
Data-Parallel Actors:
A Programming Model for Scalable Query Serving Systems

Peter Kraft, Fiodar Kazhamiaka, Peter Bailis, Matei Zaharia

Abstract
We present data-parallel actors (DPA), a programming model
for building distributed query serving systems. Query serving
systems are an important class of applications characterized
by low-latency data-parallel queries and frequent bulk data up-
dates; they include data analytics systems like Apache Druid,
full-text search engines like ElasticSearch, and time series
databases like InfluxDB. They are challenging to build be-
cause they run at scale and need complex distributed function-
ality like data replication, fault tolerance, and update consis-
tency. DPA makes building these systems easier by allowing
developers to construct them from purely single-node compo-
nents while automatically providing these critical properties.
In DPA, we view a query serving system as a collection of
stateful actors, each encapsulating a partition of data. While
existing actor models focus on concurrency, where there are
many actors but clients communicate with one at a time, DPA
also offers parallelism, providing parallel operators that en-
able consistent, atomic, and fault-tolerant parallel updates and
queries. We have used DPA to build a new query serving
system, a simplified data warehouse based on the single-node
database MonetDB, and enhance existing ones, such as Druid,
Solr, and MongoDB, adding missing user-requested features
such as load balancing and elasticity. We show that DPA can
distribute a system in <1K lines of code (>10× less than
typical implementations in current systems) while achieving
state-of-the-art performance and adding rich functionality.

1 Introduction
Specialized systems that perform data-parallel, low-latency
computations and frequent bulk data updates are becoming
ubiquitous. These query serving systems include search en-
gines like ElasticSearch and Solr [9, 13], online analytics
(OLAP) systems like Druid and Clickhouse [11, 68], time-
series databases like InfluxDB and OpenTSDB [14, 17], and
many others [10, 15, 18, 21, 39, 50, 51]. These systems are
critical to everyday applications: for example, Walmart uses
ElasticSearch to check purchases for fraud in real time [6],
Target and Capital One use Druid and InfluxDB for real-time
monitoring in their production services [5, 7], and Facebook
developed Unicorn [39] to provide graph-based search.

Developing query serving systems is challenging because
their workloads typically run at large scale. Therefore, query
serving system developers must implement complex dis-
tributed functionality, including data replication, update con-

sistency, fault tolerance, and load balancing. These features
vary little between query serving systems, but must be re-
implemented in each of them, typically in custom distribution
layers comprising tens of thousands of lines of complex code
(e.g., ~70K lines in Druid) written over many person-years.
As a result of this complexity, not only are new query serv-
ing systems hard to build, but existing ones are difficult to
adapt to changing user demands. For example, most query
serving systems were designed for fixed-size on-premise clus-
ters, although users increasingly deploy them in the cloud.
Therefore, they do not provide user-requested cloud features
such as elastic cluster auto-scaling [3,4]. Adding any new dis-
tributed feature to an existing, large codebase can take years,
even when there is strong user demand [58, 72].

Ideally, developers would be able to write query serving
systems using a high-level programming model that simplifies
distributing their data and computations across a cluster. Un-
fortunately, current distributed programming models do not
support the unique workloads of query serving systems, with
their combination of data-parallel low-latency queries and
frequent bulk data updates. Actor models like Erlang [28], Or-
leans [34] and Ray [59] can manage mutable state, but lack ab-
stractions, such as consistency and atomicity, for data-parallel
operations. Parallel processing frameworks like Spark [70]
can execute data-parallel queries, but lack abstractions for
managing data, assuming it to be immutable.

In this paper, we propose a new programming model called
data-parallel actors (DPA) that extends the actor model to
support the unique needs of query serving systems. DPA
allows developers to construct a distributed query serving
system from purely single-node components, as we show
in Figure 1. The DPA runtime then automatically provides
the system with complex distributed features such as fault
tolerance, consistency, load balancing, and elasticity.

