
ObliDB: Oblivious Query Processing
for Secure Databases

Saba Eskandarian
Stanford University

saba@cs.stanford.edu

Matei Zaharia
Stanford University/Databricks

matei@cs.stanford.edu

ABSTRACT
Hardware enclaves such as Intel SGX are a promising technology for
improving the security of databases outsourced to the cloud. These
enclaves provide an execution environment isolated from the hyper-
visor/OS, and encrypt data in RAM. However, for applications that
use large amounts of memory, including most databases, enclaves
do not protect against access pattern leaks, which let attackers gain
a large amount of information about the data. Moreover, the naı̈ve
way to address this issue, using Oblivious RAM (ORAM) primitives
from the security literature, adds substantial overhead.

A number of recent works explore trusted hardware enclaves as
a path toward secure, access-pattern oblivious outsourcing of data
storage and analysis. While these works efficiently solve specific
subproblems (e.g. building secure indexes or running analytics
queries that always scan entire tables), no prior work has supported
oblivious query processing for general query workloads on a DBMS
engine with multiple access methods. Moreover, applying these
techniques individually does not guarantee that an end-to-end work-
load, such as a complex SQL query over multiple tables, will be
oblivious. In this paper, we introduce ObliDB, an oblivious database
engine design that is the first system to provide obliviousness for
general database read workloads over multiple access methods.

ObliDB introduces a diverse array of new oblivious physical
operators to accelerate oblivious SQL queries, giving speedups
of up to an order of magnitude over naı̈ve ORAM. It supports a
broad range of queries, including aggregation, joins, insertions,
deletions and point queries. We implement ObliDB and show that,
on analytics workloads, ObliDB ranges from 1.1–19× faster than
Opaque, a previous oblivious, enclave-based system designed only
for analytics, and comes within 2.6× of Spark SQL, which provides
no security guarantees. In addition, ObliDB supports point queries
with 3–10ms latency, which is comparable to index-only trusted
hardware systems, and runs over 7× faster than HIRB, a previous
encryption-based oblivious index system that supports point queries.

PVLDB Reference Format:
S. Eskandarian and M. Zaharia. ObliDB: Oblivious Query Processing
for Secure Databases. PVLDB, 13(2): 169-183, 2019.
DOI: https://doi.org/10.14778/3364324.3364331

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 13, No. 2
ISSN 2150-8097.
DOI: https://doi.org/10.14778/3364324.3364331

1. INTRODUCTION
Many organizations outsource their databases to the public cloud

to take advantage of its cost efficiency, high availability, and con-
venience. Due to the sensitivity of this data, both users and cloud
providers would like strong privacy and security guarantees, ideally
protecting against both external attackers and insiders that breach
the cloud provider’s security [13, 19, 75]. To address this problem,
researchers have proposed approaches including property preserving
encryption [35, 56, 57], trusted hardware [4, 10, 84], and algorithms
to run specific computations securely [53, 78, 81], giving various
tradeoffs between security, generality, and performance.

One of the most promising practical approaches to increase se-
curity is the hardware enclave [26, 27]. These enclaves provide
an environment where a remotely verifiable piece of code can
run without interference from the hypervisor and OS, accessing
a small amount of private enclave memory and making upcalls to
the operating system for I/O. Increasing availability of hardware
enclaves has further spurred interest in strong cloud security guar-
antees [26, 27]. Enclaves are already available on many recent
CPUs [6, 26] and will soon be offered on Microsoft and Google’s
public clouds [58, 64], making them a powerful technology to inves-
tigate for secure database hosting [60].

Unfortunately, although enclaves are powerful, they leave open
one key threat: access pattern attacks. Applications that use an
enclave to manage large amounts of data must still access data
through the OS (e.g., to read new memory pages into the enclave
or access the disk), so an attacker that controls the OS can see
the pattern of addresses being accessed. This leaks a great deal of
information, allowing attackers to learn details of both the data itself
and users’ queries on the data [39, 41, 54, 82]. The special case of
encrypted databases has a long history of surprising leakage at the
hands of access pattern attacks [3, 20, 36, 39, 42, 46, 59, 83].

In response to this threat, research has begun to press toward
the goal of general-purpose oblivious (access pattern-hiding) SQL
databases using hardware enclaves. The generic approach to estab-
lishing obliviousness uses Oblivious RAM (ORAM) [37,73], which
guarantees that any two sets of access patterns are indistinguishable
from each other, so long as they are of the same length. Unfor-
tunately, conventional query processing algorithms vary both the
addresses and total number of memory accesses depending on data
and queries, rendering generic use of ORAM alone insufficient. PO-
SUP [40] and Oblix [49] explore oblivious indexes over encrypted
data using specialized ORAM constructions as building blocks, but
do not support general queries. Moreover, oblivious indexes alone
do not fully solve the security problem: thus, an attacker can see
how many accesses to an index occurred during a query operator.

On the other hand, Cipherbase [4] and Opaque [84] propose
schemes that hide access patterns, but they are limited to workloads

169

that scan entire tables. For example, Opaque relies on oblivious
sorts over the entire dataset. These systems are not efficient for more
general workloads that may also include point queries. Attempts to
support general workloads, such as Obladi [28] and StealthDB [77],
also lack key features – Obladi does not support indexes and requires
operations to be processed in batches, and StealthDB does not
provide integrity or hide access patterns to indexes. Thus, prior
solutions do not provide algorithms for a general-purpose DBMS
that combines queries of varying selectivity, the typical use case for
outsourced databases (e.g. MySQL, Postgres, etc).
Our contributions. This paper introduces ObliDB, the first engine
to provide efficient, oblivious read queries for relational workloads
over multiple access methods. The key contribution is a set of obliv-
ious query processing algorithms that work efficiently over both
entire datasets and small subsets of data, closing the gap between
prior work and general-purpose databases. Often the direct port of a
standard operator into an oblivious version is not only slow but also
inherently leaky. Our algorithms take advantage of knowledge about
query selectivity to maintain obliviousness while outperforming
naı̈ve oblivious versions of standard techniques. For example, we
offer four oblivious SELECT algorithms that vary their interaction
with trusted/untrusted memory to achieve obliviousness while op-
timizing performance for different settings. Our algorithms only
leak the structure of queries (hiding parameters) and the size of the
output data, the same as Opaque’s oblivious mode [84]1.

ObliDB’s performance improves over prior systems by supporting
multiple storage methods and including a query planner that oblivi-
ously chooses the best option among several algorithms to satisfy
a given query. Unlike prior work, ObliDB provides two storage
methods for its tables: a “flat” one, where the table is encrypted as a
contiguous file and always scanned (as in Opaque and Cipherbase),
and an oblivious B+ tree built over ORAM but modified to prevent
leakage and performance penalties involved in a direct composition
of B+ trees and ORAM. In particular, we hide the path taken in an
index to retrieve records as well as the changes made to index data
structures on insertions and deletions. Each table can be stored using
one or both methods, similarly to how administrators can decide
to create indexes in traditional databases. For instance, if a table
is stored using both methods, ObliDB can use the index for point
queries and the flat table for full-table aggregation queries.

Choosing between several algorithms to satisfy a query opens
the possibility of leaking information about queries or data through
algorithm choice. ObliDB’s query planner mitigates this risk by
basing optimization decisions on information already available to
the attacker, such as table and query result sizes.

These features let ObliDB support a wide range of queries effi-
ciently and securely. ObliDB supports selections, aggregations and
joins, as well as efficient point and small range lookups, insertions,
deletions, and updates. Since ObliDB’s focus is on obliviously pro-
cessing read queries, the engine does not provide full support for
transactions, but techniques for concurrency and logging [28] can
be added on top of ObliDB’s algorithms and storage methods.

We implement ObliDB over Intel SGX [26] and evaluate it on
diverse applications and find that it outperforms previous oblivious
systems and achieves practical performance compared to systems
with no security guarantees. For analytics, we compare ObliDB to
Opaque [84] on the Big Data Benchmark [1] and find that it is com-
petitive with Opaque on most queries, but can outperform Opaque by
19× on queries that can leverage indexes. ObliDB also comes within
2.6× of Spark SQL [7], which provides no security guarantees. For
point queries, we compare to an open-source encrypted index and
1We also support padding intermediate and final results of complex
queries to a fixed size, similar to Opaque’s pad mode [84], if desired.

find that ObliDB outperforms the HIRB + vORAM of Roche et
al. [63] by over 7×. Moreover, point insertions, deletions and selects
using ObliDB’s indexes on a 1M row dataset take 3.6–9.4ms, which
is acceptable for many applications and comparable to the other
enclave-based indexes Oblix [49] and POSUP [40] that do not sup-
port the more general queries handled by ObliDB. Finally, we show
that the choice of physical operators in ObliDB enables meaningful
query optimization, yielding speedups of up to 11×. ObliDB is open
source at https://github.com/SabaEskandarian/ObliDB.

To summarize, our contributions are:

• Oblivious query processing algorithms optimized to run over
both indexed and unstructured data, suitable for general pur-
pose SQL databases.

• The design of ObliDB, an enclave-based oblivious database
engine that efficiently runs general relational read workloads
over multiple access methods.

• A lightweight query planner to choose between operator im-
plementations offered by ObliDB.

• An implementation and evaluation of ObliDB with Intel SGX.

2. BACKGROUND & SECURITY GOALS
This section gives background on hardware enclaves, describes

our threat model, and states our desired security properties. The
fundamental goal of ObliDB is to protect both user data and query
parameters from a malicious attacker with full power to manipulate
components of the system lying outside a trusted hardware enclave.
This includes protection against both direct observation/modification
of data and indirect observation of access pattern leakage.

2.1 Background
A hardware enclave provides developers with the abstraction of

a secure portion of the processor that can verifiably run a trusted
code base (TCB) and protect its limited memory from a malicious
or compromised OS [2, 26]. Developers get a small memory region
hidden from the OS and cleared when execution enters or exits an
enclave. In this memory, the trusted code can keep secrets from an
untrusted OS that otherwise controls the machine. The hardware
handles the process of entering and exiting an enclave and hiding
the activity of the enclave while non-enclave code runs. Enclave
code may require access to OS resources such as networking and
I/O, so developers specify an interface between the enclave and OS.

An enclave proves that it runs an untampered version of the
desired code through an attestation mechanism. Attestation involves
an enclave providing a signed hash of its initial state (including the
running code), which a client compares with the expected value and
rejects if there is any evidence of a corrupted program.

2.2 Threat Model
We leverage a trusted hardware enclave to protect against an

attacker with full control of the operating system (OS). We assume
that our attacker has the power to examine and modify untrusted
memory, network communication, and communication between the
processor and enclave. Moreover, it can observe access patterns
to untrusted memory and maliciously interrupt the execution of an
enclave. We note that an OS-level attacker can always launch an
indefinite denial of service attack against an enclave, but such an
attack does not compromise privacy. We also allow our attacker to
use arbitrary auxiliary information about the nature of data stored.
For example, if a database is storing patient data, this includes the
incidence of various diseases in the general population.

170

We assume the security of the trusted hardware platform in that
the enclave hides contents of its protected memory pages and CPU
registers from an attacker with control of the OS and the attacker
cannot subvert the remote attestation process by which the enclave
proves its authenticity. Power analysis and timing side channels are
out of the scope. Furthermore, we assume a secure channel exists
through which a user can send messages to the enclave: for example,
a client can establish such a connection to the enclave through TLS.

