can probably only store about 3 months worth of mail.
This storage limitation forces users to use Hotmail as a store and forward
service.



mance. Finally, client-side caching systems inherit the per-
formance tradeoff of server-only repositories: the more fea-
tures that are added to the server, the smaller the user popu-
lation that can be supported.

2 NinjaMail Overview

NinjaMail is designed to address two of the main short-
comings of present-day e-mail systems: the tension be-
tween scalability and features, and the inability to deal well
with problems in the wide-area network. The single-cluster
NinjaMail architecture provides a scalable and fault toler-
ant service, without sacrificing user features or limiting the
available mail access modes. This offers significant advan-
tages over current single-cluster mail systems, in the num-
ber of features that can be supported. Additionally, with
the wide-area features discussed in Section 3.2, NinjaMail
can provide both high availability and performance, even in
the face of poor wide-area network performance or network
partitions. The differences between NinjaMail and present
systems are highlighted in Figure 1.

Store &
Forward
(eg POP)

Client
Cache
(eg IMAP)

Server
Type

Scalable

Yes

No

No

Yes

Yes

(eventual
 consistency)

(eventual
 consistency)

(old mail
 only)

Yes

(old mail 
 only)

Yes

Server
Only Exchange

Hotmail

NinjaMail

Properties

Persistance

Yes

Yes

Yes

Yes

Yes

No

No

Yes

Rich
Feature Data

Yes

Yes

Yes

Yes

No

Consistent
View Across

Clients

No

No

Yes

Tolerate

Failures
WAN

2MB limit

No

Figure 1. E-mail system comparison

Scaling well within a single cluster presents a number
of interesting challenges, making it no accident that current
e-mail systems (and other systems) tend to trade feature-
richness for scalability. Providing service to a large user
pool places extreme demands on all hardware and software
components of a system, including CPUs, disk systems, net-
works, and data consistency modules. Current systems limit
the number of supported features to help reduce their over-
all complexity. The primary design challenge for NinjaMail
was to find a way to effectively manage this complexity.

Providing highly available services in the face of wide-
area failures also poses significant technical challenges. For
example, allowing modifications to a user’s message store
during network partitions introduces the need for data syn-
chronization, an especially complex requirement when mul-
tiple parties can simultaneously modify a user’s message

store.
NinjaMail addresses these problems by leveraging tech-

nology being developed at UC Berkeley, using Ninja’s clus-
ter computing architecture to create a local-area high perfor-
mance mail server, and OceanStore’s storage management
architecture to connect multiple Ninja clusters across the
wide-area. The tools provided by Ninja and OceanStore are
discussed below.

2.1 UC Berkeley’s Ninja Project

The Ninja project is developing a cluster-based platform
for highly scalable, available, and fault-tolerant Internet ser-
vices (http://ninja.cs.berkeley.edu). NinjaMail builds on top
of the Ninja architecture (see Figure 2), leveraging its scala-
bility, fault-tolerance, and cluster maintenance, and freeing
the NinjaMail designers to focus on building a feature-rich
e-mail service.

C

B

vSpace

A

B

vSpace

A

C

vSpace

taskcompl.

System
Area
Network

request

dataWorker Nodes
DDS Nodes

High

Disk

Speed

High

Disk

Speed

High

Disk

Speed

Figure 2. Ninja Architecture Overview

Persistent storage in Ninja is provided by Distributed
Data Structures (DDSs), which transparently stripe and
replicate data over subsets of the cluster’s nodes. The DDSs
solve the complications of cluster-wide data replication and
synchronization once, and provide a clean persistent stor-
age abstraction, both for metadata used by the Ninja infras-
tructure and for services built on top of Ninja. The initial
Ninja DDS, in the form of a distributed hash table, has un-
dergone extensive testing, performance analysis, and opti-
mization [4].

Ninja is implemented in Java, and each node (or in some
cases each CPU) runs a single JVM that houses the manage-
ment infrastructure unit (a vSpace), and all of the applica-
tions on that node. Distributed applications are constructed
of “worker” objects, similar to the approach used in [3].
Ninja automatically starts and stops workers on different
nodes, both to provide load balancing and fault tolerance.

