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Abstract. We have developed a new algorithm for computing optical flow in a differential framework. 
The image sequence is first convolved with a set of linear, separable spatiotemporal filter kernels 
similar to those that have been used in other early vision problems such as texture and stereopsis. 
The brightness constancy constraint can then be applied to each of the resulting images, giving us, 
in general, an overdetermined system of equations for the optical flow at each pixel. There are 
three principal sources of error: (a) stochastic error due to sensor noise (b) systematic errors in 
the presence of large displacements and (c) errors due to failure of the brightness constancy model. 
Our analysis of these errors leads us to develop an algorithm based on a robust version of total 
least squares. Each optical flow vector computed has an associated reliability measure which can be 
used in subsequent processing. The performance of the algorithm on the data set used by Barron 
et al. (IJCV 1994) compares favorably with other techniques. In addition to being separable, the 
filters used are also causal, incorporating only past time frames. The algorithm is fully parallel and 
has been implemented on a multiple processor machine. 

1 Introduction 

A number of different approaches to recovering 
optical flow have been proposed. These can be 
roughly grouped into correlation, energy and 
differential approaches. A recent survey is due 
to Barron et al. (1993 and 1994) where the 
different approaches were compared on a series 
of synthetic and real images. They found that 
a phase-based approach by Fleet and Jepson 
(1990) performed the best numerically. 

We have developed a new algorithm for com- 
puting optical flow in the differential framework 
which performs comparably to the Fleet and 
Jepson approach but with less computational 
cost and a higher density of estimates. We 
start with a multi-channel filtering of the inten- 
sity response, thus producing an overconstrained 
system of equations in the components of the op- 
tical flow. The convolution with a series of filters 
is a common starting point for a number of early 
vision tasks such as edge detection, stereopsis 
and texture discrimination (Bergen and Adelson 

1988; Canny 1986; Jones and Malik 1992; Jones 
and Malik t992; Malik and Perona 1990; Turner 
1986 and Heeger 1988). In Section 3 we analyze 
the sources of error in the differential method 
as falling into 3 categories: (a) stochastic error 
due to sensor noise, (b) systematic error due to 
large displacements and (c) model error where 
the underlying model is violated. This analysis 
leads to an algorithm based on a robust version 
of total least squares. This algorithm is outlined 
in Section 4. 

The implementation is described in Section 5. 
In Section 6 the algorithm is tested on the series 
of synthetic and real sequences used by Barron 
et al. Thus a direct comparison between our 
work and others can be made. A high density 
of estimates was found for all sequences, imply- 
ing that the "aperture problem" occurs rarely 
in most images. A confidence measure is avail- 
able as a byproduct of the total least squares 
formulation. Through a simple experiment we 
demonstrate that this measure is related to the 
estimated accuracy of the motion vector. We 



68 Weber and Malik 

also look at a scale pyramid implementation of 
the filter responses in this section to demonstrate 
that this more efficient method of computing 
multiple scale responses does not degrade the 
performance significantly. 

In the Appendix we describe a parallel im- 
plementation on a multiple processor machine 
and examine the speedup of the algorithm. This 
demonstrates that a real-time parallel version of 
the algorithm may be possible. 

2 The Differential Constraint Equation 

The starting point of differential approaches to 
the estimation of optical flow is the brightness 
constancy assumption. The image brightness of 
the projection of a single point is assumed to 
remain constant with time. This is strictly true 
only in the idealized context of lambertian sur- 
faces being viewed by a moving camera. It is 
a reasonable approximation for a wide range 
of practical situations. The brightness constancy 
assumption implies: 

I ( x , y , t )  = I ( x  + u6t, y + v6t, t + 6t) (1) 

where I (x ,  y , t )  is the brightness or some func- 
tion of the brightness at location (x, y) and time 
t. The vector field v = (u, v) is the optical flow 
and is a function of image coordinates (x, y). In 
the limit as 5t --+ 0 we get the constraint equation 

I~u + Ivv + It = 0 (2) 

where I~, I u and It are partial derivatives with 
respect to space and time, evaluated at the point 
(x, y, t). This equation can also be derived from 
the differential form of the constancy assump- 
tion, dI /d t  = 0. This constraint was introduced 
by Fennema and Thompson (1979). The use 
of the equation in practice will require that we 
be able to estimate partial derivatives Is, Iy and 
It. This can be done if there is no temporal 
or spatial aliasing. Temporal aliasing however is 
common, leading us to use instead equation (3), 
the discrete variant of the constancy assumption. 

For finite time intervals, we make a Taylor 
expansion of the right hand side of equation (1) 
to obtain: 

I~,u6t + I uvSt + It6t = O(v25t 2) (3) 

The right hand side of equation (3) represents 
the remaining terms of the Taylor expansion. 
This contains products of higher spatial and 
temporal derivatives of the brightness function 
as well as higher powers of the displacements. 
The partial derivatives are calculated from dis- 
crete finite differences. By a suitable choice of 
units (6t = 1), this equation can be written in a 
more compact form: 

V I . v  + It = (9(v 2) (4) 

The right hand side is usually assumed small and 
set to zero. The validity of ignoring the right 
hand side of equation (3) is dependent on the 
spatial frequency content of the intensity pattern 
and the magnitude of the displacement (vSt). 