We implement our techniques on Intel’s SGX [26] due to its pop-
ularity and widespread availability. Although several side-channel
attacks based on abusing page faults, branching history, or specu-
lative execution have been demonstrated against SGX’s protected
memory [18, 24, 43, 76, 80, 82], mitigations exist to handle some of
these attacks [61, 68–70], and other hardware enclave designs avoid
the pitfalls that leave SGX vulnerable [27, 44, 47]. In particular,
the RISC-V based Sanctum [27] provides a developer abstraction
similar to SGX with minimal performance overhead.
Limited Oblivious Memory. We assume a limited amount of obliv-
ious memory is available to the enclave and protected from access
pattern leaks (as in Opaque [84], to which we compare). That is,
when the enclave makes a memory access inside this region, the
operating system cannot determine which part was accessed. We
note that SGX does not provide this kind of obliviousness. However,
other similar enclave designs such as Sanctum or RISC-V’s Key-
stone do provide it with little additional overhead, and the principles
of the ObliDB system can run just as well on any other enclave
architecture. Moreover, many of our oblivious operators, including
the query planner, all SELECT algorithms except the “Small” al-
gorithm, and one of our JOIN algorithms, maintain obliviousness
even with an enclave completely vulnerable to these attacks, i.e.
with 0MB of oblivious memory. The quantity of oblivious memory
can be set as small as a few megabytes. It primarily serves to store
the root position map for our ORAM implementation, and is also
used to improve performance for the aggregation, grouped aggre-
gation, and join operators (Section 4) and hide accesses to code
pages. The amount of oblivious memory can be reduced at the cost
of decreased performance, but we evaluate using 20MB or less in
all our experiments. We will discuss the oblivious memory costs of
each of our data structures and algorithms as we present them. We
show how changes in the oblivious memory budget affect a more
complex query in Section 7.1.

2.3 Our Guarantees
Our algorithms leak only the sizes of input, intermediate, and re-

sult tables and the physical query plan chosen. This security level is
the same as Opaque’s oblivious mode [84] and Cipherbase [4]. One
of our SELECT algorithms also leaks whether the rows returned by
a query form a continuous segment of the table queried (e.g. as in a
range query), but this algorithm can be turned off if the leakage is
deemed too large and is not used in our performance comparison to
prior work. For situations where leaking intermediate table sizes is
unacceptable, ObliDB also has a padding mode where all interme-
diate results are padded to a chosen size and query optimization is
not applied, leaking nothing about queries but the logical plan and
the upper bound on result sizes (like Opaque’s padding mode [84]).
ObliDB can also be combined with more sophisticated padding
techniques, like [11], that provide differential privacy instead of full
obliviousness to reduce the padding.

In general, whether the size of intermediate tables is sensitive de-
pends on the application. For example, in a join of two tables where
only one row is selected from each table (say, a customer record and
the customer’s latest order), the sizes of those intermediate results
do not reveal much information; however, a query that selects all of

Hardware Enclave

Metadata Oblivious
Operators

Encryption
Keys

Untrusted OS

Untrusted Storage

Table 1
(Indexed)

Table 2
(Linear)

Table 3
(Linear+Indexed)

Figure 1: ObliDB runs in a hardware enclave and stores encrypted tables in
untrusted memory accessed through the OS. It can store tables using either
an oblivious B+ tree index, a flat array, or both.

the customer’s orders (and then perhaps aggregates them) would let
an adversary know how many orders the customer made. ObliDB
includes a fused select + project + aggregate operator that can avoid
leaking intermediate result sizes even in some multi-operator queries
by combining these operations into a single, oblivious operator.

Similar to leaking intermediate result sizes, leaking a query plan
can reveal information about the structure of queries, e.g. whether
an INSERT or JOIN query was executed, and whether an index was
used. However, ObliDB hides query parameters such as which key
in an index was requested. For example, by observing the physical
plans used, an attacker could learn that a query performed a point
lookup on an index, but not which key was requested, or whether the
same key is requested again later. Likewise, ObliDB’s query planner
chooses between different implementations of selection and join
operators based on the number of matching records, but the attacker
does not learn which specific records were chosen (Section 5). In
general, there is a fundamental tradeoff between information leakage
and performance: if users want some queries to run faster than others,
or to send back a smaller result set, an observer will learn that such
a query was executed. However, in practice, hiding which data was
accessed disables many access pattern attacks.

Finally, data at rest outside the enclave is encrypted and MACed,
and leaks only its size. In both the padding and no-padding modes,
we do not hide the number of tables in a database or which table(s)
a query accesses. Beyond hiding data values and access patterns,
we make the integrity guarantee that ObliDB catches any tampering
with data by the malicious OS. We use a series of checks to protect
against tampering within rows of a table, addition/removal of rows,
shuffling of table contents, or rollbacks to a previous system state.

Appendix A presents a formalization of our security guarantees.
We provide security arguments for the obliviousness of each storage
method and operator as they appear in the text.

3. ObliDB ARCHITECTURE AND
DATA STRUCTURES

Architecture overview. Figure 1 shows an overview of the ObliDB
architecture. ObliDB consists of a trusted code base inside an
enclave that provides an interface for users to create, modify, and
query tables using our oblivious query processing algorithms, which
we describe in Section 4. ObliDB stores tables, authenticated and
encrypted, in unprotected memory and obliviously accesses them as
needed by the various supported operators. The encryption key for
data stored in unprotected memory always resides inside the enclave,

171

Table 1: Asymptotic performance of storage methods. Fast inserts on flat
storage and large reads on indexed storage achieve better than expected
asymptotics due to optimizations in Section 3.

Method Flat Index Both

Space N ∼ 4N ∼ 5N
Point Read O(N) O(log2N) O(log2N)
Large Read O(N) O(N) O(N)

Insert O(1) O(log2N) O(log2N)
Update O(N) O(log2N) O(N)
Delete O(N) O(log2N) O(N)

encrypting/decrypting blocks of data as they are written or read from
unprotected memory. ObliDB can store data via two methods: flat
and indexed. The indexed method consists of an ORAM with a B+
tree stored inside, whereas the flat method requires scanning the
whole table on each query to ensure obliviousness.

ObliDB supports oblivious versions of the operators SELECT,
INSERT, UPDATE, DELETE, GROUP BY and JOIN as well as the
aggregates COUNT, SUM, MIN, MAX, and AVG. It also includes a
query planner that chooses between operator implementations for
selection and join queries, which we describe in Section 5.

Since the core contribution of ObliDB lies in its oblivious query
processing algorithms, it does not currently include support for
transactions, but support for concurrency and logging can be added
on top of the current operators. For example, a standard write-ahead
log could be generically added to the system. Appends to such a log
would not leak any additional information or affect obliviousness,
as the only change would be to make a write to an encrypted log
file before each insert/update/delete operation. Concurrent access
to ORAM data structures could be facilitated by using an ORAM
construction that supports parallel access [17, 21–23, 28, 52].

ObliDB can store data via two methods – flat and indexed – or
combine both. We currently let system administrators decide which
storage method(s) to use for each table based on the expected work-
load. Section 3.3 discusses costs and benefits of choosing either or
both storage methods. ObliDB creates tables with an initial maxi-
mum capacity that can be increased later by copying to a new, larger
table. We divide data into blocks of a configurable size2. Our current
implementation assumes records are of fixed length and also stores
a boolean flag with each record indicating whether it is in use.

Although encryption and oblivious data structures/algorithms
ensure the privacy of data in ObliDB, additional protections stop
an attacker from tampering with data. ObliDB MACs and encrypts
every block stored outside the enclave, preventing the OS from
modifying or adding new rows to tables. Each block of MACed data
includes a record of which row(s) the block contains and a current
“revision number” for that block, a copy of which ObliDB also stores
inside the enclave. Each time a block is modified, we increment
the block’s revision number. Any attempt to duplicate, shuffle, or
remove rows within a data structure will be caught when an operator
discovers that the row number of data it has requested does not exist
or does not correspond to that which it has received. Rollbacks of
system state are caught when the revision numbers of blocks do not
match the last revision numbers for those blocks recorded in the
enclave. Rollbacks on encrypted enclave data sealed to disk can be
prevented either by storing revision numbers with the client or using
an enclave rollback protection system like ROTE [48].

2In our current implementation, data in leaves and flat storage are
fixed to one record per block.

3.1 Flat Storage Method
The flat storage method simply stores rows in a series of adja-

cent blocks with no built-in mechanism to ensure obliviousness of
memory accesses, so every read or write to the table must involve
accesses to every block to hide access patterns. As such, operators
acting on these tables, as will be seen in Section 4, involve a series
of scans over the entire table. This performs best with small tables,
tables where operations will typically require returning large swaths
of the table, or analytics that involve reading most or all of the table
regardless of the need for obliviousness. The challenge in designing
algorithms for this storage method lies in using the limited space
of the enclave effectively to reduce the number of scans and data
processing operations involved in each operator.

Insertions, updates, and deletions on flat tables involve one pass
over the table, during which unaffected blocks receive a dummy
write (overwriting a row with the data it already held, re-encrypted
and therefore re-randomized). For insertions, the first unused block
encountered receives a real write. For updates or deletion, any row
matching the specified criteria will be updated or marked unused and
overwritten with dummy data, respectively. All of these operations
leak nothing about the parameters to the query being executed or
the data being operated on except the sizes of the data structures
involved because they consist of one scan over a table where each
encrypted block is read and then written with a fresh encryption.

In tables with few deletions, an administrator can choose an
alternative, constant-time insertion algorithm that saves the index of
the last row where an insert occurred and always inserts directly into
the next block in memory, skipping the scan. This insertion leaks no
additional information beyond the sizes of tables because the access
pattern of the insert does not depend on the content of the data
except on the number of insertions made, which our adversary can
already learn by observing the sizes of tables over time. Since every
entry in a table is encrypted, an adversary will not be able to tell if
later operations modify or even remove the inserted data, despite
knowing ahead of time where each new record will be placed.

3.2 Indexed Storage Method
Standard insertion and deletion operations for B+ trees, even

when combined with ORAM, leak information about the tree’s inter-
nal structure, compromising obliviousness by splitting or merging
nodes when they reach fixed threshold numbers of children. We
ensure obliviousness by padding all insertions and deletions with
additional dummy ORAM accesses until the number of accesses
matches the worst-case number for the respective operation. The
property of B+ trees that all data resides in the leaves of the tree
means that any lookup already accesses the same number of nodes,
so no modification is required for this case. Once each operation
involves a fixed number of accesses to memory, we can leverage
ORAM’s security to guarantee obliviousness. We use the ORAM
interface as a black box, so the details of the underlying ORAM
can be omitted except to state that our choice of the Path ORAM
scheme [73] incurs an O(logN) overhead for each access to mem-
ory. See Appendix B for details on the construction and formal
guarantees of this scheme. We use a separate ORAM for each table
because we already leak which table queries access, and using mul-
tiple smaller ORAMs is more computationally efficient than using a
single monolithic one.

Two optimizations dramatically improve the performance of our
oblivious B+ trees. First, our implementation operates on a “lazy
write back” principle, only writing to the ORAM when necessary
and otherwise keeping nodes in the enclave until they are no longer
needed. Second, we remove all parent pointers from our implemen-
tation. Normal B+ tree implementations often have pointers in each

172

Table 2: Oblivious physical operators. N and M are table sizes (in number of rows), C the max chain length of the hash table, S is the total available oblivious
memory, and R the number of rows in the output of a query. Selection over indexes incurs a multiplicative factor of O(log2 N) in time complexity but runs over
the smaller range of rows returned by the index, not a whole table. Each indexed table requires 8N Bytes of oblivious memory to store and access obliviously.