Ninja uses an asynchronous task/completion messag-
ing layer for communication among workers and between



workers and the distributed data structures. Workers are
written as single-threaded finite state machines that respond
to messages (tasks and completions) passed to them by the
infrastructure. The lack of blocking calls within the work-
ers allows for a high degree of concurrency without a large
number of threads. This structure has been shown to be
very effective at improving throughput in systems such as
web servers that must serve a large number of requests per
second [5, 7].

2.2 OceanStore

The OceanStore project is developing a global-scale in-
formation storage and retrieval utility (http://oceanstore.cs.
berkeley.edu). Data placed in the OceanStore is replicated
across multiple servers. This provides data persistence in
the face of failures of individual OceanStore nodes — a
feature particularly important for valuable email data. To
protect the security of this data, it is stored in an encrypted
format, such that only the owner of the data (or a trusted
agent possessing the owner’s key) can decrypt it.

OceanStore provides applications with a set of standard
data access APIs. These APIs allow typical actions such as
read and write, as well as more specialized access modes
such as atomic file append operations. The OceanStore in-
frastructure handles wide-area replication and conflict reso-
lution to provide eventual consistency for data that is mod-
ified from widely distributed parts of the OceanStore. Ad-
ditionally, OceanStore can automatically migrate data close
to clients that are currently accessing it, to avoid the laten-
cies associated with accessing data across a wide-area link.
This data migration also improves overall data availability,
since “nearby” data is less likely to become unavailable due
to a network partition.

NinjaMail builds on OceanStore to provide an effective
mechanism for distributing a user’s email data across the
wide-area. This allows for improved access to the email
service from anywhere in the globe, even in the face of slow
or partitioned networks.

3 NinjaMail Design

For our initial explorations, we have designed a single-
cluster version of NinjaMail. This will allow us to evaluate
the performance of the Ninja cluster architecture on email
processing workloads, as well as to explore the consistency
requirements of email transactions. Additionally, we have
begun the design of a wide-area email service, based on
components of both Ninja and OceanStore. This wide-area
system addresses some of the difficulties of wide-area net-
work performance, and further improves scalability by dis-
tributing email computation around the globe, rather than
across a single cluster.

3.1 Single-Cluster Email Services

Within a cluster, NinjaMail is composed of several (po-
tentially replicated and distributed) modules that commu-
nicate via simple APIs (see Figure 3). At NinjaMail’s
core, the MailStore module handles storage operations,
such as saving and retrieving messages, updating message
metadata, and performing simple per-user message meta-
data searches. A message’s metadata represents its muta-
ble attributes (folder and flag information) and significant
headers. Access modules support specific communication
methods between users and NinjaMail, including an SMTP
module for pushing messages into the MailStore and POP,
IMAP and HTML modules for user message access. Nin-
jaMail’s extension modules enable the addition of features,
such as message filters or message body searching.

HTML
SMTPIMAP

POP

MailStore

Event System

Notification
Pager

Message
Filtering

Indexing
Text

Access
Modules

Extension
Modules

Figure 3. NinjaMail cluster design

3.1.1 The MailStore Module

The MailStore module controls all changes to a user’s mes-
sage repository, using the following operations:

� addMessage() - commits a message and associated metadata
to a Ninja DDS.

� getMessage() - retrieves a message from the DDS

� getMessageIDs() - retrieves a list of IDs for messages that
match a search specification. For example, message folders
are built on the fly, by searching for all messages with the
“folder” tag set to a particular value.

� updateMessage() - updates a message’s metadata.

� deleteMessage() - remove a message and its associated meta-
data from the DDS.

Note that no message modification controls are provided.
All additional information about a message should be added
to its metadata.

NinjaMail’s local-area scalability is based upon the
MailStore’s distribution model. To avoid conflicts during



data updates and to make maximum use of data caching,
the MailStore routes all traffic for a given user through the
same “master node”. This choice greatly simplifies the de-
sign by eliminating race conditions on message index up-
dates. Moreover, the mapping between users and master
nodes can be changed dynamically, avoiding potential hot
spots that might occur with a static assignment of users to
nodes, and providing users with fault tolerance if their cur-
rent master node fails. Messages are stored in a distributed
hash table, and are retrieved by IDs that are generated when
the messages are first added to the MailStore.