The differential constraint equation (2) has 
been used in motion detection for some time 
(Fennema and Thompson t979). It is a single 
equation in the two unknowns which forms a 
single constraint line in velocity space. Any ve- 
locity on this line satisfies the constraint. This 
was called the "aperture problem" since it im- 
plies that locally the velocity can not be de- 
termined uniquely. Horn and Schunck (1981) 
introduced a smoothness constraint in order to 
solve uniquely for displacement. A number of 
other authors (Tretiak and Pastor 1984; Nagel 
1987; Uras et al. 1988; Verri et al. 1990 and 
Srinivasan 1990) produced two or more linear 
equations in u and v by assuming constancy of 
partial derivatives and other functions of the 
intensity. A third approach (Lucas and Kanade 
1981 and Campani and Verri 1990) is to as- 
sume the velocity field is locally constant and to 
combine constraint equations from neighboring 
pixels. A review of these and other approaches 
such as correlation and energy models can be 
found in (Baron et al. 1993). 

In our approach, we first convolve the image 
sequence with a set of linear spatio-temporal 
filter kernels, f i ( x , y , t ) .  These are Gaussian 
derivatives of first or second order at a number 
of orientations and scales (see Figure 5). These 
are the same filter kernels used in previous work 
on early vision, such as in stereopsis and texture 
discrimination (Jones and Malik 1992; Jones 
and Malik 1992 and Malik and Perona 1990). 
Each convolved image, [i = I ,  fi, has its own 
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Fig. 1. Constraint equations produced by (a) using the constraint equations from a 3 × 3 neighborhood about the center pixel 
and (b) the constraint equations from the 5 filters used in the paper. The signal was white noise filtered with a Gaussian of 
standard deviation 8 pixels translating 2 pixels to the right per frame. 

constraint equation of the form (3). This results 
in an overconstrained system of equations in the 
unknowns u and v. 

+ d(v 2) (5) 

The spatio-temporal partial derivatives, Iix, Iiu, 
I~t, can be considered as the result of convolution 
of the image sequence I with linear, spatio- 
temporal filter kernels since I~ = (I  . fi)~. = I ,  
fix. Defining the matrix A and vector bt the 
system of equations can be written as: 

A . v  = -b~ + O(v 2) (6) 

The spatial extent of the filters brings in infor- 
mation from neighboring pixels so the aperture 
problem exists only for degenerate cases. 

2.1 Comparison to Region Techniques 

The multiple filters approach is very similar to 
region approaches (Lucas and Kanade 1981; 

Campani and Verri 1990 and Wang et al. 1992) 
where multiple constraint lines are obtained 
from the set of constraints at neighboring pixe!s. 
However, for band-pass signals the constraint 
equations in a local region will be very similar 
since the spatial first derivatives vary slowly. The 
resulting measurement matrix is close to singu- 
lar. The orthogonal filter kernels used in the 
multiple filters approach can produce constraint 
equations which are more orthogonal (except in 
degenerate cases where there is a true aperture 
problem). An extreme example can be seen in 
Figure 1. The constraint lines produced from a 
small neighborhood for a band-pass signal are 
almost parallel, while the constraint lines from 
the filters are better distributed. 

Of course the constraint lines from each point 
in the support of the filter kernels provides the 
same information as the filters. Since we are 
using linear filters, it is just a change of basis. 
However, the orthogonality of the filters can 
produce in fewer constraint lines a stable mea- 
surement matrix and thus a more stable esti- 
mate. Each filtered image samples a different 
part of the original signal's spatial spectrum and 
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thus gradient directions can be very different. 
Only when the spectrum of the original signal 
is degenerate (lies on a line in frequency space 
for example) will the gradients be parallel. 

3 Noise Considerations 

The fundamental problem now is to solve the 
overconstrained system of equations (6) so as to 
obtain as accurate an estimate of v as possible. 
We begin by analyzing the sources of error. 

1. Stochastic error. In the presence of sensor 
noise, we expect that the measurements of 
Ii~,, Iiy, Iit, the spatiotemporal derivatives of 
I* f i ,  would be corrupted with noise. We will 
make the standard convenient assumption 
that sensor noise is independent from pixel 
to pixel and has a Gaussian distribution. This 
is analyzed further in subsection 3.1. 

2. Systematic error for large displacements. The 
system of equations (6) is derived by 
neglecting second order terms in the dis- 
placement, so we expect systematic errors 
whenever the local velocity is large. The 
magnitude of the error is dependent on 
a number of factors including the scale 
of the filter being used and the local 
spatial frequencies present in the image 
neighborhood. This is analyzed further in 
subsection 3.2. 