Algorithm Time Complexity Obliv. Mem. Summary

Small Select O(N2/S) S Bytes Fast when data almost fits in enclave: scan table once per enclave-full of data
Large Select O(N) 0 Bytes Fast when almost entire table selected: copy table and clear unselected rows
Cont. Select O(N) 0 Bytes Fast when continuous segment of table selected: write to output table for each row of

input (wrap around at the end), making dummy writes unless row is to be selected
Hash Select O(N · C) 0 Bytes Use if other strategies don’t apply: hash selected rows to location in output table

Naı̈ve Select O(N logN) O(R) Bytes Used only as baseline: ORAM operation for each row of table
Aggregate O(N) 0 Bytes Scan table, compute aggregate in one pass

Gp. Aggregate O(N) O(R) Bytes Store groups in hash table in oblivious memory and, for each row, check if there is a
matching group in the table or add a new group to the table.

Hash Join O(N
S

·M) S Bytes Block by block, make hash table from one table and see if rows of second table hash
to same places – variant of standard hash join algorithm

Opaque Join O((N +M) log2(N+M
S

)) S Bytes Sort tables by join column (use quicksort in obliv. mem. to accelerate), then linear
scan to merge blocks of rows.

0-OM Join O((N +M) log2(N +M)) 0 Bytes Bitonic sort tables by join column, then linear scan to merge matching rows

node to quickly find its parent (e.g. [8]). However, each time a tree
splits or merges a node, all the children of nodes involved need to
have their parent pointers updated, a very slow process in the regime
where every node requires an ORAM write to update.

If the cost of maintaining both indexed and flat representations of
data is too high, e.g. storage is limited or tables are very frequently
updated, the indexed storage data structure can also be scanned
linearly as a table using the flat method would be, ignoring the index
structure. Our algorithms can treat both internal tree nodes and extra
ORAM blocks as dummy blocks with no security consequences.
This scan has additional overhead over directly using the flat storage
method because of the extra space required by ORAM and the index
structure, but in practice this overhead is less than 2.5×.

3.3 Complexity Analysis
Table 1 compares the asymptotic operations of standard read,

insertion, and deletion operations as well as space overhead for each
table type. The indexed method performs best on small reads that
access one or a few rows of a table, whereas queries which expect
to return large segments of a table should use the flat method, which
performs faster than a linear scan over the contents of an index
despite equal asymptotic runtimes. Using both storage methods,
while incurring the cost of both for insertions and deletions, proves
effective when queries of diverse selectivities run on the same data.
We empirically measure these tradeoffs in Section 7.2. In terms
of storage overhead, our oblivious indexes inherit the 4× storage
overhead required by the Path ORAM [73] we use and each en-
crypted block is slightly larger than a plaintext block (as is always
the case with authenticated encryption). All other sources of stor-
age overhead, e.g. that required for data integrity measures, only
add a few bytes to each block of data, amounting to less than 1%
additional overhead. Path ORAM contains a data structure that we
need to store in oblivious memory at a cost of 8 Bytes of memory
per row of an indexed table. We can reduce the oblivious memory
required by using a recursive ORAM as described in Appendix B or
remove it completely via a doubly-oblivious ORAM as described by
Oblix [49] or ZeroTrace [66].

4. OBLIVIOUS QUERY PROCESSING
The key to executing queries in ObliDB is a set of new oblivious

query processing algorithms that can efficiently run queries over
either flat or indexed storage. This section describes our oblivious

query processing algorithms for a large subset of SQL, including
selection with conditions composed of arbitrary logical combina-
tions of equality or range queries, joins, aggregates (count, sum,
max, min, average), and grouped aggregation. In cases where the
storage method used for a table admits multiple algorithms to satisfy
a given query, ObliDB’s query planner chooses the algorithm that
maximizes performance. At a high level, the planner makes a quick
preliminary scan of the table being queried and uses known infor-
mation about input and output table sizes to make an optimization
decision without leaking more information about the query or data.
Details on the query planner appear in Section 5.

We will begin by discussing the algorithms in the context of flat
storage and then discuss the modifications needed for compatibility
with indexes, if any. Each operation is accompanied by a security ar-
gument. Since stored rows do not persist inside the enclave between
queries, there is no opportunity for a caching side channel based on
which rows can be retrieved faster in a subsequent query. Thus the
whole engine runs obliviously so long as each of the operators is
individually oblivious.

Whenever we refer to rows of a table being read or written with-
out explicitly stating where they are stored, it is implied that the
data resides in unprotected memory, is decrypted before being read
inside the enclave, and is re-encrypted before being written back
outside. Table 2 summarizes our algorithms and their complexity.
We evaluate the performance of our operators in Section 7.

We refer to the subject of a query as table T and the results as
table R. We leak only the sizes of T and R. In the following, the
enclave learns the size ofR from the query planner before executing
the operator, allowing output data structures of the appropriate size
to be allocated before scanning the data needed to fill them.

4.1 Oblivious Selection
Selection queries involve choosing elements from a table that

match a given predicate (e.g. date>’2018-09-01’). One natu-
ral way to implement a SELECT operator would be to sequentially
read each record in the targeted table and write out the row if it
should be selected. Despite touching each row in the table once,
this implementation does not provide obliviousness. An adversary
observing the pattern of accesses to the input and output tables
would know whether a row is written to the output after each read:
both tables are accessed each time a row is selected, but only the
input table is accessed when the a row is not selected. For exam-
ple, consider a table Checkins that logs when employees enter

173

*

*

*

*

*

Input

Output *

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

A) Small

Real Read/WriteDummy Read/Write Delete [*] Targeted Rows

*

*

*

*

*

*

*

*

C) Continuous

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

Input

Output
*

*

*

*

*

*

*

*

Input

*

*

*

*

*

*

*

*

Output

Copy

B) Large

Untouched

Pass 1

Pass 1 Pass 2 Pass 3

Figure 2: Small, Large, and Continuous SELECT algorithms. The enclave
in this example is only large enough to store two rows of data, so the Small
(A) algorithm, which scans the table once per enclave-full of data, takes
three passes to complete. The Large (B) and Continuous (C) algorithms
always make only one pass. The Large algorithm copies the input table and
clears unselected rows, and the Continuous algorithm writes to the output
table for each row of the input table, wrapping around at the end, making
dummy writes for rows that are not selected.

or exit an office building. An attacker observing access patterns on
the query SELECT * FROM Checkins WHERE uid=3172
AND date>’2018-01-01’ could infer from the chosen rows
when the user had entered the building or (without seeing the query)
what dates the query targets.

To defend against this and other subtle attacks, including those
based on prior knowledge of the data distribution, ObliDB provides
the following oblivious SELECT algorithms (summarized with their
complexities in Table 2, Figure 2, and Figure 3). In each algorithm,
ObliDB has access to the output table size |R| based on information
provided by the query planner during its initial scan of the data.
Naı̈ve. included as a baseline, the naı̈ve oblivious algorithm is a
direct translation of a non-oblivious SELECT to an oblivious one via
ORAM. After examining each row, it executes an ORAM operation.
If the row is included in the output, it makes a write. If not, it makes
a dummy read to an arbitrary block. There must be an ORAM
operation after reading each row or else an adversary would know
that any row which did not coincide with an ORAM operation was
not included in the output. After completing the scan of the input
table, it copies the contents of the ORAM to the flat storage format
and returns it. This algorithm requires 4|R| Bytes of oblivious
memory to store the ORAM it uses to build the output table.

Our techniques to improve on this baseline involve finding the
right balance between using data structures in the enclave to remove
the need for an ORAM and making multiple fast, oblivious passes
over data. These ideas constitute the guiding principle in designing
our remaining SELECT algorithms and choosing between them.
Small. In the case where all the rows of table R only require a
few times the space available in the enclave, a selection strategy
that makes multiple fast passes over the data proves effective. We
take multiple passes over table T , each time storing any selected
rows into a buffer in the enclave’s oblivious memory and keeping
track of the index of the last checked row. Each time the buffer fills,
its contents are written to R after that pass over T . Although this
strategy could result in a number of passes linear in the size of R,
it is effective for small tables. Since it requires oblivious memory

Input

Output

*

*

*

*

Input

Output

*

*

* *

Real Read/WriteDummy Read/Write [*] Targeted RowsUntouched

Figure 3: Hash SELECT algorithm. Left: The access pattern for any input
and output table sizes is fixed because the hash of the block number is taken,
not of the data itself. Right: a sample execution. Each input cell is read
followed by either a dummy or real write following the arrows to the right.
Our implementation uses double hashing in addition to the chaining shown.

to store rows in the enclave, this algorithm uses whatever quantity
of oblivious memory is made available to it. However, reducing
the amount of oblivious memory does not affect correctness, only
performance. This algorithm is depicted in Figure 2A.

This algorithm leaks only the sizes of tables T and R because
every pass over the data consists of one read to each row and the
number of passes reveals only how many times the output set will
fill the enclave, a number that can be calculated from the size of R.
Large. If tableR contains almost every row of table T , we createR
as a copy of T and then make one pass overRwhere each unselected
row is marked unused and each selected row receives a dummy write.
Obliviousness holds because the copy operation does not depend on
the data copied and we clear unselected rows with a read followed
by a write to each block of the table, revealing only the size of T .
This algorithm, shown in Figure 2B, uses no oblivious memory.
Continuous. Should the rows selected form one continuous section
of the data stored in the table, ObliDB requires only one pass over
the table, as shown in Figure 2C. Such a situation can arise when
range queries are made over sorted data such as names, dates, ID
numbers, etc, or retrieved in the same order they were inserted. To
handle such queries, ObliDB first creates table R. Then, for the ith
row in table T , if that row should be in the output, it writes the row
to position i mod |R| of R. If not, it makes a dummy write. Since
the rows that need to be included in R make up one continuous
segment of T , this procedure results in exactly the selected rows
appearing in R. This algorithm uses no oblivious memory.

In addition to the sizes of tables T and R, the fact that ObliDB
chooses this algorithm over one of the other options leaks that the
result is drawn from a continuous set of rows in the table. In these
cases, however, knowing that users are selecting a range is often not
so sensitive as what that range is, which we do hide. Users concerned
about this additional leakage could disable this option and use one of
the other options with no reduction in supported functionality. The
execution of the algorithm itself is oblivious because the memory
access pattern is fixed: at each step, the algorithm reads the next
row of T and then writes to the next row of R.
Hash. If none of the preceding special-case algorithms apply,
ObliDB uses a hashing solution illustrated in Figure 3. For the
ith row in T , if the row is to be included in the output, we write the
content of the row to the h(i)th position in R, for some hash func-
tion h. Otherwise, we make a dummy write to the h(i)th position
in R. Since the hash is on the index of the row in the data structure
and not over the actual contents of a row, information about the data
cannot be leaked by access patterns when rows are written to R, and
the algorithm uses no oblivious memory.

The algorithm above needs a couple changes to ensure that we
properly handle collisions while maintaining obliviousness. We
can use standard techniques to resolve collisions, but in order to
maintain obliviousness, every row of T must make the same accesses

174

to memory regardless of whether it is included in R. We handle
this by having every write make as many memory accesses as in the
case of the worst expected chain of collisions, regardless of whether
the row under consideration in T actually appears in R. Following
the guidance of Azar et al. [9] to get small probability of failure, we
use double hashing and have a fixed-depth list of 5 slots for each
position in R. This means that for each block in T , there will be 10
accesses to R, 5 for each of the two hash functions.

