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Abstract—Scientific workloads have traditionally exploited
high levels of sparsity to accelerate computation and reduce
memory requirements. While deep neural networks can be made
sparse, achieving practical speedups on GPUs is difficult because
these applications have relatively moderate levels of sparsity
that are not sufficient for existing sparse kernels to outperform
their dense counterparts. In this work, we study sparse matrices
from deep learning applications and identify favorable properties
that can be exploited to accelerate computation. Based on these
insights, we develop high-performance GPU kernels for two
sparse matrix operations widely applicable in neural networks:
sparse matrix–dense matrix multiplication and sampled dense–
dense matrix multiplication. Our kernels reach 27% of single-
precision peak on Nvidia V100 GPUs. Using our kernels, we
demonstrate sparse Transformer and MobileNet models that
achieve 1.2–2.1× speedups and up to 12.8× memory savings
without sacrificing accuracy.

Index Terms—Neural networks, sparse matrices, graphics
processing units

I. INTRODUCTION

Deep neural network architectures are composed of large,
dense matrices used in matrix multiplication and convolutions
[1], [2]. These matrices can be made sparse with little to no
loss in model quality, leading to models that are more efficient
in terms of both the floating-point operations (FLOPs) and
parameters required to achieve a given accuracy [3]–[6].

The most common use of sparsity in deep neural networks
is to accelerate inference. In addition to the standard training
procedure, a sparsification algorithm is applied to produce a
neural network where a high fraction of the weights are zero-
valued [3], [7]–[9]. The weight matrices can then be stored in
a compressed format, and sparse linear algebra kernels can be
used to accelerate computation. In the context of generative
models, sparsity has been applied to reduce the computational
requirements of self-attention in Transformer architectures [6],
[10], [11]. In addition to these applications, sparsity can be
exploited to achieve higher predictive accuracy by training a
larger, sparse model for a fixed computational cost [12]–[14].
To make training large sparse models feasible, all computation
during training needs to operate directly on the compressed
sparse representation of the model’s weights.

The potential applications of sparsity in deep learning are
numerous. However, it is difficult to realize the benefits of
sparsity in real applications due to the lack of efficient kernels
for core sparse matrix computations like sparse matrix–matrix
multiplication (SpMM) and sampled dense–dense matrix mul-
tiplication (SDDMM) on accelerators like GPUs.

Fig. 1. Sparse matrix–matrix multiplication runtime for a weight-sparse
long short-term memory network problem. Input size 8192, hidden size
2048, and batch size 128 in single-precision on an Nvidia V100 GPU with
CUDA 10.1. Using our approach, sparse computation exceeds the performance
of dense at as low as 71% sparsity. Existing vendor libraries require 14× fewer
non-zeros to achieve the same performance. This work enables speedups for
all problems in the highlighted region.

On parallel architectures, the performance of sparse linear
algebra kernels can vary drastically with properties of the
sparse matrix such as the topology of nonzero values and level
of sparsity. Existing GPU kernels for sparse linear algebra are
primarily optimized for scientific applications, where matrices
are extremely (99%+) sparse. With the relatively moderate
levels of sparsity found in deep neural networks, these kernels
are not able to outperform their dense counterparts.

To address this issue, structure can be enforced on the
topology of nonzeros such that nonzero values are grouped
into blocks [12]–[14]. While this approach is able to recover
much of the performance achieved by dense computation, the
constraint on the location of nonzeros can significantly degrade
model quality relative to unstructured sparsity [14]–[16].

In this work, we develop an approach for computing SpMM
and SDDMM on GPUs which is targeted specifically at deep
learning applications. Our approach operates directly on the
standard compressed sparse row (CSR) format and does not
enforce any structure on the topology of nonzero values. We
make the following specific contributions:

• We conduct a large-scale study of sparse matrices found
in deep learning and identify favorable properties that can
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Fig. 2. Properties of sparse matrices from scientific computing and deep learning applications. Histograms are partially transparent to show overlapping
regions. On average, deep learning matrices are 13.4× less sparse, have 2.3× longer rows, and have 25× less variation in row length within a matrix.

be exploited to accelerate sparse computation.
• We introduce a 1-dimensional tiling scheme for de-

composing the computation across processing elements
that facilitates reuse of operands and lends itself to an
extensible implementation.

• We develop two techniques, subwarp tiling and reverse-
offset memory alignment, that enable the use of vector
memory instructions on misaligned memory addresses in
sparse data structures.

• We introduce row swizzle load balancing, an approach for
load balancing computation between processing elements
that is decoupled from the parallelization scheme.

On a large dataset of sparse matrices taken from state-of-
the-art deep neural networks, we demonstrate geometric mean
speedups of 3.58× and 2.19× over Nvidia cuSPARSE for
SpMM and SDDMM respectively on Nvidia V100 GPUs.
On the top performing problems, our kernels reach 27%
of single-precision peak. Using our kernels, we demonstrate
sparse Transformer and MobileNet models that achieve 1.2–
2.1× end-to-end speedups and 12.8× reductions in memory
usage while matching the accuracy of their dense counterparts.
Our code is open-source and available at https://github.com/
google-research/sputnik

II. SPARSE MATRICES IN DEEP LEARNING

To understand the properties of sparse matrices in deep
learning, we constructed a dataset of sparse deep neural
network weight matrices from the large-scale study of [17].
The dataset is composed of ResNet-50 [1] and Transformer
[2] models trained on ImageNet [18] and WMT14 English-to-
German [19] respectively, and includes models trained with
four different algorithms for inducing sparsity in neural net-
works. For Transformer, we limit our analysis to models that
achieve above 20 BLEU on the WMT14 English-German test
set. For ResNet-50, we include models that achieve over 70%
top-1 accuracy on the ImageNet validation set. In total, the
collection includes 3,012 matrices from 49 different models.

Our analysis focuses on three properties of the matrices: row
length (in number of nonzeros) coefficient of variation (CoV),
average row length, and sparsity. The CoV of a matrix’s row
lengths is the standard deviation of the row lengths divided
by their mean. A high CoV is indicative of load imbalance

across the rows of a sparse matrix. The average row length
captures the average amount of work that will be done on each
row of the sparse matrix. Longer row lengths are desirable
as startup overhead and one-time costs can be amortized
over more useful work. Sparsity measures the fraction of
values that are zero valued in a matrix. Depending on the
implementation, lower sparsity levels can be useful to increase
the likelihood that nonzero values in different rows fall into
the same columns, opening up opportunities for the reuse of
operands through caches.