Metadata operations use an in-memory database. When
a user first interacts with the NinjaMail cluster, the meta-
data index for all of their messages is loaded into the mem-
ory of their current master node6. This approach enables
fast searching through the user’s message repository. Meta-
data updates are applied first to the in-memory database,
then flushed individually to the DDS. A periodic checkpoint
flushes the entire database to the DDS, reducing the num-
ber of updates that need to be re-applied to recover from a
crash.

3.1.2 Access Modules

Access modules enable clients to interact with the Mail-
Store using standard Internet protocols. The SMTP module
accepts incoming messages and adds them to the MailStore.
The POP and IMAP modules allow users to interact with
the MailStore through existing e-mail client software, such
as Eudora or PINE. Finally, the HTML interface provides
web access to a user’s mail, in a similar style to Hotmail or
Yahoo! Mail.

3.1.3 Extension Modules

To add new functionality, NinjaMail will use a flexible event
notification system currently being developed for the Ninja
environment. When the MailStore performs actions such as
adding a new message or modifying message metadata, it
posts an event to the event notification system. Extension
modules subscribe to event types of interest, and take ac-
tion accordingly when they receive events. For example, to
provide full-text searching, an indexing module would sub-
scribe to message addition events. When the module later
receives such an event, it retrieves the associated message
body and indexes it. Other components, such as the IMAP
and HTML modules, would interact with the indexing mod-
ule to provide search capability to end users.

6MailStore performance could be improved by loading only the most
likely to be accessed message indices (e.g., those in the user’s inbox), de-
creasing the memory requirements of the index in the common case. Addi-
tional indices would then be brought into memory as required by the user’s
actions.

3.2 Extending to the Wide-Area

Our design for a wide-area email system combines ele-
ments of a single-cluster NinjaMail service with the wide-
area data replication and storage facilities of OceanStore.
The central theme of our model is that all data interac-
tions between clients and servers, or between different mail
servers should take place via the OceanStore infrastructure,
rather than through specialized protocols such as SMTP,
POP, IMAP, etc. This is illustrated in Figure 4.

Proxy
Client-Side

OceanStore-Enabled
Client

OceanStore

Mail Access
Proxy

Trusted Agent

A

C

D

Inbox

Inbox

Inbox

Folders B

Clients
Traditional

Clients
Traditional

Figure 4. Wide-area Mail Architecture

Sending a message in this architecture simply entails
appending that message to a user’s mail inbox file in
the OceanStore. The inbox file is automatically trans-
fered across the wide-area through OceanStore’s replication
mechanisms, where it can be read locally by the user’s email
client software (A in Figure 4). Traditional POP, IMAP, and
SMTP interactions can be supported by either client-side or
infrastructure proxies to the OceanStore (B and C). Trusted
agents (D) in the infrastructure can perform message filter-
ing and refiling, pager notifications, and other actions on
behalf of users.

NinjaMail’s modularity lends itself quite naturally to this
architecture. Because all message storage operations occur
in the MailStore module, only this module needs to inter-
act with the OceanStore. NinjaMail’s access modules map
directly to the protocol proxies depicted in Figure 4. Sim-
ilarly, the extension modules and event model discussed in
Section 3.1.3 can operate as trusted infrastructure services,
to perform operations on messages as they are added to a
user’s inbox, or as they are filed into other folders.

4 Implementation and Evaluation

We have implemented an initial single node version
of NinjaMail and are currently working on a clustered
(based upon Ninja version 2) and distributed (based
upon OceanStore) implementation. Both Ninja v2 and



OceanStore are still under development, hence development
of NinjaMail components is proceeding in parallel with
these efforts. Thus, our performance experiments rely on
the single node design combined with preliminary perfor-
mance numbers for Ninja v2.

Ninja has been implemented entirely in Java, as has Nin-
jaMail. Our test cluster consists of 64 Linux server ma-
chines (2 500MHz Pentium III CPUs, fast SCSI disks, and
512 MB of memory), interconnected via a switched 100
Megabit Ethernet network.

