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ABSTRACT
We investigate proactive dynamic load balancing on mul-
ticore systems, in which threads are continually migrated
to reduce the impact of processor/thread mismatches to en-
hance the flexibility of the SPMD-style programming model,
and enable SPMD applications to run efficiently in mul-
tiprogrammed environments. We present Juggle, a prac-
tical decentralized, user-space implementation of a proac-
tive load balancer that emphasizes portability and usability.
Juggle shows performance improvements of up to 80% over
static balancing for UPC, OpenMP, and pthreads bench-
marks. We analyze the impact of Juggle on parallel applica-
tions and derive lower bounds and approximations for thread
completion times. We show that results from Juggle closely
match theoretical predictions across a variety of architec-
tures, including NUMA and hyper-threaded systems. We
also show that Juggle is effective in multiprogrammed en-
vironments with unpredictable interference from unrelated
external applications.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Program-
ming – Parallel Programming; D.4.1 [Operating Systems]:
Process Management – Scheduling

General Terms
Experimentation, Theory, Performance, Measurements

Keywords
Proactive Load Balancing, Parallel Programming, Operat-
ing System, Muticore, Load balancing.

1. INTRODUCTION
The primary goal of this research is to improve the flex-

ibility of thread-level scheduling for parallel applications.
Our focus is on single-program, multiple-data (SPMD) par-
allelism, one of the most widespread approaches in HPC.
Traditionally in HPC systems, SPMD programs are sched-

Copyright 2011 Association for Computing Machinery. ACM acknowl-
edges that this contribution was authored or co-authored by an employee,
contractor or affiliate of the U.S. Government. As such, the Government re-
tains a nonexclusive, royalty-free right to publish or reproduce this article,
or to allow others to do so, for Government purposes only.
HPDC’11, June 8–11, 2011, San Jose, California, USA.
Copyright 2011 ACM 978-1-4503-0552-5/11/06 ...$10.00.

uled with one thread per dedicated processor.1 With the rise
of multicore systems, we have an opportunity to experiment
with novel scheduling approaches that use thread migration
within a shared-memory node to enable both oversubscrip-
tion and multiprogramming. Not only can this result in
more flexible usage of HPC systems, but it could also make
SPMD-style parallelism more suitable for the consumer mar-
ket, where we expect environments to be multiprogrammed
and unpredictable.

In SPMD programs each thread executes the same code
on a different partition of a data set; this usually means that
applications have a fixed number of threads. If the partition-
ing of the data is not uniform, intrinsic load imbalances will
result. Most solutions to this problem involve extensions
to the programming model, e.g., work stealing [1]. Often,
the only (or easiest) way to achieve intrinsic load balance
is to constrain the thread counts (e.g., to powers of two).
However, if these thread counts do not match the available
processor counts, or if running in multiprogrammed environ-
ments, extrinsic load imbalances can result.

Our goal is to address the problem of extrinsic imbalance
through runtime tools that improve parallel-programming
productivity without requiring changes to the programming
model. We wish to reduce the effect of constraints so that
SPMD applications can be more easily run in non-dedicated
(multiprogrammed) environments, and in the presence of
varying and unpredictable resource availability, such as chang-
ing processor counts. In general, we are interested in dy-
namic load-balancing techniques that allow us to run n threads
on m processors, where n ≥ m and m is not a factor of n. In
particular, we are concerned with the problem of off-by-one
imbalances, where the number of threads on each processor
is within one of each other, since we assume that we can al-
ways achieve an off-by-one imbalance for SPMD applications
with a simple cyclic distribution of threads to processors.

Our investigations focus on the proactive approach to load
balancing. In this approach application threads are contin-
ually, periodically migrated with the goal of minimizing the
completion time of the thread set by getting all the threads
to progress (more or less) at the same rate; i.e., we want each
thread to ideally receive m/n processor time over the course
of a computation phase.2 If the load balancing period, λ, is
small compared to the computation-phase length of the par-
allel application, then over time the progress rate of every

1We refer to a single processing element, whether it be a
core or hyper-thread, as a processor.
2Most SPMD applications have a pattern of computation
phases and communication, with barrier synchronization.
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Figure 1: Load balancing three threads (T0, T1, T2) on

two processors (P0, P1), using a load-balancing period

of λ = 1s. The gray line indicates a progress rate of

m/n = 2/3. In the top inset, migrations are indicated by

the arrows between processors; the number is the total

progress of the thread after that many balancing periods.

thread will tend to m/n, as illustrated in Figure 1. We con-
trast proactive balancing to reactive load balancing, where
threads are rebalanced only when the load on a processor
changes (i.e., some thread enters the barrier).
The concept of proactive load balancing is not new [17,

12, 7]. Our contributions are two-fold. Firstly, we present a
practical decentralized, user-space implementation of a novel
proactive load-balancing algorithm, called Juggle. In exper-
iments, Juggle shows performance improvements over static
balancing of up to 80% for UPC, OpenMP and pthreads
benchmarks, on a variety of architectures, including NUMA
and hyper-threaded systems. We also show that Juggle is
effective in unpredictable, multiprogrammed environments.
Secondly, we analyze Juggle and derive theoretical bounds
and approximations that closely predict its performance.
Our analysis is the first step towards a more comprehensive
theoretical understanding of the fundamentals of proactive
load balancing.

2. THE JUGGLE ALGORITHM
Juggle executes periodically, every λmilliseconds (the load-

balancing period) and attempts to balance an application
that has n threads running on m processors, where n ≥ m.
The objective is to assign threads to processors such that
the threads that have made the least progress now run on
the processors with the lightest loads (the “fastest” proces-
sors). In practice, we classify threads as either ahead (above-
average progress) or behind (below-average progress), and
we classify processors as either fast or slow, according to
whether they are less or more heavily loaded than average,
respectively. Juggle attempts to assign ahead threads to
slow processors, and behind threads to fast processors.
For ease of use and portability, Juggle runs on Linux,

in user-space without needing root privileges or any ker-
nel modifications. Furthermore, it can balance applications
from multiple SPMD runtimes (e.g., UPC, OpenMP, and
pthreads) without requiring any modifications to the parallel
application or runtime. The parallel application is launched
using Juggle as a wrapper, which enables Juggle to iden-
tify the application threads as soon as possible and begin
balancing with minimum delay. Juggle identifies the appli-
cation threads by polling the proc file system; to keep this
polling period to a minimum, the number of threads to be
expected is a configuration parameter to Juggle. In addi-
tion, Juggle can be configured to regard a particular thread

1 Determine progress of threads (all balancers)
2 Determine fast and slow processors (all balancers)
3 [Barrier]
4 Classify threads as ahead and behind (single balancer)
5 Redistribute threads (single balancer)
6 [Barrier]
7 Migrate threads (all balancers)
8 [Barrier]

Figure 2: Pseudo code for Juggle.

as idle to accommodate applications that use one thread to
launch the others (e.g., OpenMP applications).

Once Juggle has identified the expected number of threads
it distributes them uniformly across all available processors,
ensuring that the imbalance is never more than one. Threads
are distributed using the sched_setaffinity system call,
which enables a user-space application to force a thread to
run on a particular processor. In Linux, threads that are
moved from one processor to another do not lose out on
scheduling time. Moreover, a thread that is pinned to a sin-
gle processor will not be subsequently moved by the Linux
load balancer, ensuring that the only balancing of the par-
allel application’s threads is done by Juggle.