We contrast the properties of deep learning workloads
with matrices from the SuiteSparse Matrix Collection [20],
which is made up of 2,833 sparse matrices from a wide
range of scientific workloads including circuit simulations,
computational fluid dynamics, quantum chemistry, and more.

A. Results & Analysis

Statistics for our corpus of deep learning matrices and the
SuiteSparse Matrix Collection are plotted in Figure 2. The
difference between sparse matrices from scientific workloads
and those from deep learning is considerable: on average, deep
learning matrices are 13.4× less sparse, have 2.3× longer
rows, and have 25× less variation in row length within a
matrix. We find it likely that these differences are primarily
driven by the desire to maintain high accuracy, which requires
deep neural networks with a large number of parameters.
This in turn leads to a higher number of nonzeros per row
and a lower CoV, which is inversely proportional to average
row length. For each of the metrics that we studied, deep
learning matrices exhibit favorable properties that we can take
advantage of to accelerate sparse matrix computations.

III. GRAPHICS PROCESSING UNITS BACKGROUND

This section provides a basic description GPU architecture
and terminology. Our implementation is written in CUDA and
thus we opt for the terminology used by Nvidia.

GPUs are made up of an array of streaming multiprocessors
(SMs) and GPU kernels are made up of threads that are
grouped into sets of 32 called warps. Warps are grouped
into larger sets of threads called thread blocks. The set of
thread blocks that make up a kernel is called a grid. When
a kernel is launched to the GPU for execution, each thread

https://github.com/google-research/sputnik
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Fig. 3. Hierarchical decomposition of SpMM with 1-dimensional tiling. Visualized with 4 warps in a thread block and 4 threads in a warp for brevity. In
each level of the decomposition, matrix A is a sparse matrix stored in compressed-sparse row format, marked in green and shown on the left. Matrix B is
dense, marked in blue and shown on top of the output matrix. The output matrix C is dense, marked in orange and shown in the bottom right of each level.
The dark regions at each level denote data used by the following level. Far Left: Each thread block computes a 1-dimensional tile of the output matrix. All
values from the row of sparse matrix A are needed by all threads. We use all threads in the thread block to collaboratively load values and indices from A to
shared memory where they can be quickly accessed for computation. For each column index loaded from A, the thread block will load a contiguous vector
from matrix B (marked with dark blue horizontal stripes). Center Left - Far Right: Threads process independent outputs and thus need disjoint subsets of
columns from dense matrix B. Each thread loads the values from B needed to compute it’s outputs and stores them in thread-local registers.

block is scheduled onto an SM. A wave of thread blocks is
a set of thread blocks that run concurrently on the GPU [21].
All threads within a thread block can communicate through
fast, programmer-managed, shared memory that is local to the
SM. All threads also have access to thread-local registers. The
number of thread blocks that execute concurrently on an SM is
referred to as the occupancy of the kernel. Higher occupancy is
typically desirable, as thread-level parallelism can be exploited
to hide the latency of memory and arithmetic operations. GPUs
have a large but high-latency global memory that is accessible
to all SMs, an L2 cache that is shared by all SMs, and L1
caches that are local to each SM. When a warp of threads
access global memory, GPUs try to coalesce the accesses into
as few transactions as possible.

IV. SPARSE MATRIX COMPUTATION

This section explains the operations implemented by our
SpMM and SDDMM kernels.

A. Sparse Matrix–Matrix Multiplication Operation

Our SpMM kernel implements the computation AB⇒C,
where A is sparse and stored in the standard compressed
sparse row (CSR) format. In the following sections, we refer
to matrices A, B and C as the sparse matrix, dense matrix,
and output matrix respectively.

B. Sampled Dense–Dense Matrix Multiplication Operation

The SDDMM operation is defined as AB � C⇒D, where
C and D are sparse and � denotes the element-wise product
of two matrices [22], [23]. Thanks to the element-wise scaling
with a sparse matrix, dot-products for zero-valued locations of
the output can be skipped to accelerate computation.

In sparse deep neural networks, SDDMM is necessary for a
number of key computations. For example, in a weight sparse
neural network the forward pass computes WX⇒Y , where W

is sparse. In the backward pass, the gradient w.r.t. the sparse
weights is computed as δY XT � I[W ]⇒δW , where I[W ]
is an indicator function that returns 1 in the location of the
nonzero values of the sparse matrix W . Transformer models
with sparse attention similarly compute QKT�I[Y ]⇒Z in the
forward pass, where Q and K are the query and key inputs to
the attention mechanism respectively and Y is a sparse matrix
that describes the connectivity of the attention mechanism.

These computations differ from the strict definition of
SDDMM in two ways. First, they do not require the element-
wise scaling by the sparse matrix values. Secondly, the B input
operand to the SDDMM is typically transposed. With these ap-
plications in mind, our SDDMM implements the computation
ABT � I[C]⇒D. While we specialize to the computation that
arises in deep learning, we note that our approach is easily
extensible to the general SDDMM computation 1.

C. Data Organization

To enable coalesced memory accesses into all input and
output matrices, we store dense matrices in row-major layout
and sparse matrices in CSR format [24]–[26]. We note that
computing SpMM as BA⇒C, where A is the sparse matrix
stored in compressed sparse column format and B and C are
stored column-major would be equally efficient.

V. SPARSE MATRIX–MATRIX MULTIPLICATION

This section details the design of our SpMM kernel.

A. Hierarchical 1-Dimensional Tiling

Our scheme for SpMM on GPU is diagrammed in Figure
3 and presented in CUDA pseudo-code in Figure 4. The
decomposition follows a row-splitting scheme [26], with one

1Element-wise scaling adds 1 load and 1 multiply instruction prior to stor-
ing the output. Non-transposed right-hand operand makes memory accesses
trivially coalesced and simplifies the kernel relative to the transposed case.



key difference: rather than mapping a thread block to an
entire row of the output matrix, we shard the output into 1-
dimensional tiles and map independent thread blocks to each.

