Music 209 Advanced Topics in Computer Music Lecture 2 – Splicing

Professor David Wessel (with John Lazzaro)

(cnmat.berkeley.edu/~wessel, www.cs.berkeley.edu/~lazzaro)

Last time: Course Introduction ...

Why pianos were easy ... compared to a violin.

	Piano	Violin
Articulations	One	Many
Expression During Sustain	No	Yes
Legato and Portamento	No	Yes

Today: Automatic Splicing

H Flowchart for concatenation.

* Choosing good matches.

X Doing good splices.

Recall: Legato Concatenation

Actually involves a series of decisions ...

"Online" stitching of a legato run from 3 samples in a library

Sample #1: isolated E Sample #2: E to F interval played legato

splice to

Sample #3: F to E interval played legato UC Regents Spring 2006 © UCB

Music 209 L2: Splicing

What makes a good (or the best) match?

Given samples A and B, we define a metric f(A, B) of concatenation quality. Compare f(A, #1), f(A, #2), f(A, #3) to find the best.

Compare best f() against an absolute standard to test for good enough.

Our metric depends on the application.

Transparency metric. The end of A and the beginning of B are selected to be nearly identical. We are looking for a splice that sounds transparent (i.e. not noticable).

Fusion metric. The end of A and the start
of B have different timbres (example: A
is the "ta" onset of a trumpet, B is a
sustained sound). We are looking for
perceptual fusion across the splice.

Other applications may need different metrics.

Rhythm metric. A and B are drum patterns. Our splice should be rhythmically smooth.

Music 209 L2: Splicing

Early Transparent Splicing: Sustain loops

1984, Emulator II, \$8000. Not the first sampler, but ...

Sufficiently inexpensive to bring sampling to the working pro.

512 KB of RAM -- 17s @ 27 kHz (8-bit companded)

To use many samples across the keyboard, could not afford the "20-40s per piano key" approach!

Solution: "loop" a 1-100 ms sustained portion of the piano waveform to play over and over until key release.

Transparent (self) concatenation.

How it works:

Original instrument recording.

Isolating a part of the sustained sustained section that will loop transparently. An art and a science ...

Images from Jim Heckrock tutorial on Harmony Central

Concatenate attack and loops, envelope

Why our problem is harder ...

we are doing one splice between segments of two recordings ...

Closer to us: Looping animated sounds

Ensoniq VFX ROM string ensemble sample.

Image from Tweakheadz.com sampling tutorial.

500 ms loop of an "animated" sound whose timbre is constantly changing ... looping a sound like this (manually) is actually possible!

Recall: Concatenative transparency metric

Transparency metric. The end of A and the beginning of B are selected to be nearly identical. We are looking for a splice that sounds transparent (i.e. not noticable).

What makes a transparent splice?

No waveform discontinuity at the splice point. Easy to handle in the "do the splice" algorithm.

Harder: The end of A and the start of B should have ...

Crossfades

Each audio waveform multiplied by drawn gain contour

Shapes of fading functions yield different types of transitions.

Fusion Metrics

Fusion ...

Fusion metric. The end of A and the start of B have different timbres (example: A is the "ta" onset of a trumpet, B is a sustained sound). We are looking for perceptual fusion across the splice.

Why do we splice dissimilar timbres?

Because the transient at the start of a sounds forms a key part of the sound's identity to the listener.

History: Roland D-50, released in 1987

It combined a ROM of of short (100ms) samples of transients with a conventional synthesis engine for sustained sounds.

Very successful. Marked the end of FM synthesis era.

Partial (Synthesizer-Klanggenerator)

ROM samples (listen): Lips Pizz

Steam

D50 patches using attack snippets

Acoustic Bass

Horn

Flute

Orinoco Flow

Why does the D-50 fuse so well?

Mix

Music 209 L2: Splicing

Another way to fuse onset snippets

SYNTHESIZING TRUMPET PERFORMANCES

Istvan Derenyi and Roger B. Dannenberg

School of Computer Science, Carnegie Mellon University Pittsburgh, PA 15213, USA {derenyi, rbd}@cs.cmu.edu

X Each scale note has a trumpet onset sample.

A Measure the amplitude and phases of trumpet harmonics at the end of onset sample.

To begin the sustained sound, a waveform is calculated whose phases and amplitudes match the onset.

A Over 50 ms, interpolate to the desired amplitude spectrum of the sustained sound.

Demo of Dannenberg system ...

A real player

System with sampled attacks.

System without sampled attacks.

Resynthesis: Using this spectral approach to connect two samples, instead of connecting a sample to a synthesis algorithm (also known as spectral morphing).

Next: Eric Lindemann