The implementation of Juggle is distributed across m bal-
ancer threads, with one balancer running on each processor.
Every balancing period, all the balancer threads are woken,
and execute the load-balancing code, as shown in Figure 2.
All balancer threads execute lines 1, 2 and 7 in parallel, and
a single balancer executes lines 4 and 5 while the other bal-
ancers sleep on a barrier. This serialization simplifies the
implementation and ensures that all balancer threads oper-
ate on the same set of information. It is also worth noting
that while the single balancer thread is involved in computa-
tion, the other processors are doing useful work running ap-
plication threads. We discuss the scalablity of our approach
in Section 2.5. The steps shown in Figure 2 are discussed in
more detail below.

2.1 Gathering information
Because we do not want to modify the kernel, applica-

tion, or runtime, Juggle infers thread progress and processor
speeds indirectly using elapsed time. Each balancer thread
independently gathers information about the threads on its
own processor, using the taskstats netlink interface. For
each thread τi that is running on a processor ρj (or more for-
mally, ∀τi ∈ Tρj ), the balancer for ρj determines the elapsed
user time, tuser(τi), system time, tsys(τi), and real time,
treal(τi), over the most recent (the k-th) load-balancing pe-
riod. From these, the balancer estimates the change in
progress of τi as ∆Pτi(kλ) = tuser(τi) + tsys(τi), i.e., we
assume that progress is directly proportional to computa-
tion time. The total progress made by τi after kλ time is
then Pτi(kλ) = Pτi((k − 1)λ) + ∆Pτi(kλ).

Using elapsed user and system times enables Juggle to
easily estimate the impact of external processes, regardless
of their priorities and durations. An alternative is to deter-
mine progress from the length of the run queue (e.g., two
threads on a processor would each make λ/2 progress dur-
ing a balancing period). In this case, Juggle would have to
gather information on all other running processes, recreate



kernel scheduling decisions, and model the effect of the dura-
tion of processes. This alternative is complicated and error
prone; moreover, changes from one version of the kernel to
the next would likely result in inaccurate modeling of kernel
decisions. Juggle avoids these issues by using elapsed time.
Once the progress of every thread on the processor ρj has

been updated, the balancer uses this information to deter-
mine the speed of ρj as ∆P ρj = (1/|Tρj |)

∑
τi∈Tρj

∆Pτi(kλ).

That is, the speed of the processor is the average of the
change in the progress of all the threads on ρj during the
most recent load balancing period. The speed is later used
to determine whether ρj will run threads fast or slow.
For applications that block when synchronizing (instead

of yielding or spinning), processor idle time is discounted,
otherwise the inferred speed of the processor will be wrong.
For example, if a processor, ρ1, has only one thread τ1, and
τ1 finishes at λ/4 then the speed (λ/4) of ρ1 will appear to
be less than that of a more heavily loaded processor, ρ2, that
has two threads finishing at λ and effective speed of λ/2. To
correct for this, the speed given by ∆P ρj is multiplied by a
factor of treal(ρj)/(treal(ρj)− tidle(ρj))

2.2 Classifying threads as ahead and behind
A single balancer classifies all application threads as either

ahead or behind, an operation which is O(n): one iteration
through the thread list is required to determine the average
total progress of all threads, denoted as P T (kλ), in the k-th
balancing period, and another iteration to label the threads
as ahead (above average) and behind (below average). Al-
though external processes can cause threads to progress in
varying degrees within a load-balancing period, simply split-
ting threads into above and below average progress works
well in practice, provided that we add a small error margin
ξ. Hence, a thread τi is classified as behind after the k-th
balancing period only if Pτi(kλ) < P T (kλ) + ξ. Otherwise,
it is classified as ahead.

2.3 Redistributing threads
The goal of redistribution is to place as many behind

threads as possible on processors that can run those threads
at fast speed; we say that those processors ∈ Pfast and have
fast slots. If a processor ρj /∈ Pfast, then ρj ∈ Pslow and
has slow slots. In practice, the presence of fast slots in pro-
cessors can change depending on the external processes that
happen to be running. For this reason, Juggle identifies the
fast slots by first computing the average change in progress
of all the processors as ∆PP = (1/m)

∑m
j=1 ∆P ρj , and then

counting one fast slot per thread on each processor with
∆P ρj > ∆PP . This requires two passes across all proces-
sors (i.e., O(m)). The behind threads are then redistributed
cyclically until either there are no more behind threads or no
more fast slots, as illustrated by the pseudo code in Figure 3.
Although the cyclical redistribution of behind threads can

help to spread them across the fast slots, the order of the
choice of the next processor is important. The selection of
the next slow processor (line 2 in Figure 3) starts at the
processor which has threads with the least average progress,
whereas the selection of the next fast processor (line 5) starts
at the processor which has threads with the most average
progress. This helps distribute the behind threads more uni-
formly across the fast slots. For example, consider two slow
processors, ρ1 with one ahead and one behind thread, and ρ2
with two behind threads, and assume there is only one avail-

1 While there are fast slots and behind threads
2 Get next slow processor ρs ∈ Pslow

3 Get next behind thread τbh on ρs
4 If no behind threads on ρs go to Line 2
5 Get next fast processor ρf ∈ Pfast

6 Get next fast slot (occupied by
the ahead thread τah) on ρf

7 If no more fast slots on ρf go to Line 2
8 Set τbh to be migrated to ρf
9 Set τah to be migrated to ρs

Figure 3: Pseudo code for redistribution of threads,

executed by a single balancer.

able fast slot. Here it is better to move one of the threads
from ρ2 (not ρ1) to the fast slot so that both ρ1 and ρ2 may
start the next load-balancing period with one ahead and
one behind thread. This will only make a difference if the
ahead threads reach the barrier and block partway through
the next balancing period, because then both the behind
threads will run at full speed.

Lines 8 and 9 in Figure 3 effectively swap the ahead and
behind threads, requiring two migrations per fast slot (or
per behind thread if there are fewer behind threads than
fast slots). Although this may result in more than the mini-
mum number of migrations, Juggle uses swaps because that
guarantees that the imbalance can never exceed one (i.e., a
processor will have either dn/me or bn/mc threads). Con-
sequently, errors in measurement cannot lead to imbalances
greater than one, or any imbalance in the case of a perfect
balance (e.g., 16 threads on 8 processors).

An off-by-one thread distribution may not be the best
on multiprogrammed systems, but the best could be very
hard to determine. For instance, if a high-priority external
process is running on a processor, it may make sense to
run fewer than bn/mc threads on that processor, but what
if the external process stops running partway through the
balancing period? Swapping is a simple approach that works
well in practice, even in multiprogrammed environments (see
Section 4.4).

2.4 Modifications for NUMA
Using continual migrations to attain dynamic balance is

reasonable only if the impact of migrations on locality is
transient, as is the case with caches. However, on NUMA
systems, accessing memory on a different NUMA domain is
more expensive than accessing memory on the local domain,
e.g., experiments with stream benchmarks on Intel Nehalem
processors show that non-local memory bandwidth is about
2/3 of local access and latency is about 50% higher.