The motivation for this approach stems from the fact that the
number of columns in the dense matrix can vary drastically in
deep learning applications2. Consider various neural network
architectures with sparse weight matrices and dense activa-
tions. When training RNNs this dimension corresponds to the
batch size, which is typically between 16-128 elements [27].
In Transformer architectures, this dimension is the product of
the batch size and sequence length, which can vary from 256
to over 2048 elements [2], [28]. In 1×1 convolutions, this
dimension is the product of the image height and width with
the batch size. In EfficientNet architectures, the product of the
spatial dimensions alone range from 64 to 14,400 [29].

There are three main benefits to 1-dimensional tiling. Firstly,
we can easily templatize our implementation for different tile
sizes and generate specialized kernel variants for different
regions of the problem space. Secondly, for problems with
small M and K dimensions we launch more thread blocks than
would otherwise be possible, enabling us to achieve higher
occupancy and a higher fraction of peak throughput. Lastly,
processing fixed-sized blocks enables us to aggressively unroll
loops and compute offsets and constants at compile time. We
similarly iterate through the reduction dimension in fixed-size
steps, enabling further loop unrolling and static evaluation.

B. Vector Memory Operations

Vector memory instructions are an important tool for mit-
igating bandwidth bottlenecks and decreasing the number of
instructions needed to express a computation [30]. However, it
is non-trivial to use these operations in sparse matrix kernels.

First, using vector memory instructions increases the num-
ber of values loaded simultaneously by a thread block. For
example, a thread block with a single warp using 4-wide vector
loads would request 128 floats with a single instruction. In our
1D tiling scheme, this means that some loads from a sparse
matrix row of length less than 128 would need to be predicated
off. Similarly, problems with fewer than 128 columns in the
dense matrix would execute with some threads in every thread
block predicated off for the entirety of the kernel’s execution.
These constraints limit the utility of vector memory accesses,
applied naively, to very large problems.

Secondly, vector memory accesses require that the target
values be aligned to the vector width (2 or 4 32-byte values).
For accesses into the dense matrix or output matrix this
requires that the number of columns be divisible by the vector
width such that the start of every row of values is properly
aligned. The larger issue is with loads from the sparse matrix.
With a 1-dimensional tiling or row-splitting scheme, accesses
within a thread block begin at the start of a row of values in
the sparse matrix. Because rows in a sparse matrix can have
arbitrary lengths, these initial addresses have no alignment
guarantees regardless of the problem dimensions.

2Existing work on SpMM often focuses on problems where the dense
matrix is "tall and skinny" [24]–[26].

1 template <int kBlockItemsK, int kBlockItemsX>
2 __global__ void SpmmKernel(
3 SparseMatrix a, Matrix b, Matrix c) {
4 // Calculate tile indices.
5 int m_idx = blockIdx.y;
6 int n_idx = blockIdx.x * kBlockItemsX;
7
8 // Calculate the row offset and the number
9 // of nonzeros in this thread block's row.

10 int m_off = a.row_offsets[m_idx];
11 int nnz = a.row_offsets[m_idx+1] - m_off;
12
13 // Main loop.
14 Tile1D c_tile(/*init_to=*/0);
15 for(; nnz > 0; nnz -= kBlockItemsK) {
16 Tile1D a_tile = LoadTile(a);
17 Tile2D b_tile = LoadTile(b);
18 c_tile += a_tile * b_tile;
19 }
20
21 // Write output.
22 StoreTile(c_tile, c);
23 }

Fig. 4. CUDA pseudo-code for SpMM with 1-dimensional tiling. The
output matrix is statically partitioned into 1-dimensional tiles. Independent
thread blocks are launched to compute each output tile. On each iteration of
the main loop, we load a 1-dimensional strip of the sparse matrix and a 2-
dimensional tile of the dense matrix and accumulate the vector-matrix product.
After processing all nonzero values in the row, the results are written to the
output matrix.

1) Subwarp Tiling: To address the first issue, we extend our
scheme to allow mapping of subsets of a warp (i.e., a subwarp)
to independent 1D tiles of the output. This reduces the access
width constraint by a factor of the number of subwarps used.
This also gives us the flexibility to spread threads across more
rows of the output matrix for problems with a smaller number
of columns in the dense and output matrices.

With subwarp tiling, our scheme bears some resemblance
to a standard two-dimensional tiling scheme at the warp level.
The important difference is that subwarps processing different
rows of the output matrix are not able to reuse values loaded
from the dense matrix. However, depending on the sparsity
level, accesses issued by different subwarps are likely to
exhibit locality that could be serviced through caches.

The main drawback to this approach is that rows of variable
length can result in warp divergence. We address the issue of
load imbalance between threads in a warp in section V-C.

2) Reverse Offset Memory Alignment: A simple approach
to address the second issue is to pad the rows of the sparse
matrix with zeros such that all rows are a multiple of four
in length. However, this limits the generality of the kernel.
To enable the use of vector memory instructions on arbitrary
sparse matrices, we introduce a simple trick in the setup
portion of the kernel (AKA, the prelude): after loading the
row offset and calculating the row length, each thread block
decrements its row offset to the nearest vector-width-aligned
address and updates the number of nonzeros that it needs to
process. To maintain correctness, the threads mask any values
that were loaded from the previous row prior to accumulating
the result in the first iteration of the main loop.

We refer to this trick as reverse offset memory alignment
(ROMA). Relative to the explicit padding scheme, ROMA



does not change the amount of work done by each thread
block. The key difference is that instead of explicitly padding
the matrix data structure, ROMA effectively pads the rows of
the sparse matrix with values from the row before it3.

ROMA can be implemented very efficiently. The alignment
process adds 6 PTX instructions in the kernel prelude: 2
bitwise and, 1 add, 1 setp (set predicate), and 2 selp
(select based on predicate). The masking process adds 1 setp
and 2 str.shared (shared memory store) instructions to the
first iteration of the main loop.

These techniques for enabling the use of vector memory
instructions on sparse matrices are visualized in Figure 5.
Figure 8 shows CUDA pseudo-code for our SpMM kernel with
the necessary modifications for subwarp tiling and ROMA.

C. Row Swizzle Load Balancing

A number of approaches for handling load imbalance in
sparse computation have been proposed [23], [26], [32].
However, existing approaches tightly couple load balancing
to the parallelization scheme. While these schemes achieve
good performance when load imbalance is significant, they
typically introduce computational irregularity that can damage
performance on more regular problems problems [26]. How-
ever, despite the regularity of sparse matrices found in DNNs,
our kernels still suffer from load imbalance (see Figure 7).