The modifications above ensure that data access patterns are fixed
regardless of the data in the table and which rows the query selects.
As mentioned above, since we hash the index of the row in the data
structure and not the actual contents of a row, information about
the data itself cannot be leaked by access patterns when rows are
written to R. As such, we leak only the sizes of T and R.
Selection over Indexes. Selection over the indexed storage
method works identically to flat storage except that the linear
scan begins inside an ORAM at a point specified by an index
lookup. If the rows returned by a query are not continuous, the
leakage also includes the size of the segment of the database
scanned in the index. For example, supposing that there is one
student named Fred in a table of students indexed by student
IDs, the query SELECT * FROM students WHERE NAME
= ‘‘Fred’’ AND ID > 50 AND ID < 60 leaks that 9
rows were scanned in the execution of the query. We consider
this leakage to be included in the sizes of intermediate tables, as
this query is equivalent to a query plan which selects a continuous
segment from an index and then selects a noncontinuous segment
from the returned table. Padding can hide this leakage. The Large
algorithm is not used in the indexed storage method because indexes
are meant for queries that request a small fraction of a table, not
almost all of it. In terms of complexity, algorithms running over the
index have the same complexity as their flat counterparts in Table 2,
but each algorithm incurs a log2 |T | multiplicative overhead due to
use of the index structure for reads. On the other hand, the actual
query runs on table T ′, the range of rows returned from the query to
the index, instead of the full table T .
Example. Consider the following queries on a flat table:

SELECT * FROM Checkins WHERE date=’2018-08-14’

SELECT * FROM Checkins WHERE date>’1900-01-01’

When ObliDB receives such queries, it first runs the query planner,
which determines which algorithm will perform best for the given
query. Since the first query requests rows from a specific date, there
will only be a handful of entries, so it chooses the Small algorithm.
On the other hand, the second query likely predates the construction
of the building and will therefore select every row of the table. The
planner will choose the Large algorithm for this query.

For query 1, ObliDB will scan the table, storing any records from
the chosen date inside the enclave until the end of the scan. Then
it will write all the matching rows to an output table at once. If the
enclave fills before reaching the end of the table, ObliDB will finish
the scan without storing any more records and then conduct a second
scan that begins storing records in the enclave where the first left off.
For query 2, ObliDB copies the table to create an identical output
table and then makes a scan of the copy to delete any rows from
before the year 1900. If the above queries were part of a larger query
or if the user decided to make a subsequent query on the output,
ObliDB would then use the output of these queries as the input to
the next query and run the appropriate operator.

4.2 Oblivious Aggregation & Grouping
An aggregate over a subset or entirety of a table requires only one

pass over the table where we calculate the aggregate cumulatively

based on the data in each row inO(|T |) time. We keep the aggregate
statistic inside the enclave. Since the memory access pattern of this
operation always involves sequential reads of each block in the
table followed by an update to the aggregate statistic, nothing leaks
beyond the size of table T and no oblivious memory is needed.

We handle grouped aggregation similarly, except an array in the
enclave keeps track of aggregates for each group. Since we need to
hide which group’s aggregate each row modifies, we require 4 Bytes
of oblivious memory to store the aggregate for each group. We use
a hash bucketing approach where each group’s value is hashed and
inserted into a hash table in the enclave. Each row scanned is hashed
and checked against the hash table. If there is a match, then the
row under examination corresponds to a known group referenced
in the table, and if not, then the current row is added to the hash
table as a new group. This method results in running time O(|T |).
If the number of groups becomes so large that the hash table cannot
fit in oblivious memory (a situation that did not arise in any of our
experiments, as each additional group requires very little space),
we could switch to using the sort-and-filter approach introduced by
Opaque [84] which runs in time O(|T | log2 |T |).
Combining Aggregation and Selection. In order to improve per-
formance and avoid leaking intermediate table sizes for common
queries that combine selection, aggregation, and grouped aggre-
gation, ObliDB provides a combined select/group/aggregate im-
plementation. The SELECT algorithms described above require
multiple passes over a table in order to provide obliviousness, but if
the next query only takes an aggregate, the obliviously produced in-
termediate table can immediately be discarded, wasting all the effort
of creating it. We remove this inefficiency by computing aggregates
directly over the input table while filtering it for the selection criteria.
Since selected rows don’t need to be written anywhere, we skip the
extra effort required by general-purpose oblivious selection.

4.3 Oblivious Joins
Arasu and Kaushik [5] and Opaque [84] introduced oblivious join

algorithms that are also applicable to ObliDB. We support Opaque’s
join and two additional algorithms: an oblivious hash join and a
variant of the Opaque join that requires no oblivious memory.
Oblivious Hash Join. We implement a variant of the standard hash
join algorithm [32]. We refer to the two tables being joined as T1 and
T2. We make a hash table out of as many rows of T1 as will fit in the
enclave and then hash the variable to be joined from each row of T2

to check for matches. This process repeats until reaching the end of
T1 . After each check, a row is written to the next block of an output
table. If there is a match, the joined row is written. If not, a dummy
row is written to the table at that position. Since each comparison
between the tables always results in one write to the next block of
the output structure, the memory access pattern of this algorithm
is oblivious. Like the traditional join algorithm of the same name,
the complexity of our oblivious hash join is O(|T1| · |T2|). Since
it needs oblivious memory to store the hash table, this algorithm
uses whatever quantity of oblivious memory is made available to it.
However, as with the Small selection algorithm, reducing the amount
of oblivious memory does not affect correctness, only performance.
A side effect of this algorithm’s obliviousness is that the size of the
output table data structure will always be |T1| · |T2|. Our remaining
join algorithms focus on the case of foreign key joins where the
maximum output size is at most the greater of |T1| and |T2|.
Oblivious Sort-Merge Join. We support two sort-merge join algo-
rithms for foreign key joins. First, we re-implement the Opaque join.
This algorithm begins by putting the contents of both tables into one
new table. Then it uses quicksort to sort chunks of the data that fit
inside an enclave’s oblivious memory and merges the chunks with

175

a bitonic sorting network. Finally, one linear scan down the new
sorted table eliminates rows that do not have matches and merges
matching rows to form the output table. In addition to requiring
oblivious memory, using quicksort to accelerate the join may open
timing side channels as well, a factor that must be considered in
choosing a join algorithm for a particular application.

Next, we support a variant of the Opaque join that requires no
oblivious memory and operates by running a bitonic sort over the
rows of both tables according to the join criteria without quicksort-
ing chunks inside of oblivious memory first. The bitonic sort can be
implemented obliviously because it always makes the same set of
comparisons independent of the data being sorted. As an optimiza-
tion, when the size of the recursive sort becomes small enough to
fit inside of the enclave, we carry out the sort inside the enclave to
avoid paying the cost of calls to memory outside the enclave. This
has no impact on obliviousness but speeds up memory access by re-
ducing communication between the enclave and untrusted memory
while sorting. We call this the 0-OM join.

We compare the performance of our join algorithms in Sec-
tion 7 and state their complexities in Table 2. We could reduce
the O(log2 n) terms in the sorting to O(logn) using a randomized
shellsort [38] (as discussed by Arasu and Kaushik [5]) at the cost of
making the correctness of the sorting algorithm probabilistic.

5. QUERY PLANNER
Our query planner picks which selection and join algorithms to

use based on statistical information on the input and output table
sizes. Our main insight is that we can use the information already
leaked by the data structures and output sizes in ObliDB to minimize
additional leakage from query planning. In Section 7.2, we find that
the planner can improve query performance by 4.6-11×. The query
planner is not used in padding mode, where we hide output sizes.

ObliDB runs the query planner at runtime whenever it encounters
a selection or join operator. For each selection, the planner begins
with a fast scan over the data, during which it keeps track of (1)
the number of rows satisfying the predicate and (2) whether those
rows are adjacent in the input table. The enclave saves the computed
output size to pass into selection operators that pre-allocate output
storage. Based on the ratios of number of output rows to available
oblivious memory and input table size, the planner decides which
variant of the selection operator to use. A precomputed set of thresh-
olds decide when to run each operator. For maximum flexibility,
users can also manually choose to force a particular operator.

Note that we cannot simply return the query result in the first
scan over the data, as a naı̈ve one-pass algorithm would violate
obliviousness. Instead, we must run one of our oblivious operators.
Since many of these operators need to know the size of the output
table up-front (to allocate memory for the results), the planner’s first
scan to compute statistics is often “for free.”

We adopt a similar approach to choose the appropriate algorithm
for foreign key joins, but planning for joins requires even less in-
formation than selection. Observe that all the join algorithms in
Section 4.3 generate output tables and do computation of the maxi-
mum possible size given the input table sizes. As such, the output
table, although it may contain many dummy rows that are marked as
unused, will reside in a data structure whose size can be calculated
directly from the sizes of the input tables. Moreover, this property
means that the performance of the join algorithms will depend only
on the input table sizes and will otherwise be the same regardless of
the selectivity of the join. These properties taken together allow us
to make effective optimization decisions based only on knowledge
of the sizes of the tables joined and the amount of oblivious memory
available inside the enclave. Similar to selection, we pick which join

Table 3: Data sets used in the Big Data Benchmark [1].

Table Name Rows Notes

USERVISITS 350,000 Server logs for many sites. Data from
the Big Data Benchmark [1].

RANKINGS 360,000 URLs, PageRanks, and average visit du-
rations for many sites. Data from the Big
Data Benchmark [1].

algorithm to use based on the ratio of the available oblivious memory
to the size of the first input table. If the amount of oblivious memory
is large relative to the size of the first table, we always use the hash
join. Otherwise, we plug in the table sizes and amount of oblivious
memory into expressions denoting the asymptotic runtimes of the
join algorithms and choose the smaller result. Section 7.2 shows
that this approach works well in practice.
Security. Performance improvements due to query planning intrin-
sically require leakage because the benefits of planning arise from
the fact that different algorithms perform better for different data
and queries. Our choice of physical operator reveals two pieces of
information. First, for selection, is the number of matching rows.
Since the non-padded execution mode already reveals the output
size of the result, this adds nothing to the overall leakage of the
system. Second is whether or not the rows returned by a query
form a continuous segment of the table queried. This is revealed
by the choice of the Continuous algorithm from Section 4, which
occurs if the rows to be returned are continuous. The Continuous
algorithm can optionally be disabled, causing optimization to leak
no additional information beyond what is already revealed through
output sizes (this is the configuration used for our comparison to
prior work in Section 7). Planning for joins leaks even less, as it
relies only on the sizes of the tables being joined and the oblivious
memory available.

Our query planner always has the same memory access pattern
for selection queries: read each row, update statistics, and perform
a table lookup to select an algorithm at the end. As such, the only
leakage introduced by the query planner comes from its final choice
of which physical operator to run, not the optimization algorithm
itself. For joins, the planner only reads the recorded sizes of the
input tables and makes no other memory accesses.

6. IMPLEMENTATION
We implemented ObliDB on Intel SGX [26], including the storage

methods from Section 3 as well as the oblivious operator algorithms
and query planner of Sections 4 and 5. Our implementation consists
of over 14,000 lines of code and builds upon the Remote Attestation
sample code provided with the SGX SDK [2] and the B+ tree
implementation of [8], the latter of which was heavily edited in order
to support our ORAM memory allocator. We use SGX SDK libraries
for encryption, MACs, and hashing. We instantiate our ORAM
scheme with a nonrecursive Path ORAM [73]. See Appendix B for
details on this scheme and the oblivious storage and performance
implications of recursive vs nonrecursive Path ORAM.

Our current implementation consists only of the core database
engine and lacks some components of a full-featured DBMS, e.g.
transaction management and persistence to disk. In our evaluation,
we compare ObliDB only to in-memory tables on other oblivious
systems to avoid giving it an unfair advantage. It would be straight-
forward to replace ObliDB’s external memory with disk storage, as
accesses to both ORAM and flat tables are already block-oriented.
We discuss options for supporting transactions in Section 3.