3. Errors due to model failure. In subsection 3.3 
we group together the errors that arise due 
to violation of certain key assumptions of 
the differential approach: (a) Constancy of 
image brightness, which is not strictly true 
whenever there is a significant specular com- 
ponent, and (b) that the optical flow field 
is locally constant over the support of the 
filters, which is not true if the filter sup- 
port straddles a depth discontinuity or when 
there is a significant rotational or divergence 
component in the flow field. 

3.1 Stochastic Error and Total Least Squares 

If we knew that the errors were confined to the 
measurements of Its, i.e. the right hand side 

of the system (6), then the correct approach is 
well known from estimation theory. We find the 
classical weighted least squares solution which 
from the Gauss-Markov theorem is the best one 
can do 1. The weight matrix can be determined 
by examining the covariance matrix of the fil- 
ters ftl. 

However the classical least squares method 
makes the implicit assumption that the measure- 
ments on the left hand side Ixi,I~i are error- 
free and that the errors are confined to the 
measurements on the right hand side Its. This 
assumption is not true, impelling us to use the 
total least squares method. Total least squares is 
also known as orthogonal regression or errors-in- 
variables regression (Van Huffel and Vandewalle 
1991). 

The essential difference between classical least 
squares and total least squares can be made clear 
by a simple example. Suppose we wish to fit a 
line to a group of points, (x~,y~). In classical 
least squares we wish to find the values of the 
slope and intercept, (m, b), which minimize the 
sum squared difference between the yi and the 
predicted y. 

min E ( y i  - taxi - b) 2 (7) 
b~ rn 

i 

This minimizes the vertical distances between 
the line and the measurements yi. It assumes 
the variables xi are error free and all noise is 
contained in the y~. Total least squares allows for 
errors in the x~ variables too. It wishes to mini- 
mize the perpendicular distance between the line 
and the measured points (see Figure 2). This 
was referred to as eigenvector fit in (Duda and 
Hart 1973). The idea of allowing errors in all 
variables when fitting data has been around for 
some time (Pearson 1901 and Madansky 1959). 
The concept was extended to multivariate prob- 
lems about 20 years ago (Sprent 1969). The 
connection to the singular value decomposition 
of the measurement matrix was pointed out by 
Golub and Van Loan (1980) and Van Huffel and 
Vandewalle (1991). Total least squares was used 
for motion estimation in (Shizawa and Mase 
1990 and Wang et al. 1992). 

In the total least squares framework, (6) is 
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Fig. 2. Difference between least squares  and  total least 
squares  for fitting a line to a collection of  points. Least  
squares  assumes  the  errors are in the  y variables and thus 
minimizes  the  vertical distance between the line and the  
points. Total least squares  allows for errors in both x and y 
and thus minimizes  the  perpendicular  distance between the 
line and the points. 

usually written as 

The combined matrix [A [ bt] is referred to as the 
measurement matrix. This form recognizes that 
each entry in the measurement matrix is subject 
to noise. In total least squares, an estimate is 
found by making the smallest, in terms of its 
Frobenius norm, perturbation to the measure- 
ment matrix such that (8) has a solution (Van 
Huffel and Vandewalle 1991). This is in contrast 
to least squares where only the measurement 
vector bt is perturbed to find a solution. The 
estimate using total least squares is 

v = -(ATA - cr]I)-lATbt (9) 

where era is the smallest singular value of the 
measurement matrix. The Frobenius norm of 
the perturbation needed to make (8) consis- 
tent is simply cr3. Equation (9) is very simi- 
lar to the standard least squares solution. The 
latter is obtained by setting tra to zero. The 

linear least-squares solution of constraint equa- 
tions is used by a number of other authors 
(Duda and Hart 1973; Campani and Verri 1990, 
etc.). A total-least squares approach was used 
by Wang et al. (1992). Our approach differs from 
both approaches in that the constraint equations 
come from different filters at the same location 
whereas their constraints come from neighbor- 
ing pixels (see Section 2.1). 

Equation (9) is also very similar to the re- 
sult obtained by Simoncelli et al. (1991) in 
which a Bayesian prior for small velocity mag- 
nitudes was used. Interestingly, the prior intro- 
duces a plus sign into the matrix to be inverted 
in (9) whereas we obtain a minus sign in the 
total least squares formulation. The prior as- 
sures that an inverse exists but will bias the 
estimate towards smaller velocity magnitudes. 
In Section 3.3 we will develop a consistency 
ratio which will guarantee that the magnitude 
of c~3 is sufficiently less than the magnitude 
of the remainder of the measurement matrix. 
Thus the matrix inversion in (9) will not be 
unstable. 

]btal least squares assumes the error in each 
element of the measurement matrix is indepen- 
dent and identically distributed (the error ma- 
trix is white). If this is not the case, total least 
squares can actually perform worse than stan- 
dard least squares. This is similar to the require- 
ment in standard least squares that the errors in 
the measurements be normalized. We can use 
prior estimates of the measurement variances to 
whiten the measurement matrix. 