When mapping sparse matrix operations to GPUs, there are
two potential sources of load imbalance [26].

(a) Load imbalance between warps or thread blocks:
Some warps/thread blocks may be assigned less work
than others. This can lead to some SMs sitting idle while
others do useful work.

(b) Load imbalance within a warp or thread block: Some
threads within a warp may be assigned less work than
others. This can lead to warp divergence and inefficient
use of math units and memory bandwidth within an SM.

To address these issues, we make two observations. First,
many units of work of varying sizes will be scheduled onto
each SM over the course of kernel execution. Secondly, we
can control what work is assigned to which SM by changing
which threads are assigned to process each unit of work. Based
on these observations, we can ensure the workload is balanced
across the processing elements by remapping where work is
scheduled such that each processing element is assigned a
roughly equal amount of work. We refer to this remapping
procedure as a row swizzle4. To address both sources of load
imbalance, we introduce a two level re-ordering of work:

(a) Row Binning: Given an understanding of how thread
blocks are mapped to SMs, alter the tile mappings such
that each SM receives approximately the same amount of

3Note that the first row of the sparse matrix is guaranteed to be vector
aligned, as all CUDA memory allocation routines allocate memory with at
least 256-byte alignment [31]

4In reference to the similar approach of thread block swizzles, where thread
blocks are reordered to improve cache reuse [33] as well as the fact that the
reordering in our case is at the granularity of an output row.

Fig. 5. Techniques for enabling the use of vector memory operations on
sparse matrix data structures. Top: Subwarp tiling maps subsets of a warp
to independent 1-dimensional tiles of the output. By splitting warp accesses
across multiple rows we reduce the amount of wasted work. Rows assigned to
a warp/subwarp are marked in blue. Load addresses are indicated with arrows
and predicated loads are indicated with "X". The hashed region denotes the
values loaded by a single set of loads across the warp/subwarp. Bottom:
Reverse offset memory alignment backs up the address of each row to the
nearest aligned address. Values from the previous row are masked in the first
loop iteration to maintain correctness. Misaligned addresses are underlined.
Modified row start addresses are marked with circles and row index.

work to do. This helps to address load imbalance between
warps/thread blocks.

(b) Row Bundling: For kernels where warps are split across
multiple rows of the sparse matrix, alter the tile mappings
such that each subwarp receives approximately the same
amount of work to do. This helps address load imbalance
within a warp.

1) Volta Thread Block Scheduler: The binning of rows
such that SMs receive roughly the same amount of work is
complex to implement, as it depends on the GPUs thread
block scheduling algorithm, which is not public knowledge.
We reverse engineer the Nvidia Volta thread block scheduler,
following the same general approach as [34].

Overall, the Volta thread block scheduler is much simpler
than the Fermi thread block scheduler. Thread blocks in the
first wave are assigned to SMs based on their block index:

sm_idx = 2(block_idx mod 40) +
block_idx

40
mod 2

where block_idx is calculated:

block_idx = blockIdx.x+ blockIdx.y ∗ gridDim.x

This mapping distributes thread blocks round-robin over the
SMs. After the first wave, thread blocks are scheduled in order
of block_idx as resources become available.

2) Row Binning & Row Bundling Heuristics: A simple
heuristic for binning rows is to select the first wave to be the
heaviest N row bundles and then pair the following N heaviest
row bundles with the previous bundles in reverse order of
heaviness. To bundle the rows by size, we can greedily create
bundles from consecutive rows ordered by size.



Given the online thread block scheduling algorithm used by
Nvidia GPUs, these two heuristics can be implemented with a
sort of the row indices by row length. Given a sorted array of
the row indices in order of decreasing size, bundles consist of
blocks of consecutive row indices. The first wave of bundles
are scheduled round-robin across the SMs, and remaining
bundles are scheduled in decreasing order of heaviness as
bundles complete execution. We note that this heuristic for
row binning is similar to guided self-scheduling [35].

An advantage of this approach is that we do not need to
know the target bundle size to group similarly sized rows.
This means that the heuristic does not need to have insight
into any kernel selection heuristics used under the hood.

Since the topology of sparse matrices in DNNs is typically
updated infrequently, the cost of the argsort of the row
indices by their row lengths can be amortized over many
training steps [6], [13], [17]. Implementing the swizzle in
the kernel also requires the addition of a single load during
the kernel prelude. The memory required to store the sorted
indices for the matrix is negligible, as the number of rows
in the matrix is typically much smaller than the number of
nonzeros in the matrix for our target applications.

Figure 6 shows the high-level scheme for row swizzle load
balancing. Figure 7 shows the performance of row swizzle load
balancing for a sample problem as load imbalance increases.
Figure 8 shows CUDA pseudo-code for our SpMM kernel with
the necessary modifications for row swizzle load balancing.

D. Implementation Details

This section details additional low-level optimizations we
applied to achieve good performance.

1) Index Pre-Scaling: In each iteration of the main loop
of our kernel, we load the sparse matrix values and indices
and store them in shared memory. Each index will be used by
all threads to load from the dense matrix. To avoid redundant
work each time an index is loaded, we have each thread scale
its portion of the indices prior to storing to shared memory.

2) Residue Handling: Our kernel processes as many full
tiles of nonzero values as possible and then executes a residue
handler to accumulate the remaining products. As sparse
matrix row lengths are rarely divisible by the tile size, it’s
important that the residue handling code is highly efficient.

To maximize shared memory bandwidth and minimize bank
conflicts, we use 128-bit shared memory load instructions
whenever possible [36]. This is trivial for the main loop,
but difficult for the residue handling code as the number of
nonzeros remaining is not necessarily divisible by four. To
enable the use of wide shared memory instructions, we zero
the shared memory buffers used for sparse matrix values and
indices prior to loading the residual values and indices. We
then split the loops for dense matrix loading and computation
into two, and unroll the inner loop 4× without bounds checks.

3) Mixed Precision: In addition to standard 32-bit floating-
point kernels, we extended our SpMM implementation to
support mixed-precision computation, as is commonly used in
deep learning [37]. Our kernels support 16-bit floating-point

Fig. 6. Row swizzle approach for load balancing sparse matrix compu-
tation. Rows processed by the same warp are marked with the same pattern
and color. We introduce a layer of indirection that re-orders when rows are
processed. To balance work between threads in a warp, we group rows of
similar length into bundles. To balance work between SMs, we process row
bundles in decreasing order of size.