NinjaMail’s maximum performance is constrained by
three limiting factors: CPU performance, the cluster’s inter-
node communication bandwidth, and disk bandwidth / la-
tency. By appropriately partitioning user data across clus-
ters, most e-mail workloads will be cacheable within a clus-
ter’s 32 GB of memory, eliminating the influence of disk
characteristics. Distributed hash table performance tests
show the impact of the other limiting factors:

� For get and put operations under 2500 bytes, the maximum
per-node throughput is 1000 requests/second for gets and
250 requests/second for puts. These numbers remain roughly
constant as the size of the cluster is varied, showing that the
limiting factor in this case is CPU time; not network band-
width.

� For reads and writes above 2500 bytes, the byte copying
overhead begins to adversely limit throughput. Above 8000
bytes, performance is limited by each node’s link.

The throughput of small request/response pairs between
Ninja workers is comparable to small read hash table per-
formance. Hence, inter-worker communication will likely
be CPU limited to 1000 requests/second per node.

4.1 Message Throughput

As a sanity check of our design, we calculated Nin-
jaMail’s performance as a store and forward mail server,
where there are essentially two stages in a message’s life-
cycle. Firstly, the system receives the message and com-
mits it to stable storage. Secondly, sometime later, the user
connects to the system and downloads the message. In Nin-
jaMail, this requires the following operations:

� Hash table write for the message as it is received.

� Inter-worker communication to send the message metadata
to the user’s current master worker.

� Hash table write to commit metadata to stable storage.

� Hash table read to fetch the message metadata.

� Hash table read to fetch the message.

� Hash table write to save modified metadata (i.e., to mark the
message as read).

As in [10], we assume an average message size of 4.7 KB.
Since the size is less than 8000 bytes, performance will be
CPU limited (due to the time required to set up and process

messages). Thus, using our observed performance num-
bers, we expect per-node performance of approximately 52
store/retrieve cycles/second. To put this into perspective, in
March 1999, Yahoo! Mail served 3.6 billion mail messages
to its 45 million users [11]. At 52 messages/second, Ninja-
Mail would be able to handle this load with a 27-node clus-
ter. More conservatively, a slightly larger cluster (e.g., 35
nodes) would likely provide good service for non-uniform
loads. Preliminary tests show that Ninja clusters scale well
up to at least 64 nodes; thus, a single cluster should be able
to handle store and forward services for nearly 100 million
users.

Since the full NinjaMail system will support a richer set
of user interactions than a simple store and forward sys-
tem, we expect final system throughput to be lower, based
largely on how users interact with the system. Conserva-
tively, assume that each message is viewed an average of
2 times. Thus, the system should be able to handle around
38 messages/second per node, requiring at least 36 nodes to
handle the Yahoo! Mail traffic mentioned above. Since ex-
tension modules such as SPAM filtering could cause many
messages to be viewed zero times, actual performance could
be better. However, the actual usage patterns remain to be
seen.

4.2 System Responsiveness

At maximum throughput levels, the hash table get/put
latencies are around 2 milliseconds (ms) and 4 ms respec-
tively. Since client to NinjaMail latencies will likely be
greater than 20 ms, multiple inter-cluster requests will not
significantly affect overall client latency. In particular, the
additional hash table lookup overhead for message reading
should be at most 15 ms.

4.3 Wide-Area Scalability

With a large enough set of widely distributed nodes, we
expect the OceanStore to easily handle the replication and
distribution of petabytes of data. This is enough storage to
allow every person on the planet hundreds of megabytes of
email data. Moreover, this data is automatically backed up
by the OceanStore’s wide-area data replication scheme.

By geographically distributing multiple Ninja clusters to
act both as access points for traditional email client soft-
ware, and as user agents to perform filtering, and other func-
tions, we can effectively create a widely distributed email
system. Since the email activities of individual users are
largely independent of one another, we expect these services
to scale well as more Ninja clusters are added to the system.
This should allow NinjaMail and OceanStore to provide a
truly global-scale email service.



slow link

Interm
ittent

In
te

rm
itt

en
t 

Figure 5. NinjaMail - 1000ft view

4.4 Tolerance of Wide-Area Network Problems

The conventional solution to mail access during intermit-
tent network partitions is support for disconnected opera-
tion, allowing users to access any locally cached messages,
but not providing access to new messages. In particular,
since all messages must go through a central server, even
new messages between users in the same network partition
as each otherwill be inaccessible until the network is back
up. Similarly, poor wide-area network performance (e.g.,
high roundtrip network latencies) may render the user’s
mail service useless.