176

Q1 Q2 Q3
10−1

100

101
Ti

m
e

[s
ec

on
ds

]

Comparison to Opaque
No Index

Opaque Oblivious Mode
ObliDB (Without Index)
Spark SQL (No Security)

Q1 Q2 Q3
10−1

100

101

Ti
m

e
[s

ec
on

ds
]

Comparison to Opaque
Index Allowed

Opaque Oblivious Mode
ObliDB (Index Allowed)
Spark SQL (No Security)

4 8 12 16 20
0

10
20
30

Oblivious Memory (MB)

Ti
m

e
[s

ec
on

ds
]

Effect of Oblivious Memory Budget
Big Data Benchmark Q3

Opaque ObliDB

Figure 4: ObliDB outperforms Opaque Oblivious [84] by 1.1-19× and never runs more than 2.6×
slower than Spark SQL [7] on Queries Q1-Q3 of the Big Data Benchmark [1]. Even without use of an
index, ObliDB performs comparably to Opaque Oblivious.

Figure 5: Performance of ObliDB and Opaque [84]
on Big Data Benchmark Query 3 as oblivious mem-
ory varies.

102 103 104 105 106
0

10

20

30

Size of Table (Rows)

Ti
m

e
[m

s]

Retrieval (One Entry)

HIRB
ObliDB
MySQL

102 103 104 105 106
0

10

20

30

Size of Table (Rows)

Ti
m

e
[m

s]

Insertion

HIRB
ObliDB

102 103 104 105 106
0

10

20

30

Size of Table (Rows)

Ti
m

e
[m

s]

Deletion

HIRB
ObliDB

Figure 6: ObliDB’s oblivious indexes outperform the HIRB tree + vORAM oblivious map construction.

7. EVALUATION
We evaluate ObliDB on multiple datasets, comparing to prior

private database systems and widely used non-private systems. We
use a subset of the data available from the Big Data Benchmark [1],
shown in Table 3, as well as larger synthetic data. In addition, we
measure the overhead of ObliDB’s padding mode, demonstrate the
effectiveness of ObliDB’s query planner, study the impact of the
chosen storage methods, and examine tradeoffs in join algorithms
through a series of microbenchmarks. We evaluated ObliDB on
an Intel Core i7-6700 CPU @3.4GHz with 8GB of RAM running
Ubuntu 16.04 and the SGX SDK version 1.9. The comparison of
join algorithms was done on the same machine running Ubuntu
18.04 and the SGX SDK version 2.5.

We find that ObliDB can leverage its indexes to achieve order
of magnitude performance improvements over previous private
database systems. In particular, ObliDB matches Opaque [84] for
scan-based queries on flat tables but can outperform it by 19×
when using an index. ObliDB also performs over 7× faster than
HIRB [63], an oblivious map scheme, and comes within a factor of
2.6× the performance of the non-private Spark SQL system.

7.1 Comparison to Prior Work
Comparison to Opaque. Figure 4 compares ObliDB with
Opaque’s oblivious mode [84, 85] and Spark SQL [7], which pro-
vides no security guarantees, on queries 1-3 of the Big Data Bench-
mark [1] on tables of 360,000 and 350,000 rows. We use the same
queries and parameters used by Opaque: 1000, 8, and 1980-04-01
are the parameters used for queries 1-3 of the benchmark, which tar-
get selection, grouped aggregation, and joins respectively. Opaque
also uses an SGX enclave and can be configured in either “encryp-
tion” mode or “oblivious” mode, which hides access patterns to
data, but by means different from ours. We compare to Opaque’s
oblivious mode and run it in single node configuration. We limit
oblivious memory to 72MB for Opaque (as in its own evaluation)
and 20MB for ObliDB, but neither system needed the full oblivious

memory allowed. To compare fairly in terms of the leakage, we
disable the Continuous selection algorithm in this comparison.

We began by configuring ObliDB to use only the flat storage
method, as Opaque does, and found that ObliDB performs com-
parably to Opaque, slightly worse on query 1 and slightly better
on queries 2 and 3. Next, we used the combined storage method.
An oblivious index allows ObliDB to outperform Opaque by 19×
on query 1 since this query scans a small part of a table whereas
Opaque and spark SQL, which primarily handle analytic workloads,
scan the entire table. Indexes do not provide a speedup on queries 2
and 3 which scan most of the input anyway. ObliDB is only 2.4×
and 2.6× slower than Spark SQL on queries 2 and 3.

We also tested scan-based queries against our indexes to see
how ObliDB performs on frequently-updated data too expensive to
maintain in flat storage. These queries performed about 2× slower
than on flat tables. Thus, unlike prior, flat-only systems, ObliDB
performs analytics relatively quickly on “live” tables frequently
updated with point insertions and deletions.
Impact of Oblivious Memory Budget. Figure 5 shows the perfor-
mance of ObliDB and Opaque’s oblivious mode on query 3 of the
Big Data Benchmark as the quantity of oblivious memory varies
from 6MB to 20MB, beyond which the performance of ObliDB re-
mains steady. We chose this query because its performance is most
affected by an increase in oblivious memory for both systems. Both
systems’ performance improves as we add more oblivious memory,
but Opaque improves gradually whereas ObliDB decreases in steps
as the amount of oblivious memory makes the blocks of the nested
loop join large enough to reduce the overall number of scans of the
second table being joined. In total, the increase from 6MB oblivious
memory to 20MB results in a 1.77× speedup for ObliDB.
Comparison to HIRB. Next, we compare ObliDB’s performance
to The HIRB Tree + vORAM [63] secure index structure. Unlike
ObliDB, HIRB neither supports range queries nor uses hardware
enclaves. Source code for other SGX-based oblivious indexes is
not yet publicly available, so we cannot compare to them directly,

177

0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

Percent of Table Retrieved

Ti
m

e
[s

ec
on

ds
] Flat vs Index Select

Flat Indexed

0 0.5 1 1.5 2 2.5
0

0.25

0.5

0.75

Percent of Table Retrieved

Ti
m

e
[s

ec
on

ds
]

Flat vs Index Group By

Flat Indexed

Insert Delete Update
10−2

100

102

Ti
m

e
[m

s]

Flat vs Index Operations

Flat Indexed

Figure 7: Comparison of flat and indexed versions of operators over 100,000 rows of synthetic data. Flat scans do better when more data needs to be accessed,
but the indexed storage method performs far better for small queries.

102 103 104 105 106
0

2

4

6

8

10

Size of Table (Rows)

Ti
m

e
[m

s]

Point Queries on Indexes

SELECT

INSERT
DELETE

L1 L2 L3 L4 L5

100

101

O
ps

/S
ec

on
d

Impact of Table Type

Flat Indexed Both

Workload L1 L2 L3 L4 L5

% Point Reads 5 0 50 45 0
% Small Reads 0 90 0 0 0
% Large Reads 5 0 50 45 90
% Insertions 90 9 0 5 5
% Deletions 0 1 0 5 5

Figure 8: Point queries for various table sizes.
Query time is polylogarithmic in table size.

Figure 9: Flat, indexed, and combined representations of a 100,000 row table for five workloads. Point
reads access 1 row, small reads access 50, and large reads access 5% of the table.

5% of
Table
Cont.

5% of
Table

95% of
Table
Cont.

95% of
Table

0

2

4

6

8

*

* Our Choice

*
* *

Ti
m

e
[s

ec
on

ds
]

Effectiveness of Query Planner

Hash Small Large Cont.

Figure 10: Our query planner picks the best algorithm for SELECT queries.
Bars omitted when an algorithm is not applicable.

although reported numbers for Oblix [49] and POSUP [40] ap-
pear to be within several milliseconds of ours. Despite its reduced
functionality and differing security assumptions, HIRB provides a
good point of comparison as a practical system attempting to solve
similar problems. We compare against it with a replication of the
performance experiment in its original paper.

Figure 6 compares the point query performance of ObliDB’s
oblivious indexes with a HIRB tree + vORAM oblivious map [63]
and MySQL. Although ObliDB does not support transactions, we
include comparisons of insertion and deletion times over our indexes
to demonstrate the performance of the data structure (the compari-
son is fair since HIRB also implements a key-value store with no
notion of concurrency or durability). We instantiated both the table
in ObliDB and the HIRB tree with 64-Byte data entries and allocated
the underlying vORAM with bucket size 4096, a somewhat larger
size than our own ORAM’s buckets (HIRB performed worse on
smaller bucket sizes). On tables of 1,000,000 rows, ObliDB outper-
forms HIRB by 7.6× in point selection and by 3× on insertions and
deletions. While still an order of magnitude slower than MySQL for
point queries on larger tables, network latency from user to cloud
can be tens of milliseconds, rendering the difference insignificant.

The HIRB construction considers a “catastrophic attack” scenario
which compromises the system holding the ORAM client, and they
design the HIRB tree to provide history independence and secure
deletion even under this attack. Since our work relies on the security
of the hardware enclave and keeps the ORAM client inside the
enclave, the additional security properties desired by HIRB come
for free in our setting, explaining our improved performance. Both
our work and the HIRB tree make use of padding for obliviousness,
but each uses different optimizations to minimize padding.

7.2 Microbenchmarks
Impact of storage method. Figure 7 compares our storage methods
on various queries. Flat scans perform better when more rows are
returned, but smaller queries perform much better with an index.
Indexed DELETE and UPDATE queries outperform flat ones, but the
fast flat INSERT query outperforms the indexed INSERT. The flat
storage method’s performance (outside of constant-time insertions)
degrades linearly in table size, but point operations on indexes take
polylogarithmic time. Figure 8 shows how point queries scale.

Often a combined table representation that maintains both storage
methods for the same data proves effective. Although ObliDB pays
insertion and deletion costs for both methods, it can use the better
representation for each query, an important benefit because many
real-world workloads rely heavily on different kinds of reads. Fig-
ure 9 shows ObliDB running various workloads with flat, indexed, or
both kinds of tables. One storage method alone sometimes performs
well, but a combined representation often performs best.
Impact of query planner. Figure 10 shows ObliDB’s choice of
SELECT algorithms on queries that retrieve 5% and 95% of a
100,000 row table. The “Hash” algorithm is best asymptotically, but
we pick an algorithm that performs 4.6-11× better in practice.
Join algorithm comparison. Table 4 compares the performance of
ObliDB’s join algorithms on foreign key joins for varying oblivious
memory and table sizes. As explained in Section 5, input table
sizes and oblivious memory are the only factors that affect join
performance. Access to larger amounts of oblivious memory is
particularly effective in speeding up the hash join algorithm because

178

Table 4: Foreign key joins with tables and oblivious memory of varying
sizes. The fastest and slowest algorithm in each configuration are shown in
blue and red, respectively. Reported number is average of 5 runs, standard
deviation is always less than 8% of average. Our planner picks the fastest
algorithm for every entry.