Fig. 7. Sparse matrix–matrix multiplication runtime with varying levels
of load imbalance. M=8192, K=2048, N=128, sparsity=75% in single-
precision on an Nvidia V100 GPU. Throughput measured as a percent of
the throughput achieved with a sparse matrix where all rows have the same
number of nonzero values. The gray line labeled "Neural Networks" marks
the average CoV of sparse matrices in our dataset of deep neural networks.
With this problem configuration, performance of the standard row ordering
degrades to 47.5% of throughput with a perfectly balanced sparse matrix. Our
row swizzle load balancing technique maintains 96.5% of the throughput with
a perfectly balanced sparse matrix. We document the performance of our row
swizzle load balancing technique further in Section VII-B

input/output data and use 16-bit integer indices for the sparse
matrix meta-data. Inside our kernel, we convert FP16 data to
FP32 and issue FP32 fused multiply-add instructions, as is
standard. We convert the final outputs from FP32 to FP16
before writing the result. Due to the reduced representational
capacity of 16-bit integers, we do not perform our index pre-
scaling optimization for mixed-precision kernels.

VI. SAMPLED DENSE–DENSE MATRIX MULTIPLICATION

This section details the design of our SDDMM kernel.

A. Hierarchical 1-Dimensional Tiling

We use the same 1D tiling scheme for SDDMM as we do for
SpMM, with two main differences. First, instead of mapping
thread blocks to 1D regions of the output we map them to 1D
strips of consecutive nonzeros. Because the output is sparse,
this ensures better work distribution across thread blocks and is
simpler to implement. Because the number of nonzeros in each
row cannot be inferred without inspecting the sparse matrix,
we launch the maximum number of thread blocks that could
be needed. On startup, each thread block calculates if it has
work to do and returns early if it is not needed. An alternative



approach would be to use dynamic parallelism [38]. However,
we do not observe significant overhead from launching extra
thread blocks in our benchmarks. For SDDMM targeting
problems with very high sparsity, it’s possible that dynamic
parallelism would lead to better performance.

The second difference in our work decomposition is caused
by the need to perform the computation with the transpose
of the right-hand operand. With the dense matrices stored in
row-major layout, naively partitioning the outputs across the
threads would result in strided, uncoalesced memory accesses
to the right-hand matrix. To avoid this issue, we alter our
scheme so that each thread mapped to an output tile computes
a portion of the results for all outputs in that tile. We then
perform a reduction between these threads using warp shuffle
instructions to compute the final results for each thread.

An alternative to this approach would be to perform the
transpose of values loaded from the right-hand matrix in
shared memory prior to computation. While this would use less
registers per-thread, it would double shared memory usage.
On Nvidia Volta GPUs shared memory and L1 cache use the
same storage. Thus, using more shared memory reduces the
size of the L1 cache. For these kernels, we found L1 cache
capacity to be important for performance and thus decided
against performing an explicit shared memory transpose.

B. Vector Memory Operations

Because both inputs are dense, it is trivial to use vector
loads/stores for SDDMM problems where the inner dimension
is divisible by the vector width. For all problems, we use scalar
loads/stores on the sparse matrix. These operations only occur
at the beginning and end of the kernel and do not significantly
affect performance. To enable the use of vector loads/stores
on a wider range of problems we process output tiles with
subwarps, as explained in the context of SpMM.

C. Implementation Details

While we do use subwarp tiling to enable the use of vector
memory instructions on a wider range of problems, load
balancing in SDDMM is less critical due to the fact that all
dot-products to be computed are of equal length. Additionally,
problems from deep neural networks commonly have a dot-
product length that is divisible by the SIMT width, making
efficient residue handling less critical than in SpMM. For
the SDDMM residual computation we use the same loop
structure as the main loop and do not apply our loop-splitting
optimization to enable wide shared memory loads.

VII. EXPERIMENTS

This section provides empirical results and analysis of our
SpMM and SDDMM kernels. For SpMM we use a kernel
selection heuristic where we select the n-dimension tile size
to be N , rounded up to a power of 2, up to a maximum of 64.
For SDDMM we use an n-dimension tile size of 32. For both
kernels we use the widest vector memory operations possible.
All benchmarks were conducted with CUDA 10.1.

1 template <int kBlockItemsY, int kBlockItemsK,
2 int kBlockItemsX>
3 __global__ void SpmmKernel(
4 SparseMatrix a, Matrix b, Matrix c) {
5 // Subwarp tiling: calculate tile indices
6 // for this subwarp.
7 int m_idx = blockIdx.y * kBlockItemsY +
8 threadIdx.y;
9 int n_idx = blockIdx.x * kBlockItemsX;
10
11 // Row swizzle: load this subwarp's row
12 // index from the pre-ordered indices.
13 m_idx = a.row_indices[m_idx];
14
15 // Calculate the row offset and the number
16 // of nonzeros in this thread block's row.
17 int m_off = a.row_offsets[m_idx];
18 int nnz = a.row_offsets[m_idx+1] - m_off;
19
20 // ROMA: align the row pointer so that we
21 // can use vector memory instructions.
22 MemoryAligner aligner(m_off, nnz);
23 nnz = aligner.AlignedNonzeros();
24 m_off = aligner.AlignedRowOffset();
25
26 // First loop iteration.
27 Tile1D c_tile(/*init_to=*/0);
28 if (nnz > 0) {
29 Tile1D a_tile = LoadTile(a);
30 aligner.MaskPrefix(a_tile);
31 Tile2D b_tile = LoadTile(b);
32 c_tile += a_tile * b_tile;
33 nnz -= kBlockItemsK;
34 }
35
36 // Main loop.
37 for(; nnz > 0; nnz -= kBlockItemsK) {
38 Tile1D a_tile = LoadTile(a);
39 Tile2D b_tile = LoadTile(b);
40 c_tile += a_tile * b_tile;
41 }
42
43 // Write output.
44 StoreTile(c_tile, c);
45 }

Fig. 8. CUDA pseudo-code for SpMM with subwarp tiling, ROMA and
row swizzle load balancing. To enable the use of vector memory instructions
on a wider range of problem configurations, subsets of a warp are mapped to 1-
dimensional output tiles, adding a template parameter that denotes the number
of subwarps used (lines 1-2) and altering the index calculations (lines 5-8).
To decrease load imbalance, we alter the order in which rows are processed
(lines 11-13). To enable the use of vector memory instructions on misaligned
addresses in sparse matrices, we back-up the row pointer to the nearest aligned
address (lines 20-24). To maintain correctness, we mask any values loaded
from the previous row in the first iteration of the main loop (line 30).