Designing a programming model for query serving systems
is challenging because of their wildly different query and data
models, from search engines to timeseries databases to docu-
ment stores. DPA’s insight is that the distributed functionality
of a query serving system can be implemented largely inde-
pendently of how the system stores and processes data on
individual nodes. Therefore, DPA represents a query serving
system as a collection of black-box data partitions, each en-
capsulated in a stateful actor. However, while conventional
actor models focus on concurrency, where there are many
actors but clients only communicate with one at a time, query

1



DPA Application (Written by Developer)

Actor Implementation

DPA Runtime (Uniserve)

Queries

DPA Interface

Scalability

Load Balancing

Consistency

Durability

Fault Tolerance

Elasticity

Figure 1: With DPA, a developer can construct a distributed query
serving system from purely single-node components: code for ac-
tors and queries (blue) that implement the system’s per-node data
structures and query processing logic. A DPA runtime like Uniserve
(orange) manages these actors and executes queries, automatically
providing distributed features.

serving systems also require parallelism: one operation can
run over data in many actors, often with consistency and atom-
icity requirements. Thus, DPA provides parallel operators and
updates over its stateful actors. Parallel operators let develop-
ers construct queries from generic operations such as map and
broadcast, while parallel updates offer configurable consis-
tency and atomicity guarantees. DPA defines these operations
and enforces their guarantees, but is agnostic to how each
node processes its part of the work. Thus, DPA separates
responsibilities in building a query serving system, so that
developers only implement single-node data structures and
operations but receive a robust, performant distributed system.

We show that DPA can express the functionality of a wide
range of current query serving systems, while adding pow-
erful user-requested features that production systems lack.
For example, we used DPA to wrap the existing single-node
components in an OLAP system (Druid), search engine (Solr)
and NoSQL database (MongoDB) into stateful actors in a
few hundred lines of code. The DPA ports match the original
systems on standard performance benchmarks, but also auto-
matically receive user-demanded missing features like load
balancing and elasticity, improving performance on skewed
workloads by up to 3×. DPA’s generality makes it a powerful
abstraction for developing new query serving systems.

We implement the DPA programming model in a runtime
called Uniserve. Uniserve manages stateful actors and ex-
ecutes queries, automatically providing distributed features
such as durability, fault tolerance, consistency, load balancing,
and elasticity. Because different workloads require different
implementations of these features, Uniserve also allows de-
velopers to control their systems’ consistency and atomicity
guarantees and load balancing and auto-scaling behavior with-
out modifying their core application code.

To evaluate DPA and Uniserve, we use them to distribute
four systems: the three ports discussed above (Druid, Mon-
goDB, and Solr) and a new simplified data warehouse we
built based on the single-node database MonetDB [49]. We

distribute each system with <1K lines of code. Nevertheless,
on standard benchmarks, our ports match the originals’ perfor-
mance, while our data warehouse matches Amazon Redshift
and outperforms Spark SQL. Each DPA-based system auto-
matically receives powerful features, including fault tolerance,
durability, consistency, load balancing, and elasticity. Some
of these features, particularly load balancing and elasticity,
are missing and frequently requested by users in Druid, Mon-
goDB, and Solr. By adding these features, DPA improves
these systems’ performance by up to 3× on skewed work-
loads. In summary, our contributions are:

• We identify query serving systems as an important emerg-
ing class of distributed systems defined by low-latency
data-parallel queries and frequent bulk updates. We show
that their workloads are not supported by existing high-
level distributed programming models.

• We propose data-parallel actors (DPA), a novel pro-
gramming model for building distributed query serving
systems from purely single-node components. We build
a DPA runtime, Uniserve, which automatically provides
fault tolerance, consistency, durability, load balancing,
and elasticity to query serving systems built with DPA.

• We demonstrate the power and practicality of DPA by
using it to build a simplified data warehouse and porting
the popular systems Solr, Druid, and MongoDB to it.
Our implementations require <1K lines of code (replac-
ing tens of thousands) but match or outperform current
systems while providing rich missing functionality.

2 Background and Motivation
In this section, we give three examples of widely used query
serving systems, then make the case for DPA.

2.1 Case Studies

Apache Solr. Solr [9] is a distributed full-text search system.
It provides a rich query language for searching text documents
and is optimized to serve thousands of queries per second
at millisecond latencies. Solr stores documents in inverted
indexes based on Apache Lucene [33].

Apache Druid. Druid [68] is a high-performance analytics
system. It provides fast ingestion and real-time search and
aggregation of time-ordered tabular data, such as machine
logs. Druid achieves its high performance through specialized
segment data structures that store data in a tabular format opti-
mized with summarization, compression, and custom indexes.

MongoDB. MongoDB [15] is a NoSQL document database.
Unlike Solr and Druid, it is not primarily an analytics sys-
tem, but is often used for analytics [16]. MongoDB performs
search and aggregation queries over semi-structured data. It
uses a schemaless document-oriented data format, backed up
by indexes, to give users flexibility in how their data is stored
and queried without sacrificing performance.

2



Fault Tolerance Load Balancing Elasticity

Solr X
Druid X X
MongoDB X X
Uniserve

Table 1: Distributed features of query serving systems.