Join Performance – 500 Rows Obliv. Mem.
Table 1 5,000 rows 10,000 rows

Table 2 Hash Opaque 0-OM Hash Opaque 0-OM
100 0.023s 0.205s 0.404s 0.047s 0.535s 1.017s
1,000 0.141s 0.259s 0.531s 0.274s 0.553s 1.092s
5,000 0.667s 0.529s 1.019s 1.289s 0.822s 1.585s
10,000 1.267s 0.808s 1.581s 2.592s 1.340s 2.497s
25,000 3.300s 2.078s 3.825s 6.540s 3.046s 5.337s

Join Performance – 7,500 Rows Obliv. Mem.
Table 1 5,000 rows 10,000 rows

Table 2 Hash Opaque 0-OM Hash Opaque 0-OM
100 0.007s 0.044s 0.202s 0.015s 0.154s 0.533s
1,000 0.016s 0.053s 0.244s 0.031s 0.165s 0.571s
5,000 0.050s 0.149s 0.520s 0.103s 0.335s 0.792s
10,000 0.095s 0.334s 0.794s 0.192s 0.431s 1.282s
25,000 0.241s 0.938s 2.041s 0.479s 1.040s 2.869s

the size of the oblivious memory determines how many times chunks
of the first table need to be made into hash tables, which determines
the number of scans required of the second table. A large oblivious
memory results in a join whose running time is almost linear in the
size of the tables. For small oblivious memory, the performance
behaves as expected of standard hash and sort-merge join algorithms:
the hash join performs better for small tables but rapidly becomes
worse than the sort-merge join as table sizes increase.

The Opaque join always outperforms the variant that requires no
oblivious memory because the two joins run effectively the same
overall algorithm, with the Opaque join using oblivious memory
to accelerate sorting. The 0-OM join gets faster as the amount of
oblivious memory increases because of our optimization that does
oblivious sorting inside the enclave when there is space available
without compromising obliviousness (to save on enclave communi-
cation costs). As such, the algorithm gets faster with more enclave
memory, regardless of whether the memory is oblivious.
Impact of padding mode. Padding mode additionally hides the
sizes of tables, intermediate results, and final outputs—comparable
to the padding mode described but not evaluated by Opaque [84].
We evaluate this mode by running queries on the CFPB table of
107,000 rows padded to 200,000 rows. Our aggregate query with
the flat storage method had a 4.4× slowdown and a select had a
2.4× slowdown. The larger slowdown for aggregates results from
the padding algorithm padding to the maximum supported num-
ber of groups for aggregates—in this case, 350,000. We did not
evaluate padding mode for indexes as the benefit of indexes arises
from knowledge of the selectivity of a query, the exact information
padding hides. To our knowledge, no comparable system has im-
plemented a pad mode, so we cannot compare to prior work. The
results do, however, represent reasonable slowdowns for inflating a
table’s size by approximately 2× with padding.

8. RELATED WORK
Encrypted Databases. Fuller et al. [35] summarize prior
work on cryptographically protected databases. The well-known
CryptDB [56] enables a tradeoff between security and performance,
encrypting fields differently according to security needs. Arx [55]
uses only strong encryption but leverages special data structures to al-
low search. Other solutions, including Demertzis et al., Sophos, and

Diana [15, 16, 30], use searchable encryption. Although all of these
systems encrypt data, they can leak access patterns [20, 41, 50, 83].
SGX Databases. StealthDB [77] is a legacy-compatible, partially-
oblivious database that does not provide integrity or hide access
patterns to indexes. VeritasDB [71] provides integrity but not privacy.
POSUP [40] uses ORAM and SGX to search/update encrypted data
and Cui et al. [29] use SGX to speed up search over encrypted data,
but both support a more limited range of functionalities than ObliDB.
More recently, Oblix [49] builds an oblivious index that requires
no obliviousness assumptions inside the enclave, and Obladi [28]
considers concurrent ACID transactions but does not support indexes
and only processes operations in batches over discrete time epochs.
Opaque [84] and Cipherbase [4] support only analytics queries that
scan all the data, relying on oblivious sorts of an entire input table.

EnclaveDB [60] is an SGX-based DBMS that does not hide ac-
cess patterns. TrustedDB [10] uses older trusted hardware designs
to build a protected database, but also does not protect access pat-
terns. Many works also implement variations of other analytics
systems on SGX [14, 33, 34, 51]. M2R [31] and VC3 [67] provide
MapReduce and cloud data analytics functionalities, and HardIDX
and LPAD [34, 74] build key-value stores that are not oblivious.
General-Purpose Oblivious Computing. ZeroTrace [66] builds
ORAM-based oblivious memory primitives over SGX, Pyramid
ORAM [25] builds an efficient ORAM for use in enclaves, and
ObliVM [45] compiles oblivious versions of programs. By special-
izing data structures and operators for ORAM, ObliDB outperforms
naı̈ve ORAM translations of database algorithms. Wang et al. [79]
optimize data structures over ORAM, focusing on the case of re-
cursive ORAM. Some of their techniques could complement our
indexes when using a recursive ORAM position map. Roche et
al. [63] build a history-independent “HIRB tree” over an ORAM
with variable-sized blocks, but do not support range queries. As
seen in Section 7.1, our indexes are up to 7× more efficient.

We use the Path ORAM [73] in our implementation, but any other
ORAM could replace it with no other changes to the system. For
indexed storage, where ORAM accesses dominate the cost of each
operator, using a newer scheme such as Ring ORAM [62] would
result in performance improvements corresponding to the approxi-
mately 1.5× improvement of Ring ORAM over Path ORAM. Unlike
Ring ORAM, other ORAM optimizations designed for systems that
provide cloud storage, such as Oblivistore [72], CURIOUS [12],
and TAOstore [65], focus on reducing communication costs for the
remote storage use case, which is less applicable in ObliDB, where
the trusted and untrusted memory reside on the same device.

9. CONCLUSION
ObliDB closes the gap between previous enclave-based query pro-

cessing engines and oblivious indexes by combining new oblivious
query processing algorithms with accompanying data structures and
an oblivious query planner. While obliviousness has a cost, ObliDB
approaches practical performance: it is competitive to 19× faster
than Opaque [84] and comes within 2.6× of Spark SQL. It also out-
performs HIRB, a previous oblivious index structure, by over 7×,
completing point queries on a 1 million row table with 3.6–9.4ms
latency. Our open source implementation of ObliDB is available at
https://github.com/SabaEskandarian/ObliDB.

Acknowledgments
We would like to thank Ankur Dave and Wenting Zheng for their
assistance in reproducing the Opaque benchmarks, as well as Henry
Corrigan-Gibbs for many helpful conversations. We would also like
to thank the anonymous reviewers for several helpful comments

179

and suggestions. This research was supported in part by affiliate
members and other supporters of the Stanford DAWN project—
Ant Financial, Facebook, Google, Infosys, Intel, Microsoft, NEC,
SAP, Teradata, and VMware—as well as the NSF under CAREER
grant CNS-1651570 and other grants from NSF, the DARPA/ARL
SAFEWARE project, the Simons foundation, and a grant from ONR.
Any views, opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do not reflect
the official policy or position of the Department of Defense, the
National Science Foundation, or the U.S. Government.

APPENDIX
A. SECURITY THEOREM

We model privacy by showing there exists a simulator such that
for all efficient adversaries A, A cannot distinguish between a real
memory trace from ObliDB and a memory trace from the simulator
that is given access to query plans and table sizes. Since the simu-
lator only sees what we intend to leak, the adversary cannot have
learned any additional information from interacting with ObliDB.
In this model, an (informal) theorem similar to that of Opaque [84]
also applies to ObliDB. Let D be a dataset, S be its schema, and
Q be a query. Moreover, let OPT(D,Q) be the choice of algo-
rithms made by ObliDB’s query planner for queryQ on data D and
TRACE(D,Q) be the distribution of transcripts of memory accesses
outside of oblivious memory made by ObliDB while running query
Q on D. Finally, |D| denotes the size of D and |TRACE(D,Q)|
denotes the sizes of the memory traces of running each operator in
Q on D. Since ObliDB stores intermediate tables encrypted outside
of the enclave, this includes intermediate table sizes.

THEOREM 1. For all D,S,Q, and security parameter λ, there
is a poly-time simulator SIM such that for all PPT adversaries A,

|Pr[A(SIM(|D|,S,OPT(D,Q), |TRACE(D,Q)|)) = 1]
− Pr[A(TRACE(D,Q)) = 1] | ≤ negl(λ).

The fact that SIM exists means anything that can be learned by
looking at the transcript of ObliDB running can also be learned by
looking only at the sizes of the data/queries as well as the table
schemas and physical operators chosen by the query planner. The
theorem for padding mode replaces the data and trace size with a
public parameter indicating the size to which we pad all tables.

To argue that SIM exists, we first argue that each operator output
by OPT satisfies our obliviousness property. Next, we argue that the
query planner’s operations are oblivious with its only leakage being
that inherent in the final choice of physical operator. We provide
these arguments in Sections 4 and 5. With this, we have all the pieces
required to explicitly describe SIM that prints an access pattern tran-
script distributed indistinguishably from TRACE(D,Q) because
the trace of query Q on dataset D consists exactly of the accesses
made by running the planner and then the chosen operator(s).

SIM begins by reading S and |TRACE(D,Q)|. It uses this in-
formation to simulate the access pattern of one scan over D. This
is identical to the access pattern of the query planner. Now SIM
reads OPT(D,Q) to determine which operator to simulate. Using
the provided choice of operator, the schema S, and its knowledge
of input and output table sizes gleaned from |TRACE(D,Q)|, it
simulates the access pattern described in the body of the paper for
the selected operator on D (i.e. some number of linear scans or
ORAM operations). This completes the simulated output which
is distributed indistinguishably from that of TRACE(D,Q). The
simulator SIM’ for padding mode behaves analogously to SIM.

B. ORAM
Oblivious RAM (ORAM), a cryptographic primitive first pro-

posed by Goldreich and Ostrovsky [37], hides access patterns to
data in untrusted storage. For our purposes, an ORAM consists of a
small trusted client which resides inside an enclave and performs
reads/writes to untrusted memory accessible by the OS. Merely
encrypting data still reveals access patterns to the data being re-
quested or written, which can leak private information about the
data [41]. ORAM shuffles the locations of blocks in memory so re-
peated accesses to the same block and other patterns are hidden from
the adversary. Specifically, ORAM guarantees that any two access
patterns of the same length are computationally indistinguishable.
Implementing ORAM. ObliDB uses the Path ORAM [73], which
operates by storing encrypted blocks of memory in a tree structure.
Every read or write to a block (reads and writes are indistinguishable)
reads a path from the root to a leaf, and then writes the same path
again, regardless of where in the path the desired block sits. The
contents of every node in the path are decrypted, read, and re-
encrypted. To prevent leaking statistical information about repeated
accesses to the same address, a block is randomly reassigned to a
new part of the tree after each access. This causes ORAM reads and
writes to incur anO(logN) overhead, whereN is the ORAM’s size
in blocks. If the tree lacks space to store some node in its designated
place, the node is kept in an off-tree stash until it can find space in a
future operation. Path ORAM guarantees that the stash stays quite
small with overwhelming probability.
Recursive vs Nonrecursive ORAM. One feature of Path ORAM
requires further discussion. In order to know which path down
the tree to read to find a given block, the ORAM client keeps a
position map that maps each block of memory to a leaf in the tree
that identifies the path where it can be found. Since the size of the
position map is a fixed fraction of the size of the raw data, Path
ORAM recursively stores the position map in a second ORAM and
repeats until the client storage requirement becomes sufficiently
small. We call an ORAM with no recursion a nonrecursive ORAM
and an ORAM that recursively uses a second ORAM a recursive
ORAM. In practice, because the size of an entry in a position map
is many times smaller than a block of data, at most one layer of
recursion suffices to store large quantities of data. For example, a
10MB position map in our implementation can support 1.1 million
records (regardless of record size), and a 20MB position map can
store twice as many records. Adding a second layer of recursion,
where each of those 1.1 million records represent another 1.1 million
records, comes at an approximately 2× performance overhead but
allows the same 10MB position map to support 1.2 trillion records.
Segmenting ORAM. In addition to optimizing ORAM to minimize
storage costs, we can also optimize to reduce computational costs.
One way to do this is to separate one ORAM into multiple smaller
ORAMs in a way that the choice of which ORAM is written to by a
given operation does not leak any additional information. Although
ORAM’s computation costs scale logarithmically in the size of a
given ORAM, dramatically reducing the size of an ORAM can still
have a significant impact on performance. For example, ObliDB
uses a separate ORAM for each table because it does not hide which
tables a query reads or modifies. This optimization could be taken
further by using a separate ORAM for an index structure and the
data for each table, or even using a separate ORAM for each level of
a B+ tree (where padding would happen on a per-level basis rather
than for the whole tree). These optimizations do not compromise
obliviousness because the access patterns between levels of a B+
tree in a read, insert, or delete operation, once padded to the worst
case scenario, are publicly known. The ORAM only needs to hide
which entry in a given level is accessed to preserve obliviousness.