A. Kernel Benchmarks

1) Sparse Matrix Dataset: We evaluate the performance of
our SpMM and SDDMM kernels by benchmarking on our
dataset of sparse matrices from deep neural networks. For
each of the 3,012 matrices in the dataset, we benchmark with
both training and inference batch sizes. For SDDMM, we
benchmark the problem corresponding to the gradient with
respect to the sparse weight matrix. We benchmark convolu-
tion operations found in ResNet-50, as an im2col transform
on the input data followed by SpMM or SDDMM [39]. We
do not include the time of the im2col transform in our
benchmarks. For ResNet-50 benchmarks with inference batch
size, we pad the batch dimension to the nearest multiple of four



Fig. 9. Benchmarks on our dataset of sparse matrices from deep neural networks. Runtime (left y-axis) and throughput (right y-axis) plotted with
increasing problem size for each kernel and precision. Benchmarked on an Nvidia V100 GPU. Top Left: SpMM benchmarks in single-precision. Across
all problems, our approach achieves a geometric mean speedup of 3.58× and a peak speedup of 14.2× over Nvidia cuSPARSE. Bottom Left: SDDMM
benchmarks in single-precision. Across all problems, our approach achieves a geometric mean speedup of 2.19× and a peak speedup of 6.58× over Nvidia
cuSPARSE. Right: SpMM benchmarks in mixed precision with 16-bit data and 32-bit computation. Across all problems, our approach achieves a geometric
mean speedup of 5.97× and a peak speedup of 297.5× over Nvidia cuSPARSE.

to enable vector memory instructions. All benchmarks are per-
formed on an Nvidia V100 GPU. We use Nvidia cuSPARSE’s
cusparseSpMM and cusparseConstrainedGeMM as
the baselines for our SpMM and SDDMM benchmarks re-
spectively. Both cuSPARSE kernels use column-major layouts
for dense matrices and CSR format for sparse matrices.
Because cusparseConstrainedGeMM does not support
transposition of the right-hand operand, we explicitly transpose
the matrix using cuBLAS and include the transposition in our
timing. We benchmark all problems on a single Nvidia V100
GPU. The results of all benchmarks are presented in Figure
9. We present statistics for these benchmarks in Table I.

Across all benchmarks, our SpMM and SDDMM ker-
nels show significant advantages over Nvidia cuSPARSE.
For single-precision SpMM, our kernel achieves a geometric
mean speedup of 3.58× and reaches 4.29TFLOPs, represent-
ing 27.3% of single-precision peak. Our kernel outperforms
cuSPARSE on 99.75% of the problems in our dataset. For
single-precision SDDMM, our kernel achieves a geometric
mean speedup of 2.19× and reaches 4.11TFLOPs, represent-
ing 26.2% of single-precision peak. Our kernel outperforms
cuSPARSE on 93.34% of the problems in our dataset.

With mixed-precision, our SpMM kernel achieves a geo-
metric mean speedup of 5.97× over Nvidia cuSPARSE and a
peak throughput of 5.57TFLOPs. While our kernel uses 16-
bit integers for the sparse matrix meta-data, cuSPARSE only
supports 32-bit indices. We find it likely that this contributes
to the increased performance gap. Our mixed-precision SpMM

outperforms cuSPARSE on 99.7% of the problems in our
dataset. We note that cuSPARSE’s mixed-precision SpMM
performs inconsistently on some problems, leading to extreme
slowdowns of as much as 297.5× relative to our kernel.

2) Sparse Recurrent Neural Networks: This section evalu-
ates the performance of our kernels relative to the recently
proposed techniques of [26] and [23]. The SpMM kernel
provided by [26] only supports problems with batch sizes
divisible by 32. [23] wrote SpMM and SDDMM kernels for
batch size 32 and 128 and also require that the number of
rows in the sparse matrix be divisible by 256. Given these
constraints, we opt to benchmark these kernels on a dataset of
problems from recurrent neural networks, where the problem
configurations supported by the kernels from [26] and [23] are
realistic for deep neural networks. We benchmark each kernel
on RNN, gated recurrent unit (GRU) [40], and long short-term
memory network (LSTM) [41] problems with sparse weights.
We generated sparse matrices with random uniform sparsity.
We benchmarked problems with state sizes 1k, 2k, 4k, and
8k, sparsities 70%, 80%, and 90% and batch sizes 32 and
128. All benchmarks were performed on an Nvidia V100
in single-precision. We do not include the time require for
the pre-processing step used by the Adaptive Sparse Tiling
(ASpT) approach of [23] in our benchmarks. We benchmark
the row-splitting kernel from [26], as all of our benchmarks
are beyond the threshold of average row length that the authors
use to select between their row-splitting and nonzero-splitting
kernels. Benchmark results are presented in Figure 10.



Fig. 10. Benchmarks on sparse recurrent neural neural network problems. Each problem is labeled M/K/N/sparsity. All benchmarks taken on an Nvidia
V100 GPU in single-precision. Top: SpMM benchmarks. Compared to ASpt [23], our kernel achieves a geometric mean speedup of 1.56× and a peak speedup
of 2.4×. Compared to the merged-based approach of [26], our kernel achieves a geometric mean speedup of 1.59× and a peak speedup of 2.15×. Compared
to cuSPARSE, our kernel achieves a geometric mean speedup of 3.47× and a peak speedup of 4.45×. Bottom: SDDMM benchmarks. Our kernel performs
competitively with the adaptive sparse tiling approach of [23], achieving 92% of the throughput on average while using 3× less memory and no-reordering
of the sparse matrix. Compared to cuSPARSE, our kernel achieves a geometric mean speedup of 2.69× and a peak speedup of 3.51×.