3.2 Systematic Errors Due to Large 
Displacements 

The finite differences used to approximate 
derivatives in the constancy equation (3) make 
a linear approximation to the underlying in- 
tensity function and are thus inaccurate for 
large displacements. The assumption breaks 
down quadratically in the displacements. For 
high frequency signals, this term can easily be 
larger than the stochastic error for relatively 
small displacements. If we operate in a sin- 
gle spatial dimension we can examine the rel- 
ative magnitude of this term. If the signal is 
a simple sinewave, it is obvious that the linear 
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Fig. 3. The linear slope approximation for a sinusoid is only 
valid for a fraction of a wavelength. The range of velocity 
estimates a gradient-based approach can reliably detect is 
limited by the spatial frequencies of the underlying intensity 
function. 

approximation is valid only for a fraction of the 
wavelength of the sinewave (see Figure 3). 

If the wavelength, )~ = 2~r/aJ, of the signal is 
known, we can limit the acceptable displacement 
between time frames to some fraction of the 
wavelength. 

Ivl < flA = 2rrfl/oa (10) 

An natural upper bound is /~ = 1/2 since dis- 
placements greater than half a cycle would in- 
troduce aliasing. This limit on displacement as 
a function of signal frequency has a biological 
basis too (Cleary and Braddick 1990). Battiti 
et al. (1991) examined the systematic error im- 
plicit in gradient techniques which use finite dif- 
ferences to estimate partial derivatives. In the 
one dimensional case for a translating sinusoid 
of frequency co, they find that the estimated 
velocity, ~, as a function of the true velocity, 
v, is 

"~ = sin(~ov) / s in(w)  (11) 

The difference between v and ~ comes from the 
linear slope approximation of finite differences. 
The relative error for this component is 

sin(wv) (12) v ----v-v = 1 
sin(w) V 

Writing this as a function of/3 at the maximum 
velocity, 

co sin(2~r/3) (13) 
= 1 21rp sin(w) 

We find that for wavelengths greater than 4 
pixels, a value of /3 about 1/27r results in a 
fractional error of less than 15%. Thus we set 
/3 = 1/2~r. Since the filters used are bandpass, 
we feel this is a reasonable range of wavelengths. 
The resulting limit on the displacements allowed 
is Ivl < 1/co, 

U n f o r t u n a t e l y  we do not know the spectrum 
of the intensity function before filtering• If 
however we use a low-pass filter with a cutoff 
frequency coc then the maximum velocity esti- 
mate which can be considered valid is Ivl < 1/ c 
from the above analysis. In our implementation, 
the intensity function is convolved with a series 
of Gaussian and Gaussian derivative functions. 
These are either low or band-pass filters. The 
Gaussian has an associated scale factor, cr which 
is the standard deviation of the distribution. The 
n'th derivative of a Gaussian of  standard devi- 
ation cr has its maximum frequency response at 
co = v/'~/~r (Young 1985). If we use this fre- 
quency in limiting the maximum displacement 
we find that for the response formed by filter- 
ing with the n'th derivative of a Gaussian, the 
maximum displacement we can accept is 

Ivl < (14) 

3.3 Systematic Errors Due to Model  Failure 

There are situations where the underlying as- 
sumptions of the model are violated. Constancy 
of image brightness (1) is not strictly true when- 
ever there is a significant specular component  or 
when occlusion occurs. The model also assumes 
that the optical flow field is locally constant over 
the support of the filters, which is not true if 
the filter support straddles a depth discontinuity 
or when there is a significant rotational or di- 
vergence component in the flow field. In these 
situations, regression is not valid and these mea- 
surements should be labeled as outliers. 

When calculating the total least squares so- 
lution, the singular values of the measurement 
matrix are available. The smallest singular value, 
aa, is equivalent to the Frobenius norm of the 
perturbation needed to make the equations con- 
sistent. We define a consistency ratio ~ This 

0. 2 • 

is the ratio of the norm of the perturbation to 
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the smallest eigenvector of the resulting mea- 
surement matrix. If all the constraint lines are 
consistent (intersect at a common point), the 
perturbation and aa will be zero. This would be 
true for a noiseless signal undergoing constant 
translation. When the assumptions are violated, 
a large relative perturbation will be needed to 
make the equations consistent. We discard scale 
groups which require a perturbation so large 
that the consistency ratio becomes larger than a 
given threshold, Ct, and assume that the model 
fails for this scale group. This discards the out- 
liers before combining scales in a second total 
least squares. The ratio is scale independent 
and therefore can be used to compare estimates 
between scales. 

Whereas we reject measurements which cre- 
ate outliers in the regression, other authors have 
used them to gain information about the un- 
derlying flow. Shizawa and Mase (1990) used 
the magnitudes of the perturbation in order 
to distinguish multiple flows. In this case the 
constraint lines would be inconsistent due to 
the presence of multiple transparent motions. 
Black and Anandan (1993) use the residuals 
of a non-linear cost function to identify and 
remove outliers and thus produce a robust 
estimator. 

4 Model 

Based on the above analysis, we propose the 
following model for multi-scale motion analysis. 
The image is first convolved with a collection of 
filters. These filters are separated according to 
scale. Thus we may have m different filters each 
of the same scale but differing in orientation and 
frequency response, and n such groups of these 
filters. The common scales of these groups form 
a geometric sequence. If the smallest scale is of 

(~-1) 
size a0, then the i'th scale is of size Cro . 

Partial derivatives are computed via finite dif- 
ferences and weighted according to known prior 
noise variances. 

Total least squares is used on the filtered re- 
sponses in a two step method. First the n scale 
groups each individually form an estimate for 
the velocity via the total least squares formula 
in (8). This velocity estimate is deemed valid if 

the magnitude is less than the maximum allowed 
for that scale via equation (14). The estimate 
is also rejected if the ratio of the two smallest 
singular values of the measurement matrix is 
above the consistency threshold, Ct. 

The remaining valid estimates are combined 
into a second total least squares formulation. 
The weights in this step have been divided by 
the consistency estimate of that scale's equa- 
tions. This was the ratio of the two smallest 
singular values of the measurement matrix. A 
consistency ratio for the combined scales is com- 
puted along with the combined estimate. If this 
combined consistency ratio is larger than the 
threshold Ct the combined estimate is rejected. 

This two step method contains two elements 
which make it robust. First, the ratio thresh- 
old prevents scale groups with poor estimates 
from participating in the second stage. Those 
scales which do participate are weighted by their 
individual residuals. In many iterative robust 
techniques, the process of finding an estimate, 
weighing by updated covariances and repeating 
is common (Huber 1981). By weighing the sec- 
ond stage by the singular values ratio, we insure 
that the scale which most accurately estimates 
the motion has the strongest influence in the 
multi-scale fusion. This is in contrast to coarse- 
to-fine methods which assume larger scales have 
a correct but coarse estimate. Secondly, if dif- 
ferent scales see different motion because of 
either aliasing or transparency, the combined 
measurements will result in a large consistency 
ratio since the constraints will not be from the 
same motion. In this case we currently reject all 
scales and make no estimate. Our linear estima- 
tor assumes the constraints are from the same 
motion and thus can not be used to resolve the 
different motions. Individual residuals could be 
used to separate these different motions (Black 
and Anandan 1993). 

Figure 4 outlines the method. 

5 Implementation 

The input to the model is simply two response 
frames separated in time. These two inputs are 
created from a sequence of images via convo- 
lution with separable Gaussian kernels. The 
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Fig. 4. Multi-scale gradient technique for motion. A patch of the image is convolved with groups of linear spatio-temporal 
filters, Each group is tuned to the same spatial scale, Each group makes its own estimate for the velocity using total least 
squares. The estimates are combined in a second re-weighted total least-squares formulation. The magnitude of the velocity 
estimate a group may present is limited by the expected systematic error. 

Fig. 5. Spatial impulse response of the filter set used for a single spatial scale. The filters are either the Laplacian of a 
Gaussian or products of Gaussians and a Gaussian derivative. These filters all have a zero DC response. The same set of 
filters is used in some approaches to early vision. 

spatial kernels used were derivatives of the nor- 
malized Gaussian function, G(x, y; ax, cru): 

o a(x, y; ,,y), aya(x, y; ,,x, ,M, 
oxxa(z, v; ,M, ayya(x, v; ,M, 
V2G(x, y; ~r~:, cry) (15) 

For the directional derivatives, the Gaussian 
was elongated in the direction perpendicular 
to the derivative (i.e. a u = 1.4a~ for 0~ G(x, y; 
a~,o-~)). The Laplacian was rotationally sym- 
metric. These filters have been used to model 

receptive fields of neurons in the visual cortex 
(Young 1985). The scale of each Gaussian func- 
tion was set so that each filter shared a common 
peak frequency response. Thus they shared a 
common scale, a0. Figure 5 is the spatial re- 
sponses for the scale group of o-0 = 16 pixels. 
Note that each filter has a zero DC response and 
thus is not influenced by global lighting changes. 

The sizes of the scale groups followed the 
progression ao = 1 , c r , ~ r 2 , . . . , o  n - 1  where cr was 
1.8 for the experiments. This is a natural 
scale space representation as used in pyramid 



Robust Computation of Optical Flow 75 

implementations. A pyramid scheme can be 
used to decrease the computational load for the 
many convolutions required without a significant 
loss in performance (see Section 6.4). 

Next, the filtered responses are convolved in 
the time dimension with the causal half of a 
standard Gaussian. This is non-zero only for 
past time frames. The standard deviation of 
this Gaussian was set to 3 video frames in or- 
der to emulate human response curves which 
show temporal recruitment up to about 100 
milliseconds. Thus only the past 10 frames con- 
tribute significantly to any filter response. These 
numbers could change depending on the frame 
rate or known motions. 

The partial derivatives of the responses are 
computed through a forward finite difference 
cube. This is simply the average of 4 adjacent 
pixel forward finite differences. Since the signal 
was already convolved with Gaussian functions, 
we felt a more sophisticated scheme for obtain- 
ing first partials was not needed. The forward 
differences actually provide an estimate of the 
partial derivatives on a lattice which is offset one 
half pixel in each spatial dimension and one half 
of a frame in the temporal dimension. 

If a given scale group contains adequate tex- 
ture such that the condition number of the mea- 
surement matrix was finite, a velocity estimate 
for that scale group is computed. 

It is known that it is important to 'whiten' 
the measurement matrix such that each element 
is identically distributed and independent (Van 
Huffel and Vandewalle 1991). We assume that 
the output of each filter is independent. The 
oriented filters within a scale group actually are 
orthogonal. Even though it is not simply a lin- 
ear combination of the elongated second deriva- 
tives, the symmetric Laplacian is not orthogonal 
to them. In addition, when the different scale 
groups are combined, the filters across scales 
are not orthogonal. We assume in both cases 
however that the magnitudes of the interaction 
terms are much smaller than the power of each 
filter and can be ignored. 

The partial derivatives within a single equa- 
tion do not have the same noise distribution 
due to the elongated Gaussian filters used (i.e. 
(I~:~) ¢ <I~y>). The partial derivative along 
the orientation of the filter has a higher noise 

response than the derivative perpendicular to 
the orientation. Since the oriented filters come 
in rotated pairs, a simple sum and difference 
of each pair results in two responses with par- 
tials of equivalent noise variance. The total least 
squares solution (8) is simply 

i2 ) -1 
\ [E LT,,:;,:¢, m J - 4 1  

Z I;iIti¢~J (16) 

The summations are over the filtered responses 
within that scale group. The weights ¢i are the 
inverse of the expected variances of each mea- 
surement. 

Note that we need only invert a 2 x 2 ma- 
trix whose entries are weighted sums of filter 
outputs. Thus only simple operations are re- 
quired and can be performed in parallel. The 
filter responses can be accumulated as they are 
produced and need not be stored in memory. 
Since the measurement matrix has rank 3, sim- 
ple explicit formulas exist for the three singu- 
lar values, cri. They come from solving a cubic 
equation whose coefficients are combinations of 
the summations which appear in (16). Since sin- 
gular values are always real and non-negative, 
a simpler form of the general solution of the 
cubic equation can be used. Testing the con- 
dition number of the matrix is then just the 
ratio of the two largest singular values (since 
these are the two singular values of the mea- 
surement matrix after the perturbation has been 
removed). If the condition number is above 100 
the estimate is discarded. This rarely occurred 
in our simulations. Each scale group now eval- 
uates its velocity estimate. The magnitude of 
this velocity estimate is compared with the max- 
imum magnitude allowed for this scale group 
and rejected if larger. The ratio of the smallest 
singular values is compared with the consistency 
threshold. 

The scale estimates that are not discarded 
are combined in a final, multi-scale total least 
squares framework. The weighting terms for this 
combination are modified by scaling the original 
weights by the inverse of the relative error term. 
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Fig. 6. Systematic error due to increasing displacements with no noise (left), and stochastic error due to additive noise with 
fixed dispacement (right). In both cases the signal was a Gaussian white noise pattern with variance 1000 units translated 
diagonally. The consistency threshold was set at I x 10 -2. This value keeps the errors to only afew degrees for the full range 
of allowed displacements. 

Thus the weighting factor ¢~ is replaced by: 

¢i = .~to~+~ ~r3/°-2 < G and Ivl < vm~x 
else 

where e is a small number to prevent division 
by zero. This weighting gives more credit to 
scale groups with estimates which best match 
the constraint equations. 

The final estimate computed by combining 
scales is rejected if the ratio of  singular values 
indicates the equations are deemed inconsis- 
tent  according to the consistency threshold. One 
place where this can happen is if different spa- 
tial scales overlap regions of different motions 
due to a motion boundary. Our future work will 
look at ways of identifying and resolving these 
situations. For now, they  are simply labeled as 
places without estimates (holes). 

6 Experimental Results 

We tested the algorithm on a series of synthetic 
and real image sequences. For the experiments 
where the true optical flow is known, we use 

the angular error  measure used by Barren et al. 
(1993) to evaluate the results. They measure the 
error  between the true velocity v = (u, v) and 
the estimate ~ = (~,~ ' )  as the angle between the 
unit vectors in 3 space, v3 = (Iv[ 2 + 1)-l/2(u, v, 1). 

% = arccos(v3.~3) (17) 

This is calculated at every pixel value where an 
estimate is formulated. Also reported are the 
percentage of  pixels without estimates (holes). 

6.1 Synthetic Data 

Systematic Error. A random dot pat tern is trans- 
lated diagonally. Each pixel was spatially un- 
correlated, thus all frequencies were present. 
Figure 6 shows the angular error  and frac- 
tion of holes (no estimate) as a function of 
diagonal displacement. As the displacement in- 
creases the average error  increases, but  remains 
less than two degrees, The  number  of esti- 
mates decreases up to the maximum displace- 
ment allowed, 1.84 ~- 10.5 pixels. Thus, up to 
the maximum displacement, we can keep errors 
to less than a few degrees. A higher density of 
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Fig. 7. Average error in degrees and fraction of holes as a function of the consistency threshold, Ct, the maximum of the 
ratio ~3/~2 allowed. This ratio relates how much the measurements must be changed in order to fit the velocity model. 

estimates can be obtained by lowering the con- 
sistency threshold at a cost of increased errors. 

Stochastic Error. In order to examine the results 
of stochastic error we translated the random dot 
pattern diagonally 1 pixel and added uncorre- 
lated noise to each frame. Figure 6 shows the 
results as the standard deviation of the added 
Gaussian noise is increased. Again, the errors 
remain less than a few degrees as the density 
decreases. 

Consistency Threshold. A random dot pattern of 
unit variance was translated diagonally 1 pixel 
and white noise of variance 5 units was added 
to each frame. Figure 7 displays the average 
error and fraction of holes as a function of 
Ct, the equation consistency threshold. The 
number of estimates decreases and the accuracy 
of the remaining estimates increases until only 
a few estimates remain. This demonstrates that 
the singular values ratio is a good measure of 
estimate reliability. Such a statistic is often 

useful in algorithms which use optical flow as 
input, such as for determining ego-motion or 
shape from motion. 

Comparison Sequences. A recent technical report 
by Barron et al. (1993) and the corresponding 
paper to appear in IJCV (Barron et al. 1994) 
examined the performance of a number of dif- 
ferent optical flow techniques on a series of 
synthetic and real images. They found that the 
phase-based approach of Fleet & Jepson (1990) 
was the most accurate. We examined the perfor- 
mance of our algorithm on these same images. 

Ten frames of the Yosemite Sequence were used 
as input to the algorithm. The true optical flow 
is known because this is a syntheticaly generated 
sequence. The sequence is of a platform flying 
over Yosemite valley. Clouds in the image de- 
form as they move. The optical flow ranged in 
magnitude from zero at the focus of expansion 
to over 5 pixels per frame. The Translating Tree 
sequence consists of a tilted plane with a texture 
mapped onto it. The motion is perpendicular to 
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Table 1. Comparison of synthetic sequences results with those reported by Barton et al. 
(1993). The Weber & Malik algorithm uses only 10 'frames and 30 linear filters. The Fleet 
& Jepson algorithm used 46 3-d convolutions (realized in 74 1-d filters) and 21 frames (15 
frames for Yosemite). 

Sequence Algorithm Avg. Error Std. Dev.  Density 

Translating Tree Horn & Schunck 38.72 27.67 100 
Heeger 4.53 2.41 57.8 
Anandan 4.54 2.98 100 
Lucas & Kanade (,~a > 1.0) 0.66 0.67 39.8 
Fleet & Jepson (~- = 2.5) 0.32 0.38 74.5 
Weber & Malik 0.49 0.35 96.8 

Diverging Tree Horn & Schunck 12.02 11.72 t00 
Heeger 4.49 3.10 74.2 
Anandan 7.64 4.96 100 
Lucas & Kanade ()~z > 1.0) 1.94 2.06 48.2 
Fleet & Jepson (7- = 2.5) 0.99 0.78 61.0 
Weber & Malik 3.18 2.50 88.6 

Yosemite Horn & Schunck 32.43 30.28 100 
Heeger 10.51 12.11 15.2 
Anandan 15.84 13.46 100 
Lucas & Kanade (A2 > 1.0) 4.10 9.58 35.1 
Fleet & Jepson (r = 2.5) 4.25 11.34 34.1 
Weber & Malik 4.31 8.66 64.2 

the optical axis, but since the plane is tilted the 
flow ranged in magnitude from 1.8 to 2.3 pixels 
per frame. The Diverging Tree consisted of the 
same tilted plane and texture, but the motion is 
along the optical axis. Velocities ranged from 
1.4 pixels per frame on one side to 2.0 on the 
other. Table 1 lists the average and standard 
deviation of the angular error. The data for the 
other  algorithms was copied from the revised 
technical report  by Barron et al. (1993). The 
performance was comparable,  performing bet- 
ter for the Yosemite sequence and worse on the 
translating planes. However,  our algorithm uses 
only 10 frames and 30 linear filters whereas the 
Fleet & Jepson algorithm used 46 3-d convo- 
lutions (which can be realized by 74 separable 
and causal 1-d kernels) and 21 frames making 
it computationally more expensive. In addition, 
our  algorithm consistently produced a higher 
density of vectors. The threshold experiments 
show that slight improvements can be made by 
decreasing the error  threshold (fixed at 10 .2 for 
synthetic sequences) at a cost of fewer estimates. 
Ultimately, the performance must be based on 
how well the flow field can be used for cal- 
culating quantities such as motion and shape 
parameters.  

6.2 Real Sequences 

The algorithm was tested on a group of  real 
video images obtained from J.L. Barron who 
received them from the database at Sarnoff Re- 
search Center. We used 10 frames and 25 fil- 
ters for each. Selected frames of the three 
sequences and the flow produced are shown in 
Figure 8. The first sequence is of the camera 
translating towards the soda can. In the second, 
the observer translates perpendicular  to the line 
of sight. The  tree in the foreground translates 
more due to perspective. The third sequence is 
of three independently moving cars. The  car on 
the lower right is obscured by some trees. 

6.3 Large Displacements 

Differential techniques often have poor  results 
for large displacements. We saw that this is a 
consequence of temporal  aliasing of high fre- 
quency spatial components.  We applied our  al- 
gorithm to every second and every third frame of 
the Yosemite sequence. The results were com- 
pared with the true flow scaled by 2 and 3 
respectively. The largest displacements in these 
sequences were 10 and 15 pixels per frame. 



Robust Computation of Optical Flow 79 

j / / l t , a 4 ~  . . . . .  * ~ %  

/ i / i t t  t4 ~ . . . . . . . .  

/ / / t l l I l l l '  " ' ' ' \ \ \  
/ / /  I t  I I ~  \ \ \ \ N  

. . . . . . . . .  . . .  

. . . . . . . . . .  , ,  , .  

" : : : 2 2 2 ]  ~ -  " ~.2.'." 2~.2 

. ; : ' ,  

4 

Fig. 8. Three frames from real image sequences and the flow recovered, 

Table 2, Estimate accuracy and density as displace- 
ments are made larger. The Yosemite sequence 
was subsampled in time by 2 and 3 frames. Errors 
remain about the same as density decreases. The 
magnitudes of the estimates increased proportion- 
ally with the subsampling. 

Temporal Subsampling: 1 2 3 

Avg. Error 4.31 4.18 3.61 
Std. Deviation 8.66 8.75 8.22 
Density 64.2 39.4 23.4 

Table 2 shows the average error, standard de- 
viation and estimate density for the original 
sequence and the two temporally subsampled 
sequences. We can see a decrease in the 
estimate density while the error remains the 
same. The average magnitude of estimates in- 
creased roughly by the same scale factor as the 
true flow, thus estimates were not just clipped 
to small values. 

6.4 Subsampled Filters 

The largest scales consist of filters with Gaussian 
responses many pixels in width. The response of 
such filters does not change significantly within 

a range of a few pixels. The full version of the 
algorithm computes the response of every filter 
at each pixel. A more efficient implementation 
would use a pyramid scheme in which filters of 
larger scales are calculated at a subset of the 
full pixel lattice. We created a modified version 
of the algorithm in which the response of a filter 
with Gaussian response of size cr is subsampled 
every n pixels, where n = [aj. This reduced by 
about half the number of convolutions for each 
scale from the previous scale. The results of 
the subsampled version of the algorithm for the 
synthetic images are tabulated in Table 3. 

A Multiprocessor Implementation 

The algorithm described is massively paral- 
lel. Each estimate is formed from a small 
spatio-temporal window of the motion sequence. 
The previous results were obtained from a 
SUN Sparcl workstation. Processing time was 
dominated by the convolutions since velocity es- 
timates required only a few simple operations 
on the convolution results per pixel. A series of 
36, 3-d separable convolutions on a 128 pixel 
square image took about 4 minutes per frame. 
To examine the speedup possible with a par- 
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Table 3. Comparison of the full implementation where each filter output 
is computed at each pixel and a subsampling scheme where a filter output 
is calculated at every 2 n pixels. 

Full Convolutions Subsampled Filters 

Sequence Avg. Error Std. Dev. Avg. Error Std. Dev. 

Translating Tree 0.49 0.35 0.55 
Diverging Tree 3.18 2.50 3.30 
Yosemite 3.43 5.35 3.77 

0.36 
2.72 
4.83 

allel implementation, a parallelversion of the 
algorithm was created for the 128 processor 
CM5 from Thinking Machines Corporation. 

Instead of the linear convolutions with filter 
kernels that was used on the serial machine, 
we used the interconnectivity of the processors 
and the Central Limit Theorem to approximate 
Gaussians by iterating nearest neighbor opera- 
tions. The total number of steps required by this 

. 2(.~-1) 
processes is ,+% where a0 is the base scale 
and s is the number of different scale groups. 
The amount of data values which must be passed 
between processors on each iteration is 4n/v/'N 
where the image is of size n z using N proces- 
sors. Details can be found in (Weber and Malik 
1992). Convolution of a 128 pixel squared im- 
age took less than 10 seconds, including I/O. We 
believe that with specialized hardware real-time 
implementations are possible. 

A c k n o w l e d g m e n t s  

This research was partially supported by Texas 
Instruments, NSF Presidential Young Investiga- 
tor Grant IRI-8957274 to J.M., Xerox and the 
PATH project MOU 83. NSF Infrastructure 
Grant number CDA-8722788 supported the use 
of the CM-5. We wish to thank D. Fleet and 
J. Barron for providing the sequences and true 
flow. We also thank A. Verri, D. Fleet and 
D. Heeger for helpful discussions. 

N o ~ s  

l. Of course, this is just a consequence of assuming that the 
sensor noise has a Gaussian distribution, an assumption 
rarely verified in practice. One appeals to the Central 
limit theorem and hopes for the best. 
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