180

10. REFERENCES

[1] Big data benchmark.
https://amplab.cs.berkeley.edu/benchmark/.

[2] Intel software guard extensions SDK for Linux OS, developer
reference. https://download.01.org/intel-sgx/
linux-1.8/docs/Intel_SGX_SDK_Developer_
Reference_Linux_1.8_Open_Source.pdf.

[3] M. A. Abdelraheem, T. Andersson, and C. Gehrmann.
Inference and record-injection attacks on searchable
encrypted relational databases. IACR Cryptology ePrint
Archive, 2017:24, 2017.

[4] A. Arasu, S. Blanas, K. Eguro, R. Kaushik, D. Kossmann,
R. Ramamurthy, and R. Venkatesan. Orthogonal security with
Cipherbase. In CIDR 2013, Sixth Biennial Conference on
Innovative Data Systems Research, Asilomar, CA, USA,
January 6-9, 2013, Online Proceedings, 2013.

[5] A. Arasu and R. Kaushik. Oblivious query processing. In Proc.
17th International Conference on Database Theory (ICDT),
Athens, Greece, March 24-28, 2014., pages 26–37, 2014.

[6] ARM TrustZone, 2017. https://www.arm.com/
products/security-on-arm/trustzone.

[7] M. Armbrust, R. S. Xin, C. Lian, Y. Huai, D. Liu, J. K.
Bradley, X. Meng, T. Kaftan, M. J. Franklin, A. Ghodsi, and
M. Zaharia. Spark SQL: relational data processing in spark. In
Proceedings of the 2015 ACM SIGMOD International
Conference on Management of Data, Melbourne, Victoria,
Australia, May 31 - June 4, 2015, pages 1383–1394, 2015.

[8] A. F. Aviram. Interactive B+ tree (C). http:
//www.amittai.com/prose/bplustree.html, 2016.

[9] Y. Azar, A. Z. Broder, A. R. Karlin, and E. Upfal. Balanced
allocations. SIAM J. Comput., 29(1):180–200, 1999.

[10] S. Bajaj and R. Sion. TrustedDB: a trusted hardware based
database with privacy and data confidentiality. In Proceedings
of the ACM SIGMOD International Conference on
Management of Data, SIGMOD 2011, Athens, Greece, June
12-16, 2011, pages 205–216, 2011.

[11] J. Bater, X. He, W. Ehrich, A. Machanavajjhala, and J. Rogers.
Shrinkwrap: Efficient SQL query processing in differentially
private data federations. PVLDB, 12(3):307–320, 2018.

[12] V. Bindschaedler, M. Naveed, X. Pan, X. Wang, and Y. Huang.
Practicing oblivious access on cloud storage: the gap, the
fallacy, and the new way forward. In Proceedings of the 22nd
ACM SIGSAC Conference on Computer and Communications
Security, Denver, CO, USA, October 12-16, 2015, pages
837–849, 2015.

[13] C. Bing. Atos, IT provider for winter olympics, hacked
months before opening ceremony cyberattack, 2018. https:
//www.cyberscoop.com/atos-olympics-hack-
olympic-destroyer-malware-peyongchang/.

[14] A. Bittau, Ú. Erlingsson, P. Maniatis, I. Mironov,
A. Raghunathan, D. Lie, M. Rudominer, U. Kode, J. Tinnés,
and B. Seefeld. Prochlo: Strong privacy for analytics in the
crowd. In Proceedings of the 26th Symposium on Operating
Systems Principles, Shanghai, China, October 28-31, 2017,
pages 441–459, 2017.

[15] R. Bost.
∑

oϕoς: Forward secure searchable encryption. In
Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security, Vienna, Austria,
October 24-28, 2016, pages 1143–1154, 2016.

[16] R. Bost, B. Minaud, and O. Ohrimenko. Forward and
backward private searchable encryption from constrained

cryptographic primitives. IACR Cryptology ePrint Archive,
2017:31, 2017.

[17] E. Boyle, K. Chung, and R. Pass. Oblivious parallel RAM and
applications. In Theory of Cryptography - 13th International
Conference, TCC 2016-A, Tel Aviv, Israel, January 10-13,
2016, Proceedings, Part II, pages 175–204, 2016.

[18] F. Brasser, U. Müller, A. Dmitrienko, K. Kostiainen,
S. Capkun, and A. Sadeghi. Software grand exposure: SGX
cache attacks are practical. In 11th USENIX Workshop on
Offensive Technologies, WOOT 2017, Vancouver, BC, Canada,
August 14-15, 2017., 2017.

[19] B. Butler. NSA spying fiasco sending customers overseas,
2013. https://www.computerworld.com/article/
2484894/cloud-computing/nsa-spying-
fiasco-sending-customers-overseas.html.

[20] D. Cash, P. Grubbs, J. Perry, and T. Ristenpart. Leakage-abuse
attacks against searchable encryption. In Proceedings of the
22nd ACM SIGSAC Conference on Computer and
Communications Security, Denver, CO, USA, October 12-6,
2015, pages 668–679, 2015.

[21] A. Chakraborti and R. Sion. ConcurORAM: High-throughput
stateless parallel multi-client ORAM. In 26th Annual Network
and Distributed System Security Symposium, NDSS 2019, San
Diego, California, USA, February 24-27, 2019, 2019.

[22] T. H. Chan, K. Chung, and E. Shi. On the depth of oblivious
parallel RAM. In Advances in Cryptology - ASIACRYPT 2017
- 23rd International Conference on the Theory and
Applications of Cryptology and Information Security, Hong
Kong, China, December 3-7, 2017, Proceedings, Part I, pages
567–597, 2017.

[23] B. Chen, H. Lin, and S. Tessaro. Oblivious parallel RAM:
improved efficiency and generic constructions. In Theory of
Cryptography - 13th International Conference, TCC 2016-A,
Tel Aviv, Israel, January 10-13, 2016, Proceedings, Part II,
pages 205–234, 2016.

[24] G. Chen, S. Chen, Y. Xiao, Y. Zhang, Z. Lin, and T. H. Lai.
Sgxpectre attacks: Stealing Intel secrets from SGX enclaves
via speculative execution. CoRR, abs/1802.09085, 2016.

[25] M. Costa, L. Esswood, O. Ohrimenko, F. Schuster, and
S. Wagh. The pyramid scheme: Oblivious RAM for trusted
processors. CoRR, abs/1712.07882, 2017.

[26] V. Costan and S. Devadas. Intel SGX explained. IACR
Cryptology ePrint Archive, 2016:86, 2016.

[27] V. Costan, I. A. Lebedev, and S. Devadas. Sanctum: Minimal
hardware extensions for strong software isolation. In 25th
USENIX Security Symposium, USENIX Security 16, Austin,
TX, USA, August 10-12, 2016., pages 857–874, 2016.

[28] N. Crooks, M. Burke, E. Cecchetti, S. Harel, R. Agarwal, and
L. Alvisi. Obladi: Oblivious serializable transactions in the
cloud. In 13th USENIX Symposium on Operating Systems
Design and Implementation, OSDI 2018, Carlsbad, CA, USA,
October 8-10, 2018., pages 727–743, 2018.

[29] S. Cui, S. Belguith, M. Zhang, M. R. Asghar, and G. Russello.
Preserving access pattern privacy in SGX-assisted encrypted
search. In ICCCN 2018, 2018.

[30] I. Demertzis, S. Papadopoulos, O. Papapetrou,
A. Deligiannakis, and M. N. Garofalakis. Practical private
range search revisited. In Proceedings of the 2016
International Conference on Management of Data, SIGMOD
Conference 2016, San Francisco, CA, USA, June 26 - July 01,
2016, pages 185–198, 2016.

[31] T. T. A. Dinh, P. Saxena, E. Chang, B. C. Ooi, and C. Zhang.

181

M2R: enabling stronger privacy in mapreduce computation. In
24th USENIX Security Symposium, USENIX Security 15,
Washington, D.C., USA, August 12-14, 2015., pages 447–462,
2015.

[32] R. Elmasri and S. B. Navathe. Fundamentals of Database
Systems (6th Edition). Pearson, 2010.

[33] B. Fisch, D. Vinayagamurthy, D. Boneh, and S. Gorbunov.
IRON: functional encryption using Intel SGX. In Proceedings
of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, CCS 2017, Dallas, TX, USA,
October 30 - November 03, 2017, pages 765–782, 2017.

[34] B. Fuhry, R. Bahmani, F. Brasser, F. Hahn, F. Kerschbaum,
and A. Sadeghi. HardIDX: Practical and secure index with
SGX. In DBSec, pages 386–408, 2017.

[35] B. Fuller, M. Varia, A. Yerukhimovich, E. Shen, A. Hamlin,
V. Gadepally, R. Shay, J. D. Mitchell, and R. K. Cunningham.
Sok: Cryptographically protected database search. In 2017
IEEE Symposium on Security and Privacy, SP 2017, San Jose,
CA, USA, May 22-26, 2017, pages 172–191, 2017.

[36] M. Giraud, A. Anzala-Yamajako, O. Bernard, and
P. Lafourcade. Practical passive leakage-abuse attacks against
symmetric searchable encryption. In Proceedings of the 14th
International Joint Conference on e-Business and
Telecommunications (ICETE 2017) - Volume 4: SECRYPT,
Madrid, Spain, July 24-26, 2017., pages 200–211, 2017.

[37] O. Goldreich and R. Ostrovsky. Software protection and
simulation on oblivious RAMs. J. ACM, 43(3):431–473, 1996.

[38] M. T. Goodrich. Randomized shellsort: A simple
data-oblivious sorting algorithm. J. ACM, 58(6):27:1–27:26,
2011.

[39] P. Grubbs, R. McPherson, M. Naveed, T. Ristenpart, and
V. Shmatikov. Breaking web applications built on top of
encrypted data. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security,
Vienna, Austria, October 24-28, 2016, pages 1353–1364,
2016.

[40] T. Hoang, M. O. Ozmen, Y. Jang, and A. A. Yavuz.
Hardware-supported ORAM in effect: Practical oblivious
search and update on very large dataset. PoPETs,
2019(1):172–191, 2019.

[41] M. S. Islam, M. Kuzu, and M. Kantarcioglu. Access pattern
disclosure on searchable encryption: Ramification, attack and
mitigation. In 19th Annual Network and Distributed System
Security Symposium, NDSS 2012, San Diego, California, USA,
February 5-8, 2012, 2012.

[42] G. Kellaris, G. Kollios, K. Nissim, and A. O’Neill. Generic
attacks on secure outsourced databases. In CCS, pages
1329–1340, 2016.