For SpMM, our approach significantly outperforms other
methods. Our approach achieves geometric mean speedups
of 1.56×, 1.59×, and 3.47× over MergeSpmm [26], ASpT,
and cuSPARSE respectively. For SDDMM, our approach sig-
nificantly outperforms cuSPARSE and achieves performance
on-par with ASpT. Our approach achieves geometric mean
speedups of 2.69× over cuSPARSE and 92% of the throughput
of ASpT on average. While ASpT achieves good performance
for SDDMM, it has a number of limitations. First, including
the original CSR matrix, ASpT requires 3× the memory
to store the re-ordered matrix as well as meta-data needed
for tiled execution. Second, the author’s implementation uses
different re-orderings of the sparse matrix for SpMM and
SDDMM problems. For deep learning applications, this means
that gradients calculated with respect to a sparse matrix will
be in a different order than the sparse matrix used in the
forward pass. In order to perform gradient updates or continue
backpropagation, applications must pay the cost of re-ordering
the sparse matrix on every training iteration.

B. Ablation Study

Table II shows the results of our ablation study on the
optimizations we propose for each kernel. We benchmark both
kernels on our dataset of sparse matrices from DNNs with
both training and inference batch sizes. We report statistics
for each model and batch size separately to show the effect of
each technique on different portions of the problem space.

Across these benchmarks we find that techniques like row
swizzle load balancing and residue unrolling are robust to
varying problem configurations, while vector memory instruc-
tions show large benefits for compute heavy problems and less
benefit for small problems. One outlier is the superior perfor-

mance of scalar memory operations for SDDMM. With the
small weight matrices found in these models, these problems
are largely occupancy-bound and thus benefit from the fact
that our scalar kernels process fewer outputs per thread. On
the dataset of RNN problems studied in Section 10, we observe
our vector kernel achieve a geometric mean speedup of 2.45×
over the scalar variants. These results indicate that better kernel
selection heuristics could greatly improve performance.

In addition to these techniques, our kernels benefit from the
use of favorable data layouts and an efficient implementation
enabled by our 1D tiling scheme.

C. Application: Sparse Transformer

Transformer models are a popular sequence modeling archi-
tecture, having been used to achieve state-of-the-art results on
tasks such as machine translation [2], language modeling [42],
and image generation [28]. Transformer models are made up of
stacked layers, each of which contains a multi-head attention
mechanism followed by a small fully-connected network. The
attention mechanism used in Transformer takes in a query Q,
key K, and value V and computes a weighted average of the
input values based on the similarity of Q and K:

Attention(Q,K, V ) = Softmax(
QKT

√
dk

)V

Where dk is the number of features for each element of
the sequence. Despite the effectiveness of this architecture,
QKT computes the similarity of each token in the sequence
with all other tokens, requiring computation and memory that
grows quadratically with the sequence length. To alleviate this
issue, recent work has explored the use of sparsity in the
attention mechanism [6], [10], [11]. With sparse attention, we
compute a subset of the outputs of QKT and then multiply



TABLE I
SPARSE MATRIX DATASET BENCHMARK RESULTS.

SPEEDUPS REPORTED RELATIVE TO NVIDIA CUSPARSE.

Kernel Single-Precision Mixed-Precision
SpMM SDDMM SpMM

Geo. Mean Speedup 3.58× 2.19× 5.97×
Peak speedup 14.2× 6.58× 297.5×

Peak throughput (TFLOPs) 4.29 4.11 5.57

the sparse output by V . With unstructured sparsity, these
operations correspond to an SDDMM followed by an SpMM.

1) Experimental Setup: We trained a Transformer with
sparse attention on the ImageNet-64x64 image generation
dataset which has a sequence length of 12,288. Our model
consists of 3 layers with 8 attention heads each, a hidden
dimension of 1,024 and a filter size of 4,096 in the fully-
connected network. We trained our models with a batch size of
8 for 140,000 training steps. For our sparse model, we simulate
sparsity during training and convert to a sparse representation
for benchmarking. While we train on an image generation task,
we note that this architecture can be applied to other sequence
learning tasks like language modeling without modification.

For our sparse model, we generated attention masks with a
dense band of size 256 along the diagonal and random sparsity
off-diagonal sampled with probability inversely proportional to
the distance from the diagonal. We set off-diagonal sparsity
to 95%. The sparse attention mask stays the same over the
course of training and is shared by all attention heads and
layers. The attention mask used by our model is visualized
in Figure 11. We additionally wrote a kernel that computes
the softmax function on a sparse matrix. For each model, we
benchmark the forward pass in single-precision.

2) Results & Analysis: Benchmark results are reported in
Table III. On a V100 GPU, our sparse model achieves a
2.09× speedup and 12.8× memory savings over the standard
Transformer while matching accuracy. We report accuracy in
bits per dimension, as is standard for this task. Note that lower
bits per dimension is desirable. In addition to our results on
V100, we exploit the memory savings of our sparse model to
benchmark on an Nvidia 1080. On a significantly less powerful
GPU, our sparse model is able to process 32,039 tokens per
second while the standard Transformer runs out of memory.
The memory savings of the sparse Transformer could also be
used to train a much larger model, leading to higher accuracy.

D. Application: Sparse MobileNetV1

MobileNetV1 is an efficient convolutional neural network
for computer vision tasks [43]. While originally designed for
resource constrained settings, MobileNetV1 has been found to
be highly efficient across platforms and has been influential in
the design of computer vision models [29], [44], [45].

MobileNetV1 is made up of alternating depthwise and 1×1
convolutions. Each convolution is followed by batch normal-
ization [46] and a ReLU non-linearity. MobileNetV1 defines
a range of models with size controlled by a width multiplier.
The 1×1 convolutions in these models are responsible for the
large majority of the FLOPs and can be computed as matrix
multiplication if the input data is stored in CHW format.

TABLE II
ABLATION STUDY FOR OUR SPMM AND SDDMM KERNELS.

PERFORMANCE MEASURED AS A PERCENT OF THE PERFORMANCE OF OUR
COMPLETE KERNELS, AVERAGED ACROSS ALL BENCHMARKS.

SpMM
Model Transformer Transformer ResNet-50 ResNet-50

Batch Size 1 8 1 256
-Load Balancing 96.1% 88.9% 91.7% 78.5%

-Vector Inst. 100.1% 80.9% 87.9% 64.8%
-Residue Unroll 92.0% 94.1% 87.8% 92.6%
-Index Pre-Scale 100.6% 100.6% 98.2% 100.3%

SDDMM
Model Transformer Transformer ResNet-50 ResNet-50

Batch Size 1 8 1 256
-Load Balancing 101.1% 97.1% 100.9% 96.8%

-Vector Inst. 98.3% 132.0% 120.2% 170.6%

1) Experimental Setup: We introduce sparsity into the 1×1
convolutions of MobileNetV1 using magnitude pruning [5].
We prune all models to 90% sparsity. We leave the first layer
dense, as we found it to be bandwidth bound by the activation
matrix and thus saw less benefits from weight sparsity. We
trained our baseline models on the ImageNet [18] dataset with
32 accelerators for 100 epochs. As we target efficient inference
in the regime where inference costs outweigh training costs,
we increase training time for our sparse models by 10× which
helps the sparse models converge while being pruned.

