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Reca" Lecture 2: Select candidate ca"didates
How to choose the samples fromdb | #] #2
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match for 1= -
concatenation.

Any good
matches?
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What makes a good (or the best) match?

#*1{

Given samples A and B, we define a

metric f(A, B) of concatenation quality:.
Compare (A, 3#¥1), f(A, #2), f(A, #3) to
find the best.

Compare best £() against an absolute




What makes a transparent splice?

No waveform discontinuity at
the splice point. Easy to handle
B in the “do the splice” algorithm.

Harder: The end of A and the start of B should have ...

élé Similar loudness.
Absolute & delta: amplitude envelope, tremolo.

élé Similar spectral shape.
Absolute & delta: speciral motion across splice.

* Similar pitch.

Absolute & delta: vibrato and pitch bends.
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Topics for today ...

Database descriptors: How to compute,
>|é access, and compare a waveform property
for a database of audio waveform.

Energy and loudness metrics.
Temporal structure and pitch metrics.

Spectral shape and harmonic metrics
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Energy: RMS, dB’s, and all that ...

s(t) = 0.5*s1n(2*p1*t/1000) + 0.2*s1n(2*p1*t/500) + 0.3*s1n(2*p1*t/250)

s(t) o<+t
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RMS energy ...

W M

energy
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deciBels (dB) ...

Define (arbitrarily) 90dB as: si(t) = 1.0, for Vi
Then ...

dB = 90 + 10 logio (Energy)
dB = 90 + 20 logio (RMS E)

si(t) for Vi Energy logio(E)

1.0 1.0 O
0.1 0.01 -2

0.01 0.0001 -4
0.001 0.000001 _6

Perception: Loudness of a sinusoid roughly goes ass
the Cube I’OOt of amplitude -- close to loga,mth mic.




Example: GB Piano, Middle C, medium velocity

s(t)

1 1 1 1 1 1 1
O 8 1 12
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Example: Middle C, soft - medium - hard
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By 1 second, medium and hard

velocities are equal energy.  Soft
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By 5 seconds, all
energies converge.
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Example: G1 - C4 (Middle C) - B7

Relative amplitudes sound
Wi, G1 “matched” but energy
\ decays are quite different ...
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One reason: low notes
have more harmonics
sounding ... however ...
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Loudness is also frequency-dependent ...

Fletcher-Munson curves. mu?nhess I_:Ieuel
phons
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How we computed these graphs (in SAOL) ...

rms() is a
“specialop”.
Accepts a-rate
data, returns k-

rate values.
- e +(0.0001

instr mixer () {
ksig e, db;

T TdB(R)

dbamp() is a core
opcode for db.
0.0001 because
108(0) undefined.




Using energy maps in systems

9|€ Shadow tables of waveform (as above).

Inverse tables: Table index is dB, table entry
is a pointer to a waveform data point.

Delta features: Time derivative of shadow
dB table codes transients, steady sections.

X Time filters: 1-3 Hz, 3-5 Hz, 5-10Hz components.
“Modulation transfer funetions” in nevroscience.




Reducing entire graph to a number ...

raw descriptor data
slope (1st order polyfit) p1=—4.8

curve (2nd order polyfit) p2=—4.33

residual from polyfit =2.25

unit boundaries min=16.3 max=35.3
start value =25.8

end value =19.7

AR envelope tA=O.958 tR=1 27

inverse AR envelopet =187t _=0.362
invA invRk

N N

mean u=24.9
standard deviation 0=4.44

- geometric mean y=24.5
temporal centroid “t=_0'073

temporal standard deviation ot=4.44
- temporal anticentroid _“t=0'0733
-~ temporal skewness nt=0.278
D temporal kurtosis Kt=2.02
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“Characteristic values™ from PDiemo Schwarz ’s Ph.D.
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Spectral Shape
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Summarizing spectrograms

/ Goal: Small set of

parameters to describe
the spectrum at time 1;




Spectral Centroid

Center of mass of the
spectral slice. Related
to the perception of
brightness.

Also, “Harwonic centroid™ computed on partials ...



Spectral Spread

S:?il a; (fi — Spectra]C’entrojd)2
S:rf\il Qa;

/-

[] Standard deviation of
spectral centroid.

See Diemo Schwarz ‘s Ph.D.
for a complete list ...
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Summed
waveform
repeats at pitch
frequency.

Frequencies
of partials

are integer
> wultiples of

an underlying
i fundawmental.

5f

Pitch Period = 1/(Pitch Frequency)



Recall ...

First partial not necessary

to detect pitch- Aand B =
are heard with same pitch.

Relative
phases of /
partials need —>
not be aligned
- any phase N
relation yields

a strong piteh.

Thus ...
repeating
shape may be
subtle to
detect directly.
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Computing pitch

Silicon
cochlea
(62 Taps)

Lowest-

frequency .
tap

2 =

Highest- “
Ere%uency > {? ZD'
ap : )

Sound input

Nonlinear inhibition circuit
(170 inputs)

i

Output map of perceived pitch €—— Time-multiplexing scanner

Licklider model: Autocorrelate filtered waveforws.



Recall ...

First partial not necessary
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