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Abstract

A common problem practitioners face is to select rare events in a large dataset.
Unfortunately, standard techniques ranging from pre-trained models to active
learning do not leverage proximity structure present in many datasets and can lead
to worse-than-random results. To address this, we propose EZMODE, an algorithm
for iterative selection of rare events in large, unlabeled datasets. EZMODE leverages
active learning to iteratively train classifiers, but chooses the easiest positive
examples to label in contrast to standard uncertainty techniques. EZMODE also
leverages proximity structure (e.g., temporal sampling) to find difficult positive
examples. We show that EZMODE can outperform baselines by up to 130× on a
novel, real-world, 9,000 GB video dataset.

1 Introduction

A common problem practitioners wish to use ML to solve is to select rare events in large, bespoke
datasets, i.e., find D+ = {x ∈ D : O(x) = 1} for some oracle O. For example, ecologist researchers
may wish to select hummingbirds in field videos, but hummingbird visits can be less than 0.2% of the
video. This problem is common across many domains: political scientists may also be interested in
selecting newspaper articles about the New Deal from large corpora of newspaper scans; moderators
may be interested in finding social media posts about vaccine misinformation among all posts. This
data can subsequently be used for manual analysis or for training classifiers downstream [1].

Unfortunately, standard practice in ML, ranging from executing pre-trained models on the dataset to
active learning to train high-quality classifiers, can be ineffective in these scenarios. For example,
we found that pre-trained models can be worse than random on these datasets due to distribution
shift. Active learning, in which a classifier is iteratively trained on the labeled data from the original
dataset, can also fail to produce good classifiers for selection.

One reason is that neither of these methods leverage inherent proximity structure present in many
datasets. Abstractly, many hard-to-classify examples are close in some auxiliary space to easy-to-
classify examples. For example, many easy examples of hummingbirds are temporally close to
difficult examples of hummingbirds (Figure 1), so selection should leverage the temporal nature
of these datasets. Newspaper columnists may write about similar topics, so once an article by a
particular author is found to be about the New Deal, it may be beneficial to look for other articles by
that author.

To make selection more efficient, we propose an algorithm EZMODE for selecting rare events. In
contrast to many ML settings, ranging from active learning to co-training, the goal is explicitly not to
train a high quality classifier: EZMODE aims to select rare events and does so by leveraging proximity
structure (e.g., temporal or spatial closeness). Given an oracle (typically an expert human labeler)
and a method of ranking data (typically an ML model’s confidence), EZMODE will iteratively: 1)
execute the oracle on the most confident unlabeled examples, 2) execute the oracle on examples
found using proximity structure on any positive examples found in the previous step, 3) regenerate
rankings (typically by retraining a model), and 4) repeat the process.
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(a) Easy example. (b) Hard example.

Figure 1: An example of an easy and difficult to detect hummingbird (as determined by an expert
labeler) temporally close. Our best model ranks the left bird in the 99th percentile and right bird
is ranked in the 91th percentile. In contrast, the left example can be found via temporal sampling,
lowering the need to label 8% of the dataset.

We further show that iteratively training classifiers using previously found data strongly boosts
performance. However, in contrast to standard active learning, EZMODE does not aim to train a
high quality classifier over all the data. Instead, EZMODE aims to train a classifier that ranks easy
examples from the rare class as high as possible (e.g., Figure 1). For example, a hummingbird may
leave the frame and reappear in motion (e.g., Figure 1). In this example, the hummingbird may leave
for many frames and reappear later in the video, making it difficult to incorporate this knowledge in a
classifier, but is easy to select using temporal information. Given that many difficult examples can be
found via proximity structure, EZMODE uses the example difficulty to iteratively train classifiers to
select the easy examples, which we find lead to higher precision classifiers.

We deploy EZMODE on a 9,000 GB novel, real world video dataset. The dataset consists of
continuous video taken of flowering plants in an outdoor setting with the goal of finding frames
showing hummingbirds visiting individual flowers to feed on nectar. We first show that EZMODE is
130× more efficient than pretrained detectors at selecting rare events. We then show that EZMODE
strongly outperforms detectors trained on both easy and hard examples (by up to 7×) and that using
temporal information also greatly aids in selection (by up to 1.8×).