At inference time, batch normalization can be fused into
the preceding linear operation. We do this for all depthwise
and 1×1 convolutions. For depthwise convolution, we wrote
kernels that support fused bias and ReLU operations. We sim-
ilarly fuse bias and ReLU into our sparse 1×1 convolutions.
For the 1×1 convolutions in our dense baselines we use Nvidia
cuBLAS, which is backed by highly-tuned assembly kernels.
We additionally wrote a fused bias + ReLU kernel, which we
use following these linear operations. For our sparse models,
we use an oracle kernel selector for four 1×1 convolutions
where our heuristic was sub-optimal. For each model, we
benchmark inference in single-precision on an Nvidia V100
GPU with a batch size of 1 image, as is common in online
inference applications like self-driving cars.

2) Results & Analysis: The results of our benchmarks are
shown in Figure 12 and in Table IV. Across the board, our
sparse models offer speedups of 21-24% for a given accuracy,
or equivalently, 1.1% higher accuracy for the same throughput.

Because of the accuracy loss from pruning, our sparse
models are wider than the dense ones they match accuracy
with. Increased width also increases the cost of the non-
sparse operations relative to those in the dense baseline. Better
pruning algorithms would help alleviate this and enable further
speedups. Additionally, the depthwise convolutions become a
significant bottleneck after the 1×1 convolutions are pruned.
Tuning these kernels would yield further gains for our sparse
models relative to their dense counterparts.

VIII. RELATED WORK

[47] and [25] propose efficient SpMM kernels based on
alternative sparse matrix formats designed for GPUs [48],
[49]. [26] discuss the design of high-performance SpMM on



Fig. 11. Transformer attention mechanism connectivity. The upper diago-
nal is masked so that tokens only attend to those that came before them. Left:
Dense all-to-all attention. Right: Sparse attention with a small dense band and
random off-diagonal sparsity sampled with probability inversely proportional
to distance from the diagonal.

TABLE III
SPARSE TRANSFORMER RESULTS

Model Transformer Sparse Transformer
Bits Per Dimension 3.76 3.77

V100 Throughput (tokens/s) 32,477 67,857
Memory Usage (GB) 9.88 0.77

1080 Throughput (tokens/s) out-of-memory 32,039
Memory Usage (GB) out-of-memory 0.88

GPUs. We compare to their approach for computing SpMM in
Section VII-A and reference their taxonomy for SpMM design
throughout the text. [23] propose an adaptive tiling technique,
where CSR matrices are partitioned into sets of rows. Within
each set, the columns are re-ordered such that columns with
more nonzeros are grouped. These "heavy" groups are pro-
cessed together and exploit tiled execution to enable more
reuse of operands. The remaining columns are processed with
a standard row-splitting scheme. We benchmark and discuss
limitations of this approach in Section VII-A.

[50] implement an efficient direct sparse convolution for
CPUs and demonstrate performance gains relative to dense
baselines. [51] develop a technique for inducing sparsity in
Winograd convolutions [52] and design and efficient imple-
mentation for CPUs. [16] design efficient SpMM kernels for
CPUs and demonstrate significant performance improvements
for highly efficient neural networks on mobile processors.

[13] and [15] enforce different forms of structure on sparse
matrices to enable efficient mapping to GPUs. [13] develop
efficient GPU kernels for block-sparse matrices and apply
them to neural networks on a range of different tasks. [15]
propose fixing the number of nonzeros in small regions of the
sparse matrix to balance between performance and accuracy
loss from enforcing structure on the topology of nonzeros.

IX. DISCUSSION & CONCLUSION

In addition to the kernels we discuss, training DNNs re-
quires the computation ATB⇒C, where AT is the transpose
of a sparse matrix. It’s difficult to fuse the transpose into
the SpMM for CSR matrices. However, for DNN training it’s
possible to cache the row offsets and column indices for AT

when the sparse matrix topology is updated and perform the
transpose as an argsort of the matrix values. Alternative

Fig. 12. MobileNetV1 accuracy-runtime tradeoff curves. Sparse modes are
more efficient, achieving speedups of 21-24% for a given accuracy across all
model sizes, or equivalently, ~1.1% higher accuracy for the same throughput.

TABLE IV
SPARSE MOBILENETV1 RESULTS

Model Width Accuracy Throughput (frames/s)

Dense
1 72.7% 2,518

1.2 73.8% 2,046
1.4 74.8% 1,729

Sparse

1.3 72.9% 2,874
1.4 73.3% 2,706
1.5 73.8% 2,537
1.6 74.1% 2,366
1.7 74.4% 2,226
1.8 74.9% 2,095

sparse matrix formats are an interesting direction to enable
transposed and non-transposed computation [53], [54]

On large problems, the performance of our kernels is limited
by shared memory bandwidth. One direction for alleviating
this bottleneck is to exploit reuse of values loaded from the
right input across multiple rows of the left input matrix.

While our kernels are highly efficient, they are not able
to take advantage of dedicated matrix-multiply hardware. For
unstructured sparsity, it’s possible that unpacking sparse tiles
in shared memory could enable the use of these operations.
New advances in hardware are likely to enable this further
[55]. Despite model quality loss, it remains possible to exploit
this hardware with vector and block sparsity [12], [13], [16].

In this work, we demonstrate that the sparse matrices found
in deep neural networks exhibit favorable properties that can
be exploited to accelerate computation. Based on this insight,
we design high-performance SpMM and SDDMM kernels
targeted specifically at deep learning applications. Using our
kernels, we demonstrate sparse Transformer and MobileNet
models that achieve 1.2–2.1× speedups and up to 12.8×
memory savings without sacrificing accuracy. We hope that
our findings facilitate better support for sparsity in deep
learning frameworks and more broadly enable widespread use
of sparsity in deep learning.
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