To address this issue, Juggle can be run with inter-domain
migrations disabled. In this configuration each NUMA do-
main is balanced independently, i.e., all statistics, such as
average thread progress, are computed per NUMA domain
and a different balancer thread, one per domain, carries out
classification and redistribution of the application threads
within that domain. Furthermore, the initial distribution of
application threads is carried out so that there is never more
than one thread difference between domains. Our approach
to load balancing on NUMA systems is similar to the way
Linux partitions load balancing into domains defined by the



memory hierarchy. Juggle, however, does not implement do-
mains based on cache levels; these often follow the NUMA
domains anyway.

2.5 Scalability considerations
The complexity of the algorithm underlying Juggle is dom-

inated by thread classification, and is O(n). With one bal-
ancer per NUMA domain, the complexity is O(zn/m), where
z is the size of a NUMA domain (defined as the number
of processors in the domain). Proactive load balancing is
only useful when n/m is relatively small (less than 10 – see
Section 4.1), so the scalability is limited by the size of the
NUMA domains. In general, we expect that as systems grow
to many processors, the number of NUMA domains will also
increase, limiting the size of individual domains. If NUMA
domains are large in future architectures, or if it is better to
balance applications across all processors, then the complex-
ity could be reduced to O(n/m) by using all m balancers in
a fully decentralized algorithm to classify the threads.
Although it would be possible to implement Juggle in a

fully decentralized manner, as it stands it requires global
synchronization (i.e., barriers), which is potentially a scala-
bility bottleneck. Once again, synchronization is limited to
each individual NUMA domain, so synchronization should
not be an issue if the domains remain small. Even if syn-
chronization is required across many processors, we expect
the latency of the barrier operations to be on the order of mi-
croseconds; e.g., Nishtala et al. [13] implemented a barrier
that takes 2µs to complete on a 32-core AMD Barcelona.
The only other synchronization operation, locking, should
not have a significant impact on scalability, since the only
lock currently used is to protect per-processor data struc-
tures when threads are migrated.

3. ANALYSIS OF JUGGLE
We analyze an idealized version of the Juggle algorithm,

making a number of simplifying assumptions that in practice
do not significantly affect the predictive power of the theory.
First, we assume that the required information about the
execution statistics and the state of the application threads
(e.g., if a thread is blocked) is available and precise. Second,
we assume that any overheads are negligible, i.e., we ignore
the cost of collecting and processing thread information, the
overhead of the algorithm execution, and the cost of mi-
grating a thread from one processor to another. Finally, we
assume that the OS scheduling on a single processor is per-
fectly fair, i.e., if h identical threads run on a processor for
∆t time, then each of those threads will make progress equal
to ∆t/h, even if ∆t is very small (infinitesimal).
Consider a parallel application with n identical threads,

T = {τ1, . . . , τn}, running on m homogeneous processors,
P = {ρ1, . . . , ρm}, where n > m and n mod m 6= 0 (i.e.,
there is an off-by-one imbalance). Initially, all the threads
are distributed uniformly among the processors, which can
consequently be divided into a set of slow processors, Pslow,
of size |Pslow| = n mod m, and a set of fast processors,
Pfast, of size |Pfast| = m − (n mod m). Each processor in
Pslow will run dn/me threads and each processor in Pfast,
will run bn/mc threads. The set of slow processors provides
nslow = (n mod m) × dn/me slow slots and the set of fast
processors provides nfast = n− nslow fast slots.
We assume that the threads in T are all initiated simulta-

neously at time t0, which marks the beginning of a compu-

τ
4

τ
3

τ
2

τ
1

τ
5
τ
6
τ
7
τ
8
τ
9

ρ
1

ρ
2

ρ
3

ρ
3

P
fast

P
slow

n*
slow

n*
fast

arr[9]=

Figure 4: Example of cyclic distribution of n∗ = 9 non-

blocked threads among m = 4 processors. The first

n∗
fast = 6 threads in the array are distributed cycli-

cally among |Pfast| = 3 processors and the last n∗
slow = 3

threads end up assigned to the single processor in Pslow.

tation phase Φ. Once a thread τi completes its computation
phase, it blocks on a barrier until the rest of the threads
complete. We assume that it takes e units of time for a
thread to complete its computation phase when running on
a dedicated processor, and that when it blocks it consumes
no processor cycles. Hence we can ignore all blocked threads.
We say that the thread set T completes (phase Φ finishes)
when the last thread in T completes and hits the barrier
at tf . Then, CTT = tf − t0 is the completion time of the
thread set T .

The load-balancing algorithm executes periodically every
λ time units (the load-balancing period). To simplfy the
analysis, we assume that the algorithm sorts the n∗ ≤ n
non-blocked threads in T in increasing order of progress, and
then assigns the first n∗

fast threads to processors in Pfast in a
cyclic manner, and the remaining n∗

slow threads to processors
in Pslow, also in a cyclic manner (see Figure 4).

Our analysis focuses on deriving lower bounds and ap-
proximations for the completion time CTT of a thread set
T , when balanced by an ideal proactive load balancer. We
split our analysis into two parts: the execution of a single
computation phase Φ (Section 3.1), and the execution of a
sequence of Φ (Section 3.2). Furthermore, for the purposes
of comparison, we also provide analysis of CTT for ideal re-
active load balancing. Our theory helps users determine if
proactive load balancing is likely to be beneficial for their ap-
plications compared to static or reactive load balancing. In
our experience, SPMD parallel programs often exhibit com-
pletion times that are close to the theoretical predictions
(see Section 4.

In the worst case, proactive load balancing is theoreti-
cally equivalent to static load balancing, because we assume
neglible overheads. The completion time for static load bal-
ancing can be derived by noting that threads are distributed
evenly among the processors before starting and never re-
balanced. Consequently, each thread runs on its initially as-
signed processor until completion and the completion time
of the thread set T is determined by the progress of the
slowest threads; thus

CT static
T = e× dn/me (1)

3.1 Single computation phase
We consider only the case where λ < e×

⌈
n
m

⌉
. Above this

limit load balancing will never execute before the thread
set completes because even the slowest threads will take no
more than e×

⌈
n
m

⌉
time to complete.

To determine a lower bound for CTT , the completion



time of the thread set T , we compare the rate of progress
of threads in T to an imaginary thread τimag that makes
progress at a rate equal to 1/bn/mc and completes in ebn/mc
time. At the next load balancing point after t = t0+ebn/mc
(i.e., when τimag would have finished), one or more threads
in T will lag τimag in progress. In Theorem 1 we show
that at any load-balancing point that progress lag ∆Pimag ≥
λ/(dn/mebn/mc). If we assume that every thread that lags
the imaginary thread τimag completes its execution on a ded-
icated processor, then a lower bound for the completion time
of the thread set T is:

CTT ≥ ebn/mc+ λ/(dn/mebn/mc) (2)

In order to prove Theorem 1, we first focus on the progress
lag between each pair of threads at any load-balancing point.
Without loss of generality, in the following lemma and

theorem we assume that the threads in T are all initiated
simultaneously at time t = 0 (i.e., Φ starts at t = 0). In
addition, we assume that no thread in T completes before
the load-balancing points under consideration (i.e., both n
and m remain constant).

