Music 209 Advanced Topics in Computer Music Lecture 7 – Database Descriptors

2006-3-2

Professor David Wessel (with John Lazzaro)

(cnmat.berkeley.edu/~wessel, www.cs.berkeley.edu/~lazzaro)

www.cs.berkeley.edu/~lazzaro/class/music209

Music 209 L7: Database Descriptors

What makes a good (or the best) match?

Given samples A and B, we define a metric f(A, B) of concatenation quality. Compare f(A, #1), f(A, #2), f(A, #3) to find the best.

Compare best f() against an absolute standard to test for good enough.

What makes a transparent splice?

No waveform discontinuity at the splice point. Easy to handle in the "do the splice" algorithm.

Harder: The end of A and the start of B should have ...

Topics for today ...

A Database descriptors: How to compute, access, and compare a waveform property for a database of audio waveform.

Herefore Energy and **loudness** metrics.

X Temporal structure and pitch metrics.

X Spectral shape and harmonic metrics

Energy: RMS, dB's, and all that ...

s(t) = 0.5*sin(2*pi*t/1000) + 0.2*sin(2*pi*t/500) + 0.3*sin(2*pi*t/250)

RMS energy ...

Energy =
$$\frac{1}{N} \sum_{i=1}^{N} (s_i)^2$$
 Units are amplitude²

RMS Energy =
$$\frac{1}{N} \sum_{i=1}^{N} (s_i)^2$$

deciBels (dB) ...

Define (arbitrarily) 90dB as: $s_i(t) = 1.0$, for $\forall i$ Then ...

 $dB = 90 + 10 \log_{10}$ (Energy) $dB = 90 + 20 \log_{10}$ (RMS E)

Energy =	$\frac{1}{N}\sum_{i=1}^{N} \left(s_i\right)^2$
----------	--

s _i (t) for ∀i	Energy	log10(E)	dB
1.0	1.0	0	90
0.1	0.01	-2	70
0.01	0.0001	-4	50
0.001	0.000001	-6	30

Perception: Loudness of a sinusoid roughly goes as the cube root of amplitude -- close to logarithmic.

Music 209 L7: Database Descriptors

UC Regents Spring 2006 © UCB

Example: GB Piano, Middle C, medium velocity

Example: Middle C, soft - medium - hard

Loudness is also frequency-dependent ...

How we computed these graphs (in SAOL) ...

rms() is a "specialop". Accepts a-rate data, returns krate values.

dB(t)

80

70

60

50

40

30

20

10

Ο

-2

Music 209 L7: Database Descriptors

Time

0

UC Regents Spring 2006 © UCB

X Shadow tables of waveform (as above).

- Inverse tables: Table index is dB, table entry is a pointer to a waveform data point.
- A Delta features: Time derivative of shadow dB table codes transients, steady sections.

* Time filters: 1-3 Hz, 3-5 Hz, 5-10Hz components. "Modulation transfer functions" in neuroscience.

Reducing entire graph to a number ...

"Characteristic values": from Diemo Schwarz 's Ph.D.

Spectral Shape

UC Regents Spring 2006 © UCB

Summarizing spectrograms

a_k

Goal: Small set of parameters to describe the spectrum at time tj.

Spectral Centroid

 $\sum_{i=1}^{N} a_i f_i$ $\sum_{i=1}^{N} a_i$

Center of mass of the spectral slice. Related to the perception of brightness.

Also, "Harmonic centroid": computed on partials ...

Spectral Spread

Standard deviation of spectral centroid.

See Diemo Schwarz 's Ph.D. for a complete list ...

Summed waveform repeats at pitch frequency.

> Frequencies of partials are integer multiples of an underlying fundamental.

Pitch Period = 1/(Pitch Frequency)

Licklider model: Autocorrelate filtered waveforms.