2 Related Work

Selection. Work in the data analytics community has aimed to accelerate selection assuming access
to an oracle. This work generally focuses on creating or leveraging a cheap approximation to the
oracle [2, 3, 4, 5]. However, this work assumes a large enough sample of positive examples can easily
be found (e.g., from pretrained labels or if the prevalence of positive examples is high) and uses these
positive examples to train a cheap approximation. Our setting focuses on the case where it is difficult
to obtain a sufficient number of positive samples to train a cheap approximation well.

Anomaly detection. The goal of anomaly detection is to find patterns in a dataset that do not
conform to some expected behavior [6, 7, 8]. Our problem setting most closely resembles collective
anomaly detection, where the goal is to find anomalous instances in a dataset. Similar to ranking
models for anomaly detection, EZMODE attempts to find anomalous events through sorting the
dataset [9, 10, 11]. In contrast, EZMODE does not aim to learn an optimal ranking. Rather, EZMODE
iteratively uses a rank-ordering of the dataset coupled with problem structure to find rare events.

Co-training and active learning. Both co-training and active learning aim to train high quality
classifiers. Co-training uses two (ideally independent) views of the same dataset, e.g., the textual data
on a webpage and the hyperlink graph for classifying if a webpage is an academic home page or not
[12]. Active learning iteratively chooses data points to label using strategies from uncertainty-based
[13, 14], representation-based [15, 16, 17], and hybrid approaches [18, 19, 20].

In contrast to these approaches, EZMODE does not aim to train a high quality classifier. Instead,
EZMODE leverages problem structure to select rare events iteratively (as in active learning) using
independent views (as in co-training). Importantly, EZMODE does not aim to classify difficult positive
examples and instead selects them via problem structure.
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Algorithm 1 Pseudocode for EZMODE. EZMODE iteratively trains models and selects examples
based on model confidence. Upon sampling a positive example, EZMODE will also recursively
do distance-based sampling for nearby positive examples. SubsetAndTrain subsets by dropping
hard examples and trains a model. DistanceSampling recursively samples by distance for positive
examples. We omit these two functions for brevity.

1: function EZMODE(D,O)
2: Xall, Yall ← Init(D,O) . Init is usually done via random sampling
3: M← SubsetAndTrain(Xall, Yall) . Train the initial model
4: for Rare events remaining, i = 1 do
5: Xi, Yi ← Select(D \Xall,O,M)
6: Xall = Xall ∪Xi, Yall = Yall ∪ Yi

7: M← SubsetAndTrain(Xall, Yall)
8: return {(x, y) ∈ (Xall, Yall) : y = 1} . Return all positive examples

1: function SELECT(D,O,M, K = 1000, R = 9)
2: S ←M(D) . Generate confidence scores from the model
3: R ← ArgSort(S) . Sort by confidence
4: X = ∅, Y = ∅
5: for k = 1, ...,K do
6: yk = O(R(xk))
7: X = X ∪ {xk}, Y = Y ∪ {yk}
8: if yk = 1 then
9: XD, YD ← DistanceSampling(xk)

10: X = X ∪XD, Y = Y ∪ YD

11: return X, Y

Data programming. Work on data programming aims to leverage rules to generate “weak labels” for
the purpose of training high accuracy classifiers [21]. This work ranges from learning structures from
unlabeled data to generating rules automatically [22, 23]. Similarly to active learning, EZMODE’s
goal is not to learn a high quality classifier, but to select data. We see leveraging data programming
to selection as an exciting area of future work.

3 EZMODE

Problem statement. We are given a dataset x ∈ D, an oracle O(x) ∈ {0, 1}, and hardness H(x).
Furthermore, we assume there is an undirected graph G over the dataset with weighted edges eij .
We iteratively select unique data points x1, ..., xT and we define the loss of selecting a point as
`(xt) = 1−O(xt). Define the loss over T steps of some decision algorithm H as LT

H =
∑T

t=1 `(xt).
The goal is to minimize the loss over some fixed time horizon T , i.e., find minH LT

H .

EZMODE. EZMODE aims to minimize the loss via an iterative procedure outlined in Algorithm 1.
Intuitively, EZMODE will train a classifier to select easy examples as defined by H(x) (e.g., as in
Figure 1) and select data via classifier confidence. Upon finding a positive example, EZMODE will
use the distance induced by G to label nearby points. After some number of steps, EZMODE will
iterate from the beginning.