Combining Ninja’s high-performance cluster-based
computing with OceanStore’s wide-area data replication
and migration creates a powerful synergy. During a network
partition, if a user can reach anyserver, they will be able to
use OceanStore’s distributed data location service to locate
and access new messages that are generated from within the
same partition. Additionally, in an intermittently connected
network, new messages are continuously being propagated
to the user’s current location. Thus, even if the network
is partitioned when the user next accesses their mail, they
will still have access to messages created prior to or during
the time the network was available. Finally, data migration
reduces wide-area network latencies by enabling users to al-
ways communicate with a mail server that is “close” to them
in the network topology. Because OceanStore is designed to
migrate data dynamically as the user’s access patterns and
locations change, NinjaMail will provide high performance
even for users who change location frequently.

5 Related Work

There is very little current research about e-mail sys-
tems. The one exception we are aware of is the Univer-
sity of Washington’s Porcupine, a scalable e-mail system,
based at present on store and forward functionality. Porcu-
pine uses a single cluster model and is built primarily of off

the shelf components, simplifying the initial development.
NinjaMail, however, is built on Ninja and OceanStore plat-
forms, decisions that we believe will provide better perfor-
mance and extensibility. We are not aware of any distributed
cluster-based e-mail systems.

6 Conclusion

In this paper, we have presented a design for a novel two-
tiered distributed e-mail infrastructure. At the system area
cluster level, we use concepts from the Ninja v2 system in
order to improve scalability and fault tolerance. In the wide-
area, we will use OceanStore in order to propagate data be-
tween these clusters for improved fault tolerance and to mi-
grate data closer to the client applications. We believe this
two tier model will enable us to create an email infrastruc-
ture that will better support planet sized email populations.
Additionally, we will be able to incorporate richer function-
ality through our event model, allowing a wide variety of
applications to tie into the email system for such features as
mail notification and filtering.

Currently, this system is still in the early stages of devel-
opment. Most of the base infrastructure for the cluster area
system has been created. Over the next several months we
will be incorporating the OceanStore system, as its devel-
opment proceeds.

References

[1] A. Birrell, R. Levin, R. Needham, and M. Schroeder.
Grapevine: An exercise in distributed computing. Commu-
nications of the ACM, 25:260–274, 1982.

[2] M. Crispin. Internet Message Access Protocol — Version
4rev1. Internet RFC 2060, Dec. 1996.

[3] A. Fox, S. Gribble, Y. Chawathe, and E. Brewer. Cluster-
based scalable network services. In Proc. of the 16th Sym-
posium on Operating Systems Principles (SOSP), St-Malo,
France, Oct. 1997.

[4] S. Gribble, April 2000. http://www/�gribble/distrib hash/
index.html.

[5] M. F. Kaashoek, D. Engler, G. Ganger, and D. Wallach.
Server operating systems. In SIGOPS European Workshop,
pages 141–148, September 1996.

[6] J. Myers and M. Rose. Post Office Protocol — Version 3.
Internet RFC 1939, May 1996.

[7] V. Pai, P. Druschel, and W. Zwaenepoel. Flash: An effi-
cient and portable web server. In Proceedings of the Annual
USENIX Technical Conference, June 1999.

[8] PC World Communications, April 2000. http://www.
pcworld.com/pcwtoday/article/0,1510,16045+1+0,00.html.

[9] J. Postel. Simple Mail Transfer Protocol. Internet RFC 821,
Aug. 1982.

[10] Y. Saito, B. Bershad, and H. Levy. Manageability, availabil-
ity and performance in porcupine: A highly scalable inter-
net mail service. In Proc. of the 17th Symposium on Operat-



ing Systems Principles (SOSP), Kiawah Island Resort, South
Carolina, Dec. 1999.

[11] Yahoo! Inc., April 2000. http://docs.yahoo.com/docs/pr/
1q00pr.html.