Lemma 1. Let ∆P (kλ) be the difference in progress be-
tween any pair of threads in T . At any load-balancing point
at time t = kλ where k ∈ N ∪ {0}, ∆P (kλ) is either 0 or
λ/(dn/mebn/mc).

Proof. The proof is by induction. Initially, at t = 0
(when k = 0) each thread τi ∈ T has zero progress; thus,
∆P (0) = 0.
Next we consider the difference in progress among the

threads in T at the end of the first load-balancing period.
At t = λ, the nslow threads in slow slots will have made
λ/dn/me progress and the nfast threads in fast slots will
have made λ/bn/mc progress, which means that the progress
lag at that point in time is:

∆P (λ) =
λ

bn/mc − λ

dn/me =
λ

dn/mebn/mc (3)

This result holds for any nslow > 0 and nfast > 0, provided
n > m (which is one of our fundamental assumptions).
Equation (3) suggests that threads can be grouped accord-

ing to their progress into i) a set Tah of ahead threads of size
nah and ii) a set Tbh of behind threads of size nbh. Although
nslow and nfast remain fixed because n and m are assumed
to be constant, nah and nbh can vary at each load-balancing
point.
We now assume that at the kth balancing point ∆P (kλ) =

λ/ (dn/mebn/mc) and show that at the next balancing point
∆P ((k + 1)λ) is either λ/ (dn/mebn/mc) or 0. We consider
all the possible scenarios in terms of the relations among
nfast, nslow, nah, and nbh. These scenarios can be grouped
into three general cases that share identical analyzes.
Case A: nbh < nfast. All the behind threads can run on

fast slots, and so form a group Gbh→fast, which progresses
at 1/bn/mc. The left-over fast slots are filled by a frac-
tion of the ahead threads, Gah→fast, which also progress at
1/bn/mc. The remaining ahead threads must run on slow
slots, forming a group Gah→slow that progresses at 1/dn/me.

The progress that a thread in each of these groups achieves
by the next balancing point is then:

PGbh→fast((k + 1)λ) = PTbh(kλ) + λ/bn/mc (4)

PGah→slow ((k + 1)λ) = PTah(kλ) + λ/dn/me (5)

PGah→fast((k + 1)λ) = PTah(kλ) + λ/bn/mc (6)

By substituting PTah(kλ) for PTbh(kλ) + λ/(dn/mebn/mc)
in Equation (5), we can show that PGbh→fast((k + 1)λ) =
PGah→slow ((k + 1)λ). At t = (k + 1)λ, Tah = Gah→fast

and Tbh = Gbh→fast ∪Gah→slow. Moreover, by subtracting
Equation (6) from Equation (5) we obtain:

∆P ((k + 1)λ) = λ/(dn/mebn/mc) (7)

Case B: nbh > nfast. All the ahead threads run on
slow slots, forming a group Gah→slow, which progresses at
1/dn/me. A fraction of the behind threads, Gbh→slow, will
also run on slow slots and progress at 1/dn/me. The re-
mainder of the behind threads, Gbh→fast, run on fast slots
and progress at 1/bn/mc.

The progress that a thread in each of these groups achieves
by the next balancing point is then:

PGah→slow ((k + 1)λ) = PTah(kλ) + λ/dn/me (8)

PGbh→fast((k + 1)λ) = PTbh(kλ) + λ/bn/mc (9)

PGbh→slow ((k + 1)λ) = PTbh(kλ) + λ/dn/me (10)

By substituting PTah(kλ) for PTbh(kλ) + λ/(dn/mebn/mc)
in Equation (8), we can show that PGah→slow ((k + 1)λ) =
PGbh→fast((k + 1)λ). At t = (k + 1)λ, Tah = Gah→slow ∪
Gbh→fast and Tbh = Gbh→slow. Moreover, by subtracting
Equation (10) from Equation (9) we obtain:

∆P ((k + 1)λ) = λ/(dn/mebn/mc) (11)

Case C: nbh = nfast. All the ahead threads run on
slow slots, forming a group, Gah→slow, that progresses at
1/dn/me, and all the behind threads run on fast slots, form-
ing a group, Gbh→fast, that progresses at 1/bn/mc.

The progress that a thread in each of these groups achieves
by the next balancing point is then:

PGah→slow ((k + 1)λ) = PTah(kλ) + λ/dn/me (12)

PGbh→fast((k + 1)λ) = PTbh(kλ) + λ/bn/mc (13)

By substituting PTah(kλ) for PTbh(kλ) + λ/(dn/mebn/mc)
in Equation (12), we can show that PGah→slow ((k + 1)λ) =
PGbh→fast((k+1)λ). Consequently, ∆P ((k+1)λ) = 0. This
means that at t = (k+1)λ the threads will be in a situation
similar to that we first analyzed when t = 0.

Theorem 1. Let ∆Pimag(t) be the progress lag at time
t between some thread in T and an imaginary thread τimag

that always progresses at a rate of 1/bn/mc. At any load-
balancing point at time t = kλ where k ∈ N+

∆Pimag(kλ) ≥ ∆P = λ/(dn/mebn/mc)

Proof. At the end of the first load-balancing period,
when t = λ, the ahead threads will have made the same
progress as τimag, and hence the behind threads will lag
τimag by ∆P . As proved in Lemma 1, if nbh < nfast or
nbh > nfast at this or any subsequent balancing point at
t = kλ with k = 1, 2, 3, . . . , then by the next balancing
point at t = (k + 1)λ the difference in progress between the
ahead threads (∈ Tah) and the behind threads (∈ Tbh) is



∆P . Hence, at t = (k + 1)λ the threads in Tbh will lag
τimag by at least ∆P . Note that the ahead threads may
have made progress at a rate of 1/dn/me (i.e., slow speed)
in some previous load-balancing period.
Now consider the case in which nbh = nfast at a load-

balancing point at t = kλ with k ∈ N+. Here the threads in
Tah progress at a rate of 1/dn/me (i.e., slow speed) during
the next λ time units, while the threads in Tbh progress at
a rate of 1/bn/mc (i.e., fast speed). In Lemma 1 we proved
that in this case all the threads in T have made the same
progress by the next load-balancing point at t = (k+1)λ. If
we assume that by t = kλ the threads in Tah and τimag have
the same progress, it is easy to see that at t = (k + 1)λ the
threads in Tah will fall behind τimag by at least ∆P . Again
note that the difference in progress between τimag and the
threads in Tah can be greater because the ahead threads
may have run at slow speed in some previous load-balancing
period.

In practice, Equation (2) is a good predictor of perfor-
mance when e ≈ λ. However, when λ � e, Equation (2)
degenerates to a bound where every thread makes progress
at a rate of 1/bn/mc (i.e., like τimag). To refine this bound,
we consider what happens when λ is infinitisemal, i.e., load
balancing is continuous and perfect. Given our assumption
that on a single processor each thread gets exactly the same
share of processor time, this scenario is equivalent to that
in which all threads execute on a single processor ρ∗, which
is m times faster than each processor in P. Hence each
thread makes progress on ρ∗ at a rate of (n/m)−1 and the
completion time of the thread set T is given by

CTλ 0
T = e× n/m (14)

This expression also yields a lower bound for CTT . When
λ is not infinitesimal, some threads in T make progress be-
tween balancing points at a rate equal to dn/me−1, where
dn/me−1 < (n/m)−1, given our assumptions that n > m
and n mod m 6= 0. Therefore, some threads fall behind when
compared with the threads running on ρ∗ and delay the com-
pletion of the entire thread set. Because of the progress lag,
a thread set T that is periodically balanced among proces-
sors in P could have a completion time significantly more
(and never less) than the completion time of T running on
ρ∗.