EZMODE contains several hyperparameters that must be tuned (e.g., the number of samples between
retraining, the distance threshold). We leave the tuning of EZMODE to future work.

4 Experiments

We evaluate EZMODE on a novel, real-world, 9,000 GB field video dataset. We split the video
into ∼8M two-second clips (approximately six months of continuous video). The goal is to find all
clips containing bird visits. We used Faster R-CNN [24] as our base model and selected data using
EZMODE. We take the maximum confidence across frames from Faster R-CNN as the score of a clip.
The oracle was an expert human labeler and the distance between two clips is the time between them.
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Model Fraction needed Precision @ 1000
R-CNN (MS-COCO, bird) 98% 10%
MegaDetector (animal) 99% 3%

Table 1: Two state-of-the-art object detection methods for finding birds. We show the fraction needed
to find all the bird clips (discovered so far) and precision at the top 1,000 ranked clips. As shown, the
oracle would have to label over 98% of the data when using pretrained models to find the rare events.

Oracle Calls Precision (w/ Temporal Sampling) Precision (rank only)
250 26.4% 23.6%
500 29.6% 18.2%
1000 25.8% 14.2%

Table 2: Precision at top 250, 500, and 1,000 for selection using problem structure and without using
problem structure. Namely, we show sampling using temporal sampling and using confidence only.
Using problem structure outperforms in all cases, by up to 11%. As expected (if the classifier is a
monotone transformation of calibrated), precision decreases when using rank only.

Model Precision @ 250 (rank only) Precision @ 250 (w/ temporal sampling)
Only easy 23.6% 26.4%
Easy and hard 3.2% 19.6%

Table 3: Precision of the top 250 clips with a model trained on a) only easy and b) easy and hard
examples. Easy and hard were determined by a human labeler As shown, the model trained with only
easy examples outperforms the other model by over 7×.

To date, we have selected 7,451 clips of birds, or 56% of the total birds in the video ([45, 100]% 95th
percentile CI). We report numbers below using the 7,451 clips.

Pre-trained detectors are insufficient. We first show that pretrained detectors are insufficient. We
used a state-of-the-art Mask R-CNN (the most accurate model provided by Detectron2 [25]) trained
on MS-COCO and a wildlife-specific detector provided by Microsoft [26]. We rank ordered the clips
by maximum bird or animal confidence and computed the total number of clips necessary to select
the bird clips we have discovered so far. We further measure the precision of the top ranked 1000
clips. As shown in Table 1, pretrained detectors would need to select up to 99% of the dataset to
select the bird clips, which is 130× worse than EZMODE.

Leveraging problem structure is critical. We further show that leveraging problem structure is
critical. In particular, temporal sampling allows EZMODE to discover difficult positive examples.
To demonstrate this, we take our model with the largest number of training examples and compute
the total number of clips necessary to select the bird clips we have discovered so far. Even our best
performing model requires scanning 99% of the dataset to select the bird clips, compared to the
61,660 total samples needed to obtain the clips so far.

We further measured the precision at 1,000 clips when using and not using temporal sampling in
Table 2. As shown, using temporal sampling increases precision by up to 11.6%.

Training on hard examples hurts performance. We show that training on hard examples hurts
performance. We trained two models: 1) with 310 easy birds frames, 350 human frames, and 415
empty frames and 2) with 310 easy bird frames, 210 hard bird frames, 350 human frames, and 415
empty frames. Easy and hard were determined by a human labeler. We measured the precision in the
top 250 clips ranked by confidence for both models. As shown in Table 3, the model trained with
difficult examples is substantially worse than the model trained on only easy examples.

5 Conclusion

Selecting rare events in large datasets is of great interest. Unfortunately, standard methods (pretrained
models and active learning) fail to leverage proximity structure. To address this, we introduce
EZMODE, an iterative algorithm that leverages both active learning and proximity structure to select
rare events in large datasets. We show that proximity structure is critical: not leveraging problem
structure can be up to 130× more inefficient. Furthermore, we show that training on only easy
examples can substantially outperform training on both easy and hard examples.
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