2.2 Motivating DPA

Solr, Druid, and MongoDB are popular [12] query serving
systems that serve different workloads. However, while their
physical data structures and query execution strategies are di-
verse, all use custom distribution layers to distribute data and
queries while handling failure and ensuring data consistency.
These distribution layers are difficult to implement, requiring
tens of thousands of lines of complex code (~90K LoC in
Solr, ~70K LoC in Druid, and ~120K LoC in MongoDB).

The difficulty of distributing query serving systems com-
plicates developing new systems, but also causes existing
systems to lack user-demanded features. For example, Solr,
Druid, and MongoDB struggle to provide load balancing and
elasticity, as shown in Table 1. As a result, their users must
over-provision clusters [44], go through the difficult and error-
prone [3, 4] process of manually integrating external auto-
scalers, or risk poor performance when load skews or spikes.

One reason popular systems are missing important features
is that the requirements for distributed systems change over
time. For example, elasticity is considered important today be-
cause most query serving systems run in the cloud, where scal-
ing the size of a cluster is easy. However, many existing sys-
tems (including Druid, Solr, and MongoDB) were built when
the cloud was less popular, so support for auto-scaling was
less important and was not included. Unfortunately, the com-
plexity of query serving systems’ distribution layers makes
it difficult to add new features when users demand them. For
example, adding strongly consistent replication to MongoDB
required designing a novel consensus protocol because design
choices made early in MongoDB’s lifetime precluded using
any existing protocol [72]. Similarly, adding support for joins
to Druid has been a slow, multi-year process because the sys-
tem was originally built assuming queries would not require
communication between data sources [58].

DPA helps solve these problems by separating responsibili-
ties in a query serving system. A developer using DPA is only
responsible for the core, unique functionality of their system:
storing and querying data. DPA and its runtime Uniserve take
responsibility for distribution and scalability, automatically
providing distributed features like fault tolerance, consistency,
load balancing, and elasticity. As user demands change, new
features can be added to Uniserve with minimal modifica-
tions to underlying systems. This makes it easier to build new
query serving systems and maintain existing ones, as they
can obtain state-of-the-art distributed functionality by simply
implementing the DPA interface in a ~1K LoC shim layer.

3 DPA Overview and Interface
DPA lets developers construct a distributed query serving
system from purely single-node components. To use DPA, a
developer must first implement an actor object that encapsu-
lates a data partition like a Solr index or Druid segment. They
must then implement a query planner that translates incom-
ing user queries to the DPA parallel operators. We show the
interface for actors and operators in Figure 2.

3.1 Actors and Data

In DPA, developers express a query serving system as a col-
lection of stateful single-node actors, each encapsulating a
partition of data and exposing methods for manipulating and
querying it. Query serving systems use a wide variety of data
representations, from Solr inverted indexes to Druid table
segments, so DPA actors can encapsulate any data structure
the developer chooses for storing a collection of records. We
sketch the interface for an actor in Figure 2. DPA views an ac-
tor’s implementation as a black box. Actors are only required
to implement four core methods: create, destroy, serialize,
and deserialize (an optional fifth method, copyData, is dis-
cussed in §4.2). The DPA runtime uses these methods for data
management; for example, serialization is needed to replicate
an actor for durability. The DPA runtime also automatically
maps multiple actors to each physical machine and performs
load balancing and auto-scaling. Actors will typically also
implement other methods, e.g., custom methods for querying
a search index, which can be invoked by DPA operators or
update functions when the runtime schedules those to run
against an actor. Unlike in some general-purpose actor run-
times, actors in DPA can only communicate through DPA’s
APIs; they cannot pass arbitrary messages to each other.

DPA actors can be organized into named tables, which are
logical collections of data that are each partitioned across
multiple actors. Tables enable systems to manage multiple
datasets and address queries and updates to specific ones.

One challenge in DPA is determining how to partition data
across actors in a table. Different query serving systems use
different schemes; for example, timeseries databases partition
data by time range, while search indexes may hash data by
term. To provide flexible data partitioning, DPA maps records
inserted in the system to actors based on partition keys. All
records with the same key are assigned to the same actor.

3.2 Data Updates

In a conventional actor model, clients communicate with one
actor at a time, updating its state directly. In a query serving
system, however, users often need to update data partitioned
across several actors, typically with concerns about consis-
tency or atomicity. Therefore, DPA lets developers implement
parallel update functions, which update multiple actors. To
perform updates, users implement an UpdateFunction inter-
face with several methods, as shown in Figure 2.