[43] S. Lee, M. Shih, P. Gera, T. Kim, H. Kim, and M. Peinado.
Inferring fine-grained control flow inside SGX enclaves with
branch shadowing. CoRR, abs/1611.06952, 2016.

[44] C. Liu, A. Harris, M. Maas, M. W. Hicks, M. Tiwari, and
E. Shi. Ghostrider: A hardware-software system for memory
trace oblivious computation. In Proceedings of the Twentieth
International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS
’15, Istanbul, Turkey, March 14-18, 2015, pages 87–101, 2015.

[45] C. Liu, X. S. Wang, K. Nayak, Y. Huang, and E. Shi. ObliVM:
A programming framework for secure computation. In 2015
IEEE Symposium on Security and Privacy, SP 2015, San Jose,
CA, USA, May 17-21, 2015, pages 359–376, 2015.

[46] C. Liu, L. Zhu, M. Wang, and Y. Tan. Search pattern leakage

in searchable encryption: Attacks and new construction. Inf.
Sci., 265:176–188, 2014.

[47] M. Maas, E. Love, E. Stefanov, M. Tiwari, E. Shi,
K. Asanovic, J. Kubiatowicz, and D. Song. PHANTOM:
practical oblivious computation in a secure processor. In 2013
ACM SIGSAC Conference on Computer and Communications
Security, CCS’13, Berlin, Germany, November 4-8, 2013,
pages 311–324, 2013.

[48] S. Matetic, M. Ahmed, K. Kostiainen, A. Dhar, D. Sommer,
A. Gervais, A. Juels, and S. Capkun. ROTE: rollback
protection for trusted execution. In 26th USENIX Security
Symposium, USENIX Security 2017, Vancouver, BC, Canada,
August 16-18, 2017., pages 1289–1306, 2017.

[49] P. Mishra, R. Poddar, J. Chen, A. Chiesa, and R. A. Popa.
Oblix: An efficient oblivious search index. In 2018 IEEE
Symposium on Security and Privacy, SP (Oakland), 2018.

[50] M. Naveed, S. Kamara, and C. V. Wright. Inference attacks on
property-preserving encrypted databases. In Proceedings of
the 22nd ACM SIGSAC Conference on Computer and
Communications Security, Denver, CO, USA, October 12-6,
2015, pages 644–655, 2015.

[51] K. Nayak, C. W. Fletcher, L. Ren, N. Chandran, S. Lokam,
E. Shi, and V. Goyal. HOP: Hardware makes obfuscation
practical. In NDSS, 2017.

[52] K. Nayak and J. Katz. An oblivious parallel RAM with o(log2

N) parallel runtime blowup. IACR Cryptology ePrint Archive,
2016:1141, 2016.

[53] V. Nikolaenko, U. Weinsberg, S. Ioannidis, M. Joye,
D. Boneh, and N. Taft. Privacy-preserving ridge regression on
hundreds of millions of records. In 2013 IEEE Symposium on
Security and Privacy, SP 2013, Berkeley, CA, USA, May
19-22, 2013, pages 334–348, 2013.

[54] O. Ohrimenko, M. Costa, C. Fournet, C. Gkantsidis,
M. Kohlweiss, and D. Sharma. Observing and preventing
leakage in mapreduce. In Proceedings of the 22Nd ACM
SIGSAC Conference on Computer and Communications
Security, CCS ’15, pages 1570–1581, New York, NY, USA,
2015. ACM.

[55] R. Poddar, T. Boelter, and R. A. Popa. Arx: A strongly
encrypted database system. IACR Cryptology ePrint Archive,
2016:591, 2016.

[56] R. A. Popa, C. M. S. Redfield, N. Zeldovich, and
H. Balakrishnan. CryptDB: processing queries on an
encrypted database. Commun. ACM, 55(9):103–111, 2012.

[57] R. A. Popa, E. Stark, S. Valdez, J. Helfer, N. Zeldovich, and
H. Balakrishnan. Building web applications on top of
encrypted data using Mylar. In Proceedings of the 11th
USENIX Symposium on Networked Systems Design and
Implementation, NSDI 2014, Seattle, WA, USA, April 2-4,
2014, pages 157–172, 2014.

[58] N. Porter, J. Garms, and S. Simakov. Introducing Asylo: an
open-source framework for confidential computing, 2018.
https://cloudplatform.googleblog.com/2018/
05/Introducing-Asylo-an-open-source-
framework-for-confidential-
computing.html.

[59] D. Pouliot and C. V. Wright. The shadow nemesis: Inference
attacks on efficiently deployable, efficiently searchable
encryption. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security,
Vienna, Austria, October 24-28, 2016, pages 1341–1352,
2016.

182

[60] C. Priebe, K. Vaswani, and M. Costa. EnclaveDB: A secure
database using SGX. In 2018 IEEE Symposium on Security
and Privacy, SP (Oakland), 2018.

[61] A. Rane, C. Lin, and M. Tiwari. Raccoon: Closing digital
side-channels through obfuscated execution. In 24th USENIX
Security Symposium, USENIX Security 15, Washington, D.C.,
USA, August 12-14, 2015., pages 431–446, 2015.

[62] L. Ren, C. W. Fletcher, A. Kwon, E. Stefanov, E. Shi, M. van
Dijk, and S. Devadas. Constants count: Practical
improvements to oblivious RAM. In 24th USENIX Security
Symposium, USENIX Security 15, Washington, D.C., USA,
August 12-14, 2015., pages 415–430, 2015.

[63] D. S. Roche, A. J. Aviv, and S. G. Choi. A practical oblivious
map data structure with secure deletion and history
independence. In IEEE Symposium on Security and Privacy,
SP 2016, San Jose, CA, USA, May 22-26, 2016, pages
178–197, 2016.

[64] M. Russinovich. Introducing Azure confidential computing,
2017. https://azure.microsoft.com/en-us/
blog/introducing-azure-confidential-
computing/.

[65] C. Sahin, V. Zakhary, A. El Abbadi, H. Lin, and S. Tessaro.
Taostore: Overcoming asynchronicity in oblivious data
storage. In IEEE Symposium on Security and Privacy, SP
2016, San Jose, CA, USA, May 22-26, 2016, pages 198–217,
2016.

[66] S. Sasy, S. Gorbunov, and C. W. Fletcher. ZeroTrace :
Oblivious memory primitives from Intel SGX. IACR
Cryptology ePrint Archive, 2017:549, 2017.

[67] F. Schuster, M. Costa, C. Fournet, C. Gkantsidis, M. Peinado,
G. Mainar-Ruiz, and M. Russinovich. VC3: trustworthy data
analytics in the cloud using SGX. In 2015 IEEE Symposium
on Security and Privacy, SP 2015, San Jose, CA, USA, May
17-21, 2015, pages 38–54, 2015.

[68] J. Seo, B. Lee, S. Kim, M.-W. Shih, I. Shin, D. Han, and
T. Kim. SGX-shield: Enabling address space layout
randomization for SGX programs. In NDSS, 2017.

[69] M.-W. Shih, S. Lee, T. Kim, and M. Peinado. T-SGX:
Eradicating controlled-channel attacks against enclave
programs. In NDSS, 2017.

[70] S. Shinde, Z. L. Chua, V. Narayanan, and P. Saxena.
Preventing page faults from telling your secrets. In
Proceedings of the 11th ACM on Asia Conference on
Computer and Communications Security, AsiaCCS 2016,
Xi’an, China, May 30 - June 3, 2016, pages 317–328, 2016.

[71] R. Sinha and M. Christodorescu. Veritasdb: High throughput
key-value store with integrity. IACR Cryptology ePrint
Archive, 2018:251, 2018.

[72] E. Stefanov and E. Shi. Oblivistore: High performance
oblivious distributed cloud data store. In 20th Annual Network
and Distributed System Security Symposium, NDSS 2013, San
Diego, California, USA, February 24-27, 2013, 2013.

[73] E. Stefanov, M. van Dijk, E. Shi, C. W. Fletcher, L. Ren,
X. Yu, and S. Devadas. Path ORAM: an extremely simple
oblivious RAM protocol. In 2013 ACM SIGSAC Conference
on Computer and Communications Security, CCS’13, Berlin,
Germany, November 4-8, 2013, pages 299–310, 2013.

[74] Y. Tang and J. Chen. LPAD: Building secure enclave storage
using authenticated log-structured merge trees. IACR
Cryptology ePrint Archive, 2016:1063, 2018.

[75] S. Thielman. Yahoo hack: 1bn accounts compromised by
biggest data breach in history, 2016.

https://www.theguardian.com/technology/
2016/dec/14/yahoo-hack-security-of-one-
billion-accounts-breached.

[76] J. Van Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci,
F. Piessens, M. Silberstein, T. F. Wenisch, Y. Yarom, and
R. Strackx. Foreshadow: Extracting the keys to the Intel SGX
kingdom with transient out-of-order execution. In Proceedings
of the 27th USENIX Security Symposium. USENIX
Association, August 2018. See also Technical Report
Foreshadow-NG: http://ForeshadowAttack.com.

[77] D. Vinayagamurthy, A. Gribov, and S. Gorbunov. Stealthdb: a
scalable encrypted database with full SQL query support.
PoPETs, 2019(3):370–388, 2019.

[78] F. Wang, C. Yun, S. Goldwasser, V. Vaikuntanathan, and
M. Zaharia. Splinter: Practical private queries on public data.
In 14th USENIX Symposium on Networked Systems Design
and Implementation, NSDI 2017, Boston, MA, USA, March
27-29, 2017, pages 299–313, 2017.

[79] X. S. Wang, K. Nayak, C. Liu, T. H. Chan, E. Shi, E. Stefanov,
and Y. Huang. Oblivious data structures. In Proceedings of the
2014 ACM SIGSAC Conference on Computer and
Communications Security, Scottsdale, AZ, USA, November
3-7, 2014, pages 215–226, 2014.

[80] N. Weichbrodt, A. Kurmus, P. R. Pietzuch, and R. Kapitza.
Asyncshock: Exploiting synchronisation bugs in Intel SGX
enclaves. In Computer Security - ESORICS 2016 - 21st
European Symposium on Research in Computer Security,
Heraklion, Greece, September 26-30, 2016, Proceedings, Part
I, pages 440–457, 2016.

[81] D. J. Wu, J. Zimmerman, J. Planul, and J. C. Mitchell.
Privacy-preserving shortest path computation. In NDSS, 2016.

[82] Y. Xu, W. Cui, and M. Peinado. Controlled-channel attacks:
Deterministic side channels for untrusted operating systems.
In 2015 IEEE Symposium on Security and Privacy, SP 2015,
San Jose, CA, USA, May 17-21, 2015, pages 640–656, 2015.

[83] Y. Zhang, J. Katz, and C. Papamanthou. All your queries are
belong to us: The power of file-injection attacks on searchable
encryption. In 25th USENIX Security Symposium, USENIX
Security 16, Austin, TX, USA, August 10-12, 2016., pages
707–720, 2016.

[84] W. Zheng, A. Dave, J. G. Beekman, R. A. Popa, J. E.
Gonzalez, and I. Stoica. Opaque: An oblivious and encrypted
distributed analytics platform. In 14th USENIX Symposium on
Networked Systems Design and Implementation, NSDI 2017,
Boston, MA, USA, March 27-29, 2017, pages 283–298, 2017.

[85] W. Zheng, A. Dave, J. G. Beekman, R. A. Popa, J. E.
Gonzalez, and I. Stoica. Opaque (github repository), 2017.
https://github.com/ucbrise/opaque/tree/
c42fe1bb758a93239fae284885c3d64991affddf.

183