3.2 Multiple computation phases
Generally, SPMD parallel applications have multiple com-

putation phases. We analyze this case by assuming that we
have a parallel application where every thread in the set T
sequentially executes exactly the same computation phase
Φ multiple times. We assume that all threads synchronize
on a barrier when completing the phase and that the ex-
ecution of Φ starts again immediately after the thread set
has completed the previous phase (e.g., see Figure 5). The
sequence of executions of Φ, denoted as SΦ, is finite and
lSΦ ∈ N+ denotes the number of executions of Φ in SΦ. We
are interested in lower bounds and approximations for the
completion time, CTSΦ , of the entire sequence.
We can derive a simple lower bound for CTSΦ by assuming

that in each execution of Φ the threads in T are continuously
balanced. Thus, using Equation (14), we get

CTSΦ ≥ lSΦ × e× n

m
(15)

Φ Φ ΦΦ

Single balancing point

λ λ

Φ

Figure 5: A sequence of executions of a single computa-

tion phase Φ with the load-balancing period λ extending

over multiple executions.

This bound is reasonably tight when λ � e. Although
we have derived bounds for λ ≈ e and λ ≥ e ×

⌈
n
m

⌉
, they

are somewhat loose and we omit their derivations due to
space constraints. Instead, we present approximations to
the completion times that work well in practice.

In the case where λ < e ×
⌈

n
m

⌉
, we use the lower bound

derived in Equation (2) to approximate CTSΦ as:

CTSΦ ≈ lSΦ × CTT (16)

When λ ≥ e×
⌈

n
m

⌉
, some executions of Φ in SΦ will con-

tain a single balancing point, while the others will not be
balanced, provided that λ < lSΦ × e × dn/me and (lSΦ ×
e× dn/me) mod λ 6= 0. In the worst case, if load balancing
is completely ineffective, the completion time of the entire
sequence will be CTSΦ = lSΦ×e×dn/me. Consequently, the
maximum number of executions of Φ in SΦ that can contain
a single load-balancing point is η = blSΦ × e× dn/me/λc. If
we can compute the expected completion time, CTT , for a
single execution phase balanced only once during the compu-
tation, then we can approximate the completion time across
all phases as:

CTSΦ ≈ (lSΦ − η)× e× dn/me+ η × CT
∗
T (17)

Consider a load balancing point that occurs after some
fraction q/k of the computation phase Φ has elapsed (for
some value of k). The completion time of threads that start
slow and become fast after balancing is e × (q/kdn/me +
(1 − q/k)bn/mc) whereas the completion time of threads
that start fast and become slow is e × (q/kbn/mc + (1 −
q/k)dn/me). The completion time of the thread set T is
then the longest completion time of any thread, so

CT q
T = e×max(q/kdn/me+ (1− q/k)bn/mc,

q/kbn/mc+ (1− q/k)dn/me)

We assume that the load balancing point is equally likely
to fall at any one of a discrete set of fractional points, 1/k,
2/k, . . . , (k − 1)/k during the execution of Φ. We can then
estimate the expected completion time of the thread set by
calculating the average of the completion times at all these
points as k becomes large. Because we are taking the max-
imum, the completion times are symmetric about k/2, i.e.,

CT
q/k
T = CT

1−q/k
T . Hence we compute the average over the

first half of the interval

CTT =
2

k

k/2∑
q=1

CT q
T ≈ (dn/me − 1/4)

since k/2 + 1 ≈ k/2 for large k.
Note that if nfast < nslow, a single load-balancing point in

the execution of Φ cannot reduce the completion time of T
when compared to static load-balancing (see Equation (1)).
It is not possible to make all the slow threads run at fast



speed at the single balancing point, so some threads will run
at slow speed during the entire execution of Φ. Therefore,
when nfast < nslow

CTSΦ = lSΦ × e× dn/me (18)

3.3 Reactive load balancing
We analyze the case for ideal reactive load balancing,

where threads are redistributed immediately some of them
block and the load balancer incurs no overheads. We only
provide results for 1 < n/m < 2. To derive the comple-
tion time for reactive balancing, we note that as soon as
fast threads block, the remaining threads are rebalanced and
some of them become fast. Every time load balancing oc-
curs, the slow threads have run for half as long as the fast
threads, so the completion time for the thread set is

CT react
T =

k∑
i=0

1

2i
= 2− 2−k (19)

where k is the number of times the load balancer is called.
To determine k, we observe that the number of fast threads
before the first balancing point is

nf (0) = bn/mc(n mod m) = bn/mc(mdn/me−n) = 2m−n

since dn/me = 2. At every balance point, all the currently
fast threads block which means the number of fast slots
available doubles. Consequently, at any balance point, i,
the number of fast threads is

nf (i) = (2m− n)× 2i (20)

All threads will complete at the k-th balance point when
nf (k) ≤ m because then all unblocked threads will be able
to run fast. So we solve for k using Equation (20)

(2m− n)× 2k ≥ m =⇒ k = −blog2(2− n/m)c

Substituting k back into Equation (19) gives

CT react
T = 2− 2blog2(2−n/m)c (21)

4. EMPIRICAL EVALUATION
In this section we investigate the performance of Jug-

gle through a series of experiments with a variety of pro-
gramming models (pthreads, UPC and OpenMP) using mi-
crobenchmarks and the NAS parallel benchmarks.3 We show
that for many cases, the lower bounds derived in Section 3
are useful predictors of performance, and demonstrate that
actual performance of Juggle closely follows a simulation
of the idealized algorithm. We also explore the effects of
various architectural features, such as NUMA and hyper-
threading. Finally, we show that the overhead of Juggle is
negligible at concurrencies up to 16 processing elements.
All experiments were carried out on Linux systems, run-

ning 2.6.30 or newer kernels. The sched_yield system call
was configured to be POSIX-compliant by writing 1 to the
proc file sched_compat_yield. Hence, a thread that spins
on yield will consume almost no processor time if it is shar-
ing with a non-yielding thread.
Whenever we report a speedup, it is relative to the stat-

ically balanced case with the same thread and processor

3UPC 2.9.3 with NAS 2.4, OMP Intel 11.0 Fortran with NAS
3.3, available at http://www.nas.nasa.gov/Resources/
Software/npb.html

configuration, i.e., RelativeSpeedup = CTstatic/CTdynamic.
Completion times for statically balanced cases are given by
Equations (1) and (18). Moreover, we define the upper
bound for the relative speedup as: UB(RelativeSpeedup) =
CTstatic/LB(CTdynamic), where LB denotes the theoretical
lower bound. For static balancing, we pin the threads as
uniformly as possible over the available processing elements
using the sched_setaffinity system call. Thus the imbal-
ance is at most one. Every reported result is the average of
ten runs; we do not report variations because they are small.

Some experiments compare the performance of Juggle with
the default Linux Load Balancer (LLB). Although LLB does
not migrate threads to correct off-by-one imbalances in ac-
tive run queues, it dynamically rebalances applications that
sleep when blocked, because a thread that sleeps is moved off
the active run queue, increasing the apparent imbalance. We
view LLB as an example of reactive load balancing: threads
are only migrated when they block. To ensure a fair compar-
ison between LLB and Juggle, when testing LLB we start
with each application thread pinned to a core so that the im-
balance is off-by-one. We then let the LLB begin balancing
from this initial configuration by unpinning all the threads.

4.1 Ideal relative speedups
We tested the case for the ideal relative speedup using a

compute-intensive pthreads microbenchmark, µbench, that
uses no memory and does not perform I/O operations, and
scales perfectly because each thread does exactly the same
amount of work in each phase. As shown in Figure 6, the
theory derived in Section 3.1 (Equation (14)) for the ideal
case closely predicts the empirical performance when λ � e.
Figure 6 presents the results of running µbench on an 8-core
Intel Nehalem4 with hyper-threading disabled. This is a
two-domain NUMA system, but even with inter-domain mi-
grations enabled, the relative speedup is close to the theoret-
ical ideal for 8 processing elements, because µbench does not
use memory. When we restrict inter-domain migrations, the
performance is close to the theoretical ideal for two NUMA
domains of four processing elements each.

Preventing inter-domain migration limits the effectiveness
of load balancing. For example, 8 threads on 7 processors
will have an ideal completion time equal to (8/7) × e ≈
1.143× e, but split over two domains, one of them will have
4 threads on 3 processors, for an ideal completion time of
(4/3) × e ≈ 1.333 × e. This issue is explored more fully in
Section 4.3.

Figure 6 also shows a theoretical upper bound for the
relative speedup when using reactive load balancing (Equa-
tion (21)). The closeness of the results using LLB and the
theory for reactive load balancing shows that LLB is a good
implementation of reactive load balancing when λ � e.
Note, however, that LLB is actually periodic; consequently
balancing does not happen immediately when a thread blocks
on a barrier, so the performance of LLB degrades as e de-
creases (data not shown).

Figure 7 shows that the advantage of proactive load bal-
ancing over static balancing decreases as n/m increases be-
cause the static imbalance decreases. If an application ex-
hibits strong-scaling, then increasing the level of oversub-
scription (i.e., increasing n relative to m) should reduce

4Two sockets (NUMA domains) of Xeon E5530 2.4GHz
Quad Core processors with two hyper-threads/core, 256K
L2 cache/core, 8M L3 cache/socket and 3G memory/core.
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Figure 7: Ideal relative speedup of proactive load bal-

ancing for increasing bn/mc; n is chosen to give the most

imbalanced static thread distribution (e.g., n = 9 when

m = 8, n = 33 when m = 32, etc.).

the completion time even without proactive load balancing.
The reason is that in this case oversubscription reduces the
amount of work done by each thread and hence the off-by-
one imbalance has less impact. However, high oversubscrip-
tion levels can reduce the performance of strong-scaling ap-
plications [8]; consequently, oversubscription cannot be re-
garded as a general solution for load imbalances.
We illustrate this fact in Table 1, which shows the re-

sults of oversubscription (with static balancing) and proac-
tive load balancing on the UPC NAS parallel benchmark,
FT, class C, running on the 8-core Intel Nehalem with hyper-
threading disabled. In this experiment, inter-domain migra-
tions were disabled for proactive load balancing. When the
number of threads increases from 16 to 32 on 8 processing el-
ements, the completion time for the perfectly balanced case
increases by 19%. Furthermore, when the oversubscription
level is low enough not to have a negative impact, the use of
proactive balancing improves the performance of the bench-
mark significantly (i.e., 43% for n = 8 and m = 7 and 21%
for n = 16 and m = 7). In the rest of our experiments, we
focus on cases where bn/mc ≤ 2.

4.2 Effect of varying λ and e

We tested the effects of varying the load-balancing pe-
riod, λ, using the UPC NAS benchmark EP, class C, on

n m Static LB edn/me Juggle

8 8 68 68 –
16 8 68 68 –
32 8 81 68 –

8 7 120 136 84
16 7 92 102 76
32 7 87 85 87

Table 1: Effects of oversubscription on the completion

time, in seconds, of UPC FT, class C.
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Figure 9: Relative speedup of UPC EP class C with

Juggle; e = 30s and λ varies. Threads and processing

elements are denoted by (n,m). Dotted lines are the

upper bounds, solid lines are the simulation of the ideal

algorithm, and markers are empirical results.

the 8-core Nehalem with hyper-threading disabled. EP has
a single phase, with e = 30s on the Nehalem, and uses no
memory, so we can ignore the impact of NUMA and balance
fully across all 8 cores. Figure 8 shows that the empirical re-
sults obtained using Juggle closely follow the upper bounds
for the relative speedup when bn/mc = 1. The figure also
indicates how proactive load balancing becomes ineffective
as λ increases relative to e.

In addition to the cases shown in Figure 8, we have tested
Juggle on a variety of configurations up to bn/mc = 4. A
selection of these results is shown in Figure 9. We can see
that the upper bound for the relative speedup (the dotted
line) is looser when bn/mc > 1. Figure 9 also presents the
result of a simulation of the idealized algorithm (the solid
line). We can see that this very closely follows the empir-
ical results, which implies that our practical decentralized
implementation of Juggle faithfully follows the principles of
the idealized algorithm. The simulation also enables us to
visualize a large variety of configurations, as shown in Fig-
ure 10.

To explore the effect of multiple computation phases, we
modified EP to use a configurable number of barriers, with
fixed phase sizes. Figure 11 shows that the empirical be-
havior closely matches the approximations (the dashed line)
given by Equation (18) when λ ≥ ebn/mc, and by Equa-
tion (16) when λ < ebn/mc

An interesting feature in Figure 11 is that when λ/e is a
multiple of 2 (i.e., dn/me), there is no relative speedup for
the experimental runs, because the balancing point falls al-
most exactly at the end of a phase. If we add a small random
variation (±10%) to λ, this feature disappears. In general,
adding randomness should not be necessary, because it is un-
likely that phases will be quite so regular and that there will
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be such perfect correspondence between the phase length e
and the balancing period λ.

4.3 NAS benchmarks
We explored the effects of memory, caching, and various

architectural features such as NUMA and hyper-threading,
through a series of experiments with the NAS benchmarks
on three different architectures: in addition to the Nehalem
already described, we used a 16-core AMD Barcelona5 and
a 16-core Intel Tigerton.6 These systems represent three im-
portant architectural paradigms: theNehalem and Barcelona
are NUMA systems, the Tigerton is UMA, and the Nehalem
is hyper-threaded.
To give a reasonable running time, we chose class C for

most benchmarks and class B for BT and SP, which take
longer to complete. All the experiments were carried out
with n = 16 and m = 12. We selected the 12 processing
elements uniformly across the NUMA domains, so for the
Barcelona we used three cores per domain, and for the Ne-
halem we used 6 hyper-threads per domain. Although we
disabled inter-domain migrations on the Barcelona and Ne-
halem, we expect the same ideal relative speedup across all
systems, 2/(4/3) = 2/(8/6) = 2/(16/12) = 1.5. Further-
more, with n = 16 and m = 12 the relative speedup should
be the same for reactive and proactive load-balancing (see
Figure 6).
In Figure 12 we can see that EP gets close to the ideal rel-

ative speedup on the Barcelona and the Tigerton, but actu-
ally better (1.57) than the ideal relative speedup on the Ne-
halem. This is attributable to hyper-threading: when there

5Four sockets (NUMA domains) of Opteron 8350 2GHz
Quad Core processors with 512K L2 cache/core, 2M L3
cache/socket and 4G memory/core.
6Four sockets of Xeon E7310 1.6GHz Quad Core processors
with one 4M L2 cache and 2G memory per pair of cores.
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Figure 12: Relative speedup of UPC NAS benchmarks

with Juggle; n = 16, m = 12 and λ = 100ms.
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UPC NAS benchmarks balanced by Juggle; n = 16, m =

12 and λ = 100ms. The dashed line is the relative speedup

approximation and markers are empirical results from

three systems, Barcelona, Tigerton, and Nehalem.

is one application thread per hyper-thread, and it blocks
(sleep or yield), any other threads on the paired hyper-
thread will go 35% faster (for this benchmark), which breaks
the assumption of homogeneous processing elements.

For the benchmarks which do not attain the ideal relative
speedup (all except EP) we can determine how much of the
slowdown is due to the value of λ/e. Recall that e denotes
the running time of an execution phase for a thread running
on a dedicated processing element. We approximate e by
counting the number of upc_barrier calls in each bench-
mark and dividing that into the running time for 16 threads
on 16 processing elements. Figure 13 shows that correlating
the relative speedup with λ/e accounts for most of the devi-
ation from the ideal relative speedup, because the empirical
performance is close to that obtained from the approxima-
tions derived in Sections 3.1 and 3.2. FT deviates the most
because it is the most memory intensive, and so we can ex-
pect migrations to have a larger impact.

In UPC, blocked threads do not sleep which means that
the Linux Load Balancer (LLB) will not balance UPC appli-
cations. By contrast, in OpenMP blocked threads first yield
for some time period, k, and then sleep. If k is small then
OpenMP applications can to some extent be balanced by
LLB. Figure 14 shows results of running the OpenMP NAS
benchmarks on the Barcelona system7 with k = 200ms (the
default) and k = 0, meaning that threads immediately sleep
when they block. LLB has some beneficial effect on EP, giv-
ing a 35% relative speedup when k = 0 and a 30% relative
speedup when k = 200ms. This is below the theoretical 50%
maximum for reactive balancing that we expect with n = 16
and m = 8, which indicates that LLB is not balancing the
threads immediately they block, or not balancing them cor-
rectly. The only other benchmark that benefits from LLB
is FT, where we see a small (9%) relative speedup. By con-
trast, Juggle improves the performance of most benchmarks,

7We observed similar results on Tigerton and Nehalem.
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with Juggle and LLB in a highly multiprogrammed envi-

ronment; n = 8 except for BT and SP where n = 9, m = 8,

and λ = 100ms.

and the default synchronization with k = 200ms performs
slightly better than pure sleep. With Juggle, it makes no
difference how blocking is implemented and yielding results
in faster synchronization than sleep.

4.4 Multiprogrammed environments
Due to space limitations we cannot fully explore the issue

of multiprogrammed environments. Instead we present the
results of using Juggle in an unpredictable multiprogrammed
environment that, although simple, is nevertheless challeng-
ing for load balancing in the SPMD model.
We ran the UPC NAS benchmarks on the Nehalem sys-

tem with m = 8 and hyper-threading disabled. We used
n = 8, except for BT and SP, where we used n = 9 be-
cause they require a square number of threads. While the
benchmarks were running, we also ran two unrelated single-
threaded processes that could represent system daemons or
user-initiated processes. Each external process cycles con-
tinually between sleeping for some random time from 0 to
5s, and computing for some random time from 5 to 10s. We
set one of the processes to have a higher priority (nice −3).
Figure 15 shows that Juggle enables the benchmarks to

run efficiently even in this unpredictable environment. By
contrast, LLB usually causes the benchmark to run slower
than in the statically balanced case. Even though LLB can-
not correct off-by-one imbalances in UPC applications, we
expect that LLB should be at least as good as static bal-
ancing. The problem is that LLB schedules tasks without
considering that some of them form a single, parallel appli-
cation.

4.5 Evaluating the overhead
We measured the compute time taken by Juggle when

balancing EP on the Nehalem system, with n = 8, λ =
100ms, and inter-domain migrations enabled. When m = 8
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there are no migrations and the compute time for Juggle is
about 20µs per load-balancing point, and when m = 7 there
are on average 28 migrations per second and the compute
time for Juggle is about 100µs per balancing point. Both of
these translate into negligible effects on the running time of
the benchmark, and since Juggle scales as O(kn/m) (where
k is the size of a NUMA domain), we expect the algorithm
to have no scaling issues as long as NUMA domains do not
get orders of magnitude larger than 8.

Figure 16 shows how the number of migrations scales as
the ratio λ/e increases, and as n increases relative to m. The
number of migrations is generally determined by the load-
balancing period. For example, when n = 8 and m = 7,
there is only one slow core, so there are at most two swaps
(four migrations) per period, but sometimes there are no
swaps, so the average is lower (3 per period on average). In
addition, the cost of migrations is low. We measured the
time taken by the sched_setaffinity system call as 8µs on
the Nehalem system.

The theoretical analyzes of Section 3 indicate that the
smaller the value of λ relative to e, the better. The analyzes
assume that the cost of migrations is negligible, and that
there are no other disadvantages to very small values of λ.
In practice, however, when λ is on the order of the scale at
which the OS scheduler operates, the assumption that each
thread gets a fair share of a processing element breaks down.
We can see this in Figure 17, which shows how performance
degrades as λ falls below 10ms, which is the scheduling inter-
val on this particular system. As λ reduces even further, the
100µs overhead starts to impact performance, e.g., at 0.5ms
we expect there to be a 20% decrease in performance due to
the 100µs overhead. These limitations imply that our user-
space implementation is not suitable for very fine-grained
applications (very small e), because we cannot reduce λ suf-
ficiently to balance effectively.



5. RELATED WORK
We have focused on approaches to overcoming extrinsic

imbalances in SPMD applications that are a result of mis-
matches between processor and thread counts, or caused by
the presence of external processes in multiprogrammed en-
vironments. We do not address the issue of intrinsic imbal-
ance. For the latter many different approaches have been
proposed [5, 16], from programming-model extensions (such
as work stealing [1, 11, 14]) to hardware prioritization on
hyper-threaded architectures [2].
Our interest is in load balancing for the off-by-one im-

balance problem and we assume that we can always start
with at most an off-by-one imbalance. Much research [18,
19], on the other hand, has focused on getting from larger
imbalances to off-by-one, usually for distributed memory
systems. Most often these load balancers are themselves
distributed and avoid global state (e.g., nearest neighbor
strategies [10]), because of the overheads associated with
distributed memory. Moreover, correctness and efficiency
of the distributed load-balancing algorithms are usually the
research focus (e.g., proving that an algorithm converges to
the off-by-one state in a reasonable amount of time [3]).
An approach that does address off-by-one imbalances for

SPMD applications is Speed Balancing [7]. This approach
implements a decentralized user-space balancer that contin-
ually migrates threads with the goal of ensuring that all
threads run at the same“speed”(or make the same progress).
Speed Balancing is thus a form of proactive load balanc-
ing. Although it uses some global state, Speed Balancing
is asynchronous and hence there are no guarantees that it
will achieve the best balance. By contrast, we have carefully
constructed and analyzed an algorithm that guarantees the
best dynamic load balance, which we have confirmed both
theoretically and with a simulation for a wide variety of con-
figurations. Although our actual implementation uses global
synchronization, in practice the overhead is small and has
no effect on the performance.
Some attention has been paid to the off-by-one problem in

operating-system (OS) scheduler design. The FreeBSD ULE
scheduler [17] was originally designed to migrate threads
twice a second, even if the imbalance in run queues was only
one. More recently, Li et al. [12] developed the Distributed
Weighted Round Robin (DWRR) scheduler as an extension
to the Linux kernel. DWRR attempts to ensure fairness
across processors by continually migrating threads, even for
off-by-one imbalances. Under DWRR, the lag experienced
by any thread τi at time t is bounded by −3Bw < lagi(t) <
2Bw, where B is the round slice unit, equivalent to our load-
balancing period λ, and w is the maximum thread weight.
In SPMD applications all threads have the same weight,
so the upper bound for the difference in progress between
ahead and behind threads under DWRR would be the equiv-
alent of 5λ. This upper bound is considerably worse than
λ/(dn/mebn/mc), which is the largest difference in progress
among threads under proactive load balancing.
The looser upper bound for the thread lag under DWRR

illustrates some fundamental issues with load balancing of
parallel applications in a traditional OS: when the balancer
is part of an OS scheduler, it often becomes very complex
because of the need to support applications with different
priorities, different responsiveness, etc. It is hard to make
a general scheduler and load balancer that works well for a
large variety of applications. OS schedulers are extremely

performance sensitive and hence tend to avoid using global
information or any form of synchronization. Furthermore,
they typically do not take into account the fact that a group
of threads constitute a parallel application. These aspects
limit the efficacy of OS scheduler approaches when applied
to the particular problem of balancing SPMD applications.

Gang Scheduling [15] is an approach to dealing with ex-
trinsic imbalances for data parallel applications in multipro-
grammed environments. It has been shown to improve the
performance of fine grained applications by enabling them to
use busy-wait synchronization instead of blocking and thus
avoid context-switch overheads [6, 4]. Gang Scheduling is
beneficial on large-scale distributed systems where OS-jitter
is problematic [9]. However, Gang Scheduling does not ad-
dress the problem of off-by-one imbalances. Consequently, it
can be regarded as complementary to proactive scheduling,
which cannot balance very fine grained applications.

6. DISCUSSION AND FINAL REMARKS
Proactive load balancing can be a powerful technique for

increasing the flexibility of SPMD parallelism, and improv-
ing its usability in multiprogrammed environments with un-
predictable resource constraints. Our results indicate that it
is most effective when the load-balancing period, λ, is much
smaller than the computation-phase length. Consequently,
for fine-grained parallelism λ needs to be small, but there
are practical limitations to how small λ can be. The cost
of migration and the overhead of executing Juggle impose a
fundamental constraint on the minimum grain size. Our ex-
periments show that the overhead of Juggle is about 100µs,
so as λ approaches this value, Juggle becomes impractical.

Our investigations of reactive load balancing have been
cursory, limited to using the Linux Load Balancer as an im-
perfect example of a reactive balancer. A topic of future
research is to implement a fully reactive balancer (i.e., one
that rebalances immediately threads yield or sleep, instead
of doing so periodically). It is possible that reactive balanc-
ing will be better for fine-grained parallelism, because the
balancing events will coincide with synchronization, and so
it will not introduce any additional, unnecessary overhead.
A hybrid approach of using a periodically-triggered proac-
tive balancer with a reactive balancer might give the best of
both worlds.

Our analysis is a step towards a deeper theoretical under-
standing of dynamic load balancing for SPMD parallelism.
Much work remains to be done. The analysis needs to be
extended to cover the case of multiple phases and phases of
different lengths. Much tighter bounds are required in the
general case, for bn/mc > 1. The effects of overheads, such
as migration, need to be incorporated into the model. The
impact of multiprogrammed environments and sharing also
needs to be quantified more precisely.

An interesting question is whether proactive load balanc-
ing would be relevant to HPC systems that batch sched-
ule jobs and pin threads to cores. For example, consider
a large distributed HPC system8 composed of computing
nodes, each featuring 16 processing elements and shared
memory. Also consider running two jobs, J1 and J2, with
processor requirements of 80% and 30%, respectively. The
best a batch scheduler can do is to run the jobs one after

8such as Ranger at the Texas Advanced Computing Center
(http://www.tacc.utexas.edu/resources/hpc/).



the other. Assuming that both jobs have a completion time
of t, it will take 2t for them both to run and only 55% of
the system will be utilized. Proactive load balancing could
improve the utilization by allowing both jobs to run simul-
taneously. If the jobs are uniformly distributed across all
nodes, then J1 could run with 13 (16 × 0.8) threads per
node and J2 with 5 (16 × 0.3) threads per node. Conse-
quently, in this scenario two processing elements in each
node would be shared, so the progress rate for J1 would
ideally be equal to (13/(13− 2/2))−1 and for J2 it would
be (5/(5− 2/2))−1 until one of jobs completes. Therefore,
proactive load balancing within a node would yield in the
best case completion times of CTJ1 = 13t/12 = 1.083t and
CTJ2 = 1.083t+(1−1.083/(5/4))t = 1.217t because J1 com-
pletes before J2. The utilization would be 92.3%. Although
this is a simplistic example, we believe that it illustrates the
need to further explore these questions.
One of our basic assumptions is that all processors have

the same processing power, which is invalid in many cases
(e.g., Intel’s Turbo Boost selectively overclocks cores that
are not too hot). The analysis assumes homogeneity, as does
the implementation of Juggle. None-the-less, Juggle is effec-
tive for the hyper-threaded Nehalem system, where the pro-
cessor (hyper-thread) capacities vary dynamically depending
on the state of the paired hyper-thread. To incorporate pro-
cessor heterogeneity into Juggle, we would not only have to
modify the algorithm, but also alter the way thread progress
is measured: instead of elapsed time, performance counters
could be used, which would reflect the processing power of
different processing elements. Our current implementation
does not use performance counters because these are not
portable, and are often used by parallel applications for per-
formance monitoring and tuning.
Of practical importance is how architectures are going to

change as core counts increase. Our implementation exhibits
low overheads at small scales (up to 16 cores) and the com-
plexity is bounded by the size of the domains in a NUMA
system. For future systems with large NUMA domains we
may have to increase the parallelism within Juggle so that it
is still usable at scale. Although future systems are likely to
consist of tens or even hundreds of NUMA domains, restrict-
ing inter-domain migrations should not result in much loss
of balance, because domains will almost certainly be large
enough to get close to the best possible relative speedup. For
example, balancing 13 threads on a 12-core domain gives a
2/(13/12) = 1.85 relative speedup, and 25 threads on a 24-
core domain gives a 2/(25/24) = 1.92 relative speedup.
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