Users invoke update functions on DPA tables and supply

3



Actor Interface
create() → Actor
destroy()             
serialize() →File
deserialize(File) →Actor
copyData() →Actor

Record Interface
getPartitionKey() →Int

Update Function Interface
updatedTableName() →Table
consistencyLevel()→Level
update(Actor, List[Record])
prepare(Actor, List[Record]) → Bool
commit(Actor)
abort(Actor)

Parallel Operator Interface
inputs()→List[Operator|Table]
keysToQuery() →Map[Int, List[Int]]
operator() → OperatorFunction

Parallel Operator Functions
map(Actor) → Data
scatter(Actor) → List[(K, C)]
gather(K, List[C], Actor) → Data

query(Actor) → V
combine(List[V]) → V’

Create a new (empty) actor.
Destroy an actor.
Serialize an actor’s data to files on disk.
Reconstruct an actor from files on disk.
Create a copy of an actor’s data.

Get a record’s partition key.

Name of the table to be updated. 
What consistency level to use? (§4.2)
Apply eventually consistent update to an actor.
Prepare a serializable update.
Atomically make prepared changes visible.
Roll back prepared changes.

What are the input operators and tables?
For inputs, what partition keys are used? 
The operator function. Signature depends on 
the operator (see below).

Apply a transformation to data.
Partition data into (attribute, chunk) pairs.
Combine chunks with the same attribute, plus 
actors whose partition key matches that 
attribute; materialize the output.
Query an actor to obtain a value.
Combine values into a query answer.

Figure 2: The DPA interface. It consists of callback functions imple-
mented by the developer and invoked by Uniserve to manage data
and execute queries.

them with sets of records to add or change. For example, if a
user is maintaining a library catalog in Solr, they might supply
an update function with records containing information on
new books. The runtime maps the records to actors by parti-
tion key, then runs the user’s update function on each actor
with its corresponding records.

To support the diverse data models of query serving sys-
tems, DPA provides configurable consistency and atomicity
guarantees for updates, which change how updates are im-
plemented. If developers only require eventually consistent
updates, they need only implement in their update function an
“update” method applying an update to an actor. However, if
they need serializability, they must implement the participant
protocol of two-phase commit (prepare, commit and abort).
We discuss consistency in Section 4.2.

3.3 Queries

Unlike traditional actor models, query serving systems ex-
ecute parallel queries over data stored in many actors. To
enable these queries, DPA provides a small but general set
of parallel operators, which let developers construct queries
from generic operations like map and broadcast that underlie
most query models. We list the parallel operators in Figure 2
and diagram them in Figure 3.

Users implement their queries by subclassing one of several
parallel operator classes (e.g., MapOperator) and implement-
ing appropriate callback functions. Queries may be composed
of multiple operators. In practice, we expect developers to
implement a query planner in their system’s client library
that translates queries to DPA operators for execution by the
DPA runtime. Most query serving systems have similar plan-

Actor 1 Actor 2 Actor 3

b) Retrieve and Combine Operators compute the result of a 
query.  A retrieve operation computes values from actors in parallel, 
then a combine operation combines them into a query result. 

Data 1 Data 2 Data 3

a) Map Operators apply a transformation to several actors in 
parallel, materializing the transformed data.

Actor 1
Attrs: A, B, C

Actor 2
Attrs: A, B, C

Actor 3
Attrs: A, B, C

c) Scatter and Gather Operators enable collective operations. A 
gather operation computes (attribute, data chunk) pairs from actors.  
A scatter operation combines chunks with the same attribute and 
materializes the result. Scatter can also (not shown) combine chunks 
with other actors whose partition key matches the chunk attribute.

Data 1
Attr: A

Data 2
Attr: B

Data 3
Attr: C

Queried 
Actors

Transformed 
Data

Actor 1 Actor 2 Actor 3

Value 1 Value 2 Value 3

Queried 
Actors

Retrieved
Values

Combined ValuesResult to
Return

Queried 
Actors

A B C
Data Chunks 
with Attribute

Transformed 
Data

A B C A B C

Figure 3: The five DPA parallel operators.

ners. Both the query planning logic and operator execution
callbacks can be single-node: the DPA runtime handles the
work of distributing a plan’s computation by executing each
operator on each actor that contains relevant data.

Operators should not modify actor state, but may instead
materialize output data that later operators can read. The input
to each operator is a list of tables and of data materialized by
other operators. Operators can specify what partitions of their
input data to query through their keysToQuery method, listing
specific partition keys for each input.

DPA provides five generic parallel operators that we found
sufficient to support the serving systems we considered (Sec-
tion 5), though more operators could be added:

Map. The map operator applies a function to actors in paral-
lel and materializes the transformed data. For example, a map
operator might search for documents in a collection based on
a field, or in a subset of actors specified via keysToQuery.

Retrieve and Combine. The retrieve operator computes
a value from an actor and returns it to the DPA client. It is
used to retrieve the results of a query. If retrieve is executed
on many actors in parallel, it must be followed by a combine
operator, which aggregates retrieved values. Retrieve and com-

4



bine must be the last two operators executed in a query. For
example, if in Solr we have several actors storing indexed text
data and wish to search it for the word “computer,” we can
execute a retrieve operation to find documents containing the
word “computer” on each actor, then combine these results
into a full list.

Scatter and Gather. The last two operators, scatter and
gather, provide data communication between actors, enabling
collective operations such as broadcast and shuffle. The scat-
ter operator produces from an actor a set of (attribute, chunk)
pairs, where the attribute can be any value and the chunk con-
tains data stored in a developer-defined serialized format. A
scatter operator must be followed by a gather operator. Gather
executes one time for each attribute produced by the preced-
ing scatter. Each execution of gather takes in all data chunks
associated with that attribute, along with any actor containing
data whose partition key matches the gather attribute, and
materializes combined and transformed data.

To demonstrate scatter and gather, consider a shuffle join in
a data warehouse setting. Say we have tables of customer
data C(c_id,country) and order data O(o_id,c_id, price),
both partitioned across several actors. We wish to com-
pute the total amount of money spent by each French cus-
tomer: SELECT c_id, SUM(O.price) FROM C, O WHERE
C.country=‘France’ GROUP BY c_id. First, we execute
a scatter operation on every actor containing data from C or
O. This operator returns (attribute, chunk) pairs where every
attribute corresponds to a set of customers (range of values
of c_id) and every chunk contains data associated with those
customers. We then execute a gather operator on the results of
the scatter. Each gather execution takes in a unique attribute
and all its associated chunks. In other words, it takes in all
records from both tables corresponding to a set of customers.
The operator executes the original query on this data, com-
puting the amount of money spent by each French customer.
Each execution materializes new data containing results for
a different set of customers; this data collectively forms the
result of the original query. Subsequent operators could then
query this data; for example retrieve and combine operators
could be used to find the ten top-spending French customers.

3.4 Case Study: Solr

We now describe how to create a DPA port of the distributed
full-text search system Solr [9]. Natively, Solr stores data by
sharding text documents across Lucene inverted indexes [33]
on several machines. These indexes enable efficient search by
(among other things) storing a precomputed mapping from
search terms to relevant documents. When Solr receives a
new document, it hashes it, uses the hash to pick a shard, and
adds it to that shard’s index. To port Solr’s distributed data
storage capabilities to DPA, we encapsulate inverted indexes
in actors. We add data to actors in units of Solr documents,
which act as DPA records. Just like Solr, we hash documents
to obtain a partition key, then use it to assign them to actors.

System Instance

Client Instance (Query Planner)

Uniserve
Server Layer

Uniserve Client Layer

S
e

rv
e

rs

Uniserve Coordinator

Manages

System Instance

Uniserve
Server Layer

DPA
Queries
+ Updates

Query
Results

DPA
Queries
+ Updates

Query
Results

Write 
Replication

Load Balancing

DPA Actor Data

Fault RecoveryAuto-Scaling

Scatter/
Gather

DPA Actor Data

DPA Actor Data

DPA Actor Data

Figure 4: The Uniserve architecture. Clients and servers run a thin
Uniserve layer (orange) above actors encapsulating partitions of
data (gray) stored in instances of the underlying system (blue). A
coordinator manages cluster state and provides distributed features.

All Solr queries are searches: they take in a criterion, such
as a query string, and return a list of documents that satisfy it.
This list may be aggregated by grouping or faceting. Natively,
Solr distributes queries by searching each shard separately,
then combining results on a single node [20]. To port Solr’s
distributed query capabilities to DPA, we must translate Solr
queries to DPA queries. Because all Solr queries are searches,
we can implement them using DPA retrieve and combine op-
erators. Each retrieve operator searches its target actor for
a set of results, then the results are combined and returned.
For example, in a query that searches for books whose title
contains the word “goblin,” retrieve operators run in parallel
on every queried actor, searching their data for “goblin.” A
combine operator then combines the results. The DPA port
of Solr is implemented in <1K lines of code (replacing ~90K
lines of native Solr code), and can execute any query recog-
nized by the standard Solr parser. As we show in Section 7,
when distributed with Uniserve our port matches native Solr
performance while providing features lacking in native Solr,
such as load balancing.

4 Uniserve: A Runtime for DPA
We implement DPA in a runtime called Uniserve. In the DPA
programming model, developers take responsibility for im-
plementing actors and queries on a single node, but Uniserve
takes responsibility for distributing them, managing actors and
executing queries at scale. Uniserve automatically provides
critical distributed features such as fault tolerance, durability,
consistency, load balancing, and elasticity.

4.1 Architecture

A Uniserve cluster consists of many data servers. Each runs a
thin Uniserve layer over developer-provided single-node code
responsible for physical data storage. Clients send queries
and updates to servers. Each client runs a thin Uniserve layer

5



above a developer-provided query planner. A central coordi-
nator manages cluster state with the help of ZooKeeper [48].
Uniserve additionally requires an external durable storage
system (e.g. S3 or HDFS) to back up data. We diagram the
Uniserve cluster architecture in Figure 4.

Servers store data and execute queries. In each server, a thin
Uniserve layer runs above developer-provided single-node
code responsible for physical data storage and query execu-
tion. For example, if we were to distribute Solr using DPA
and Uniserve, each server would run a Uniserve layer above
a single-node Solr instance. DPA actors encapsulate physical
partitions of data stored in this system, so for example each
actor might encapsulate a Solr inverted index. The Uniserve
layer facilitates query execution. It receives query operators
and updates from clients and executes them in the underlying
system using the DPA interface. Additionally, it handles up-
date replication, maintains a log of the most recent updates,
periodically backs up data to durable storage, and transfers
actors between servers in response to coordinator commands;
we discuss these in detail later.

Clients plan queries and submit them to servers. In each
client, a thin Uniserve layer runs alongside a developer-
provided query planner. The query planner receives user
queries (or update requests) in some query language and trans-
lates them to DPA parallel operators (or update functions).
The client then submits these to the appropriate servers, even-
tually receiving and returning a result. Clients learn actor
locations from the coordinator and ZooKeeper so they know
to which servers to send queries or updates.

A Uniserve cluster contains a single coordinator that man-
ages cluster state. It is responsible for many distributed capa-
bilities including load balancing, failure recovery, and elastic-
ity, which we discuss in more detail later. It backs up cluster
state to ZooKeeper. To minimize query latency at scale, the
coordinator is entirely off the query critical path.

4.2 Update Consistency and Atomicity

Conventional actor runtimes do not provide cross-actor data
consistency guarantees, assuming operations occur on a single
actor at a time. Query serving systems, however, perform par-
allel updates on partitioned and replicated data, so Uniserve
provides cross-actor consistency and atomicity guarantees.

Query serving systems typically ingest bulk data for analyt-
ics; for example time series in Druid or logs in Solr. Updates
are usually append-only, but modification of existing data
is possible. Most updates are batched, and systems provide
high update throughput but not necessarily low update latency.
Many systems, like Druid, do not support transactional se-
mantics. However, they still provide update consistency and
atomicity guarantees of varying strength.

Uniserve automatically provides primary-backup actor
replication and data consistency guarantees to query serv-
ing systems. Because query serving system data models vary,
we make these guarantees configurable: when implementing

an update function (§3.2), developers can choose a level of
consistency appropriate to their data model. Each level of
consistency Uniserve provides is a standard model used by
many existing systems. In the remainder of this section, we
describe these guarantees and what developers must imple-
ment to obtain them. Then, in Section 4.3, we explain how
Uniserve upholds its guarantees in case of failures.

Eventual Consistency. By default, Uniserve provides even-
tual consistency, guaranteeing only that all replicas of an actor
eventually converge to the same state. Many systems, like
Solr and Druid, use eventual consistency [19]. To write an
eventually consistent update function, developers need only
implement an “update” method. To execute an eventually con-
sistent update, Uniserve applies it to the primary of an actor
synchronously, then replicates it asynchronously. All replicas
of an actor apply the same updates in the same order.

Serializable Updates. Uniserve can guarantee serializabil-
ity for updates, so the outcome of a sequence of updates is
equivalent to the outcome of the updates executed serially.
As implemented, this also guarantees linearizability, so read
queries made after an update completes always reflect the up-
date. This functionality was recently added to MongoDB [72]
and is common in data warehouses. To write a serializable
update function, developers must implement the participant
protocol of two-phase commit, with separate prepare, commit,
and abort stages. Uniserve only commits an update if it has
successfully prepared on all actors and their replicas, aborting
if failures occur. We currently do not allow multiple serializ-
able updates to run concurrently on the same table, but plan
to add concurrency control in the future.

Full Serializability. Uniserve can make updates serializ-
able (and therefore atomic) with respect to read queries, so
a parallel read query either sees an update applied to all ac-
tors or to none of them, as in SQL databases. To obtain this
guarantee, developers must both provide serializable update
functions and implement the optional copyData actor method
(Figure 2). Using this method, Uniserve creates a versioned
copy of each actor’s data upon update and ensures that read
queries see consistent data versions across actors. We expect
developers to implement copyData using optimizations such
as shadow paging and copy-on-write to minimize its cost.

4.3 Fault Tolerance and Failure Recovery

Uniserve assumes a fail-stop model for failures, where the
only way servers fail is by crashing. It also assumes that if
a server crashes, it remains crashed until restarting (when it
will be treated as a new server). Moreover, it assumes the
coordinator and ZooKeeper are always available; if either
fails the cluster will be unavailable until they are restarted,
with the coordinator restoring its state from ZooKeeper.

Durability. Uniserve guarantees update durability through
replication and through asynchronous backup to durable stor-
age such as S3. If all replicas of an actor fail, the coordina-

6



tor orders a random surviving server to load the actor from
durable storage. Thus, Uniserve can only lose data if all repli-
cas of an actor fail, and will only lose data committed since the
last backup. Additionally, eventually consistent updates can
be lost if the primary fails before the updates are replicated.

Update Fault Tolerance. When providing eventual consis-
tency, Uniserve only guarantees that all replicas of an actor
will eventually converge to the same state. Therefore, it is
possible for an update to partially succeed—to succeed on
some actors but fail on others. If the primary of an actor fails,
the coordinator chooses the replica with the most advanced
update as the new primary, relying on the guarantee that all
replicas apply the same updates in the same order. All other
replicas then sync with the new primary, applying missing
updates from its log to converge to its state.

When providing serializability, Uniserve guarantees that all
updates either totally succeed or abort. Uniserve only commits
an update if it has successfully prepared on all actors and their
replicas, aborting if any failures occur. To ensure the cluster
remains in a consistent state in case of a client crash, the client
writes ahead any commit or abort decision to ZooKeeper;
servers can reference this if the client fails (or abort if the
client fails before making a decision).

Query Fault Tolerance. If a failure occurs during the exe-
cution of a parallel operator on an actor, the client retries with
a different replica. It keeps retrying until it has exhausted all
replicas; this occurs only if all are lost, in which case the actor
must be restored from durable storage and the query fails.

4.4 Load Balancing and Data Placement

Query serving systems often have unpredictable workloads
skewed towards a small number of data items or partitions, so
load balancing is necessary for consistent performance [44].
The obvious way to balance load is through fine-grained query
scheduling, but this is impractical for query serving systems
because of their stricter latency requirements and because all
queries must run on specific data partitions. Instead, Uniserve
balances load through data placement, managing the actor-to-
server assignment to ensure no server is overloaded.

By default, Uniserve provides a greedy load balancing algo-
rithm, similar to that of E-Store [65], which repeatedly moves
the most-loaded actors from the most-loaded servers to the
least-loaded servers while also replicating actors whose load
exceeds average server load. However, some applications may
want to instead use a custom algorithm. Therefore, we allow
developers to define a data placement policy, which uses in-
formation on cluster utilization to compute an assignment
of actors to servers. If a policy is provided, Uniserve takes
responsibility for collecting the policy’s input data and physi-
cally implementing its output assignment, moving actors to
their new locations.

A data placement policy must be expressed as a function
that takes in the total query load (self-reported by the underly-

ing system) and memory and disk usage of each actor, as well
as the current assignment of actors to servers. It returns an
updated assignment of actors to servers, expressed as a map
from actor number to a list of server IDs. Assignments may
replicate actors across multiple servers, either for redundancy
or to spread out their load.

To physically move actors during load balancing, Uniserve
first prefetches, from durable storage, replicas of reassigned
actors on their target servers. These then sync with the actor
primary, applying updates from its log. Only after replicas
are ready does Uniserve notify clients of the actor movement.
Then, after notifying clients, it deletes the original copies of
the actors if necessary. If some of the deleted actors were
primaries, Uniserve designates randomly selected replicas as
new primaries. This procedure ensures high query availability
during shard transfer, but if a primary is removed updates may
briefly block while a new primary is designated.

4.5 Elasticity and Auto-Scaling

Query serving system load often varies over time, so they ben-
efit from elasticity, the ability to dynamically adjust cluster
size. As a result, when deployed in an elastic cloud environ-
ment such as EC2, Uniserve automatically scales cluster size
in response to load changes.

By default, Uniserve provides a utilization-based auto-
scaling algorithm similar to the algorithms used in cloud
auto-scalers [31]. It adds servers if CPU utilization exceeds
an upper threshold and removes them if it is below a lower
threshold. However, like in load balancing, Uniserve also
gives developers the option of defining their own auto-scaling
policy, which uses information on cluster utilization to decide
whether to add or remove nodes. Uniserve provides the policy
with its input and physically executes its commands, adding
or removing nodes and transferring actors as necessary.

An auto-scaling policy must be defined as a function that
takes in the CPU utilization, memory and disk usage, and total
query load of each server. It returns the number of servers to
be added or removed, as well as the IDs of the servers to be
removed, if any (which can be chosen randomly if there is no
preference).

Uniserve periodically executes the policy (using a con-
figurable interval) and adjusts cluster size. After adding or
removing a server, Uniserve uses the load balancer to reas-
sign actors; if servers are removed this reassignment is done
preemptively so availability is not affected.

5 Generality of DPA
In this section, we demonstrate the generality of DPA by
describing some of the diverse systems it can distribute, sum-
marized in Table 2. We also discuss its limitations.

OLAP Systems and Time Series Databases. OLAP sys-
tems rapidly answer multidimensional analytics queries over
tables. They are closely related to time series databases, which
query time-ordered data. Both typically store data in a com-

7



System Type Data Type Query Operations

Druid [68] OLAP Indexed Tables Aggregations, joins
Pinot [50] OLAP Indexed Tables Aggregations
ClickHouse [11] OLAP Indexed Tables Aggregations, joins
Atlas [10] Timeseries DB Time series Aggregations
InfluxDB [14] Timeseries DB Time series Aggregations
Solr [9] Full-Text Search Indexed text Text search
ElasticSearch [13] Full-Text Search Indexed text Text search
Unicorn [39] Graph Database Social Graphs Graph Search
FAISS [51] Vector Database Vectors Vector Search
Pinecone [18] Vector Database Vectors Vector Search
Vespa [21] Vector Database Vectors Vector Search
MongoDB [15] NoSQL Documents Aggregations, search
MonetDB [49] Data Warehouse Relational Tables SQL

Table 2: Systems we believe can be distributed with or ported to
DPA and their properties. Systems we have implemented are in bold.

pressed and indexed columnar format. Their workloads usu-
ally filter, group, and aggregate this data. This naturally fits
DPA: we partition data by key columns across actors (e.g.,
by time range) to support partition filtering, and implement
most aggregations with retrieve and combine operators, using
scatter and gather to shuffle or broadcast data if necessary.
We implement a port of Druid [68], which is both an OLAP
system and timeseries database, on DPA; its design patterns
generalize to others from both categories such as Pinot [50],
Clickhouse [11], Atlas [10] and InfluxDB [14].

Full-Text Search. Full-text search systems execute search
queries over text data stored in specialized data structures such
as inverted indexes [33]. Because all their queries are searches,
they are easy to fit to DPA, as we showed in Section 3.4. We
implement a port of one full-text search system, Solr [9], and
can generalize to others like ElasticSearch [13].

Vector Databases. Vector databases store data using vector
indexes to perform fast nearest neighbor search, often for ma-
chine learning workloads. Recent examples are Pinecone [18],
Vespa [21], and FAISS [51]. Like full-text search systems,
they easily fit DPA as their queries are searches.

Graph Databases. Graph databases represent data using
a graph data model. Some graph database queries are data-
parallel, including whole-graph algorithms like PageRank and
queries like finding all checkins at a certain location in a social
network graph [39]. Others are not; for example, a graph
traversal query, like finding all nodes within N hops of a target,
is most efficiently implemented using breadth-first search,
not data-parallel operators such as iterative self-joins. Data-
parallel graph databases such as Facebook’s Unicorn [39]
search engine fit the DPA programming model.

Other Systems. DPA can distribute other systems with data-
parallel queries. For example, we implement a DPA port of
the NoSQL document store MongoDB. We also implement
a simplified OLAP data warehouse based on the single-node
columnar database MonