1. A linear recurrence of length three generates the sequence 0011110. Find the next three elements of the sequence. (You've just broken an LFSR cipher).

2. Let $a=(a_3, a_2, a_1, a_0)$ and $b=(b_3, b_2, b_1, b_0)$ be a four bit quantities with a_0 and b_0 the least significant bits. Instead of making a non linear substitution using a table lookup, suppose $c=(c_3, c_2, c_1, c_0)= a+b \pmod{32}$ where $+\mod{32}$ is ordinary addition with carry. Write each “c” bit as a boolean function over GF(2) of the “a” bits and “b” bits. Is it non-linear? What is the best linear approximation of c_0? c_2? Compute some differential characteristics of this function.

3. Suppose the linear equation $\alpha(p)+\beta(c)=\gamma(k)$ over GF(2) is true with probability $p=0.6$, γ is linear, p represents the plaintext, c represents the ciphertext, and k represents the key. You collect 20 corresponding plain/ciphertext pairs observe that $\alpha(p)+\beta(c)=1$ for 11 pairs and 0 for 9 pairs. What is the probability that $\alpha(p)+\beta(c)=1$?

4. Compute (symbolically) the key first 6 key bits for the second round of DES (no fair cheating).

5. (a) Prove that a single round of DES is a bijective transformation from GF(2)$^{64}\rightarrow$GF(2)64, what percentage of such bijective transformations (over all possible round keys) does a single round of DES generate? Does a single round of DES have any fixed points? (A fixed point for a transformation T is a point x: $T(x)=x$)

6. Find a function $f(x_1, x_2, x_3)$ whose best linear approximation is as bad as possible. What characterizes such functions?

7. Suppose $g(x_1, x_2, x_3)= f(x_1, x_2, x_3)+x_1+1$. When will g have a better linear approximation than f? (+ is over GF(2)).

8. For S-box 1 of DES, what is the probability that the input difference 0x34, produces the output difference 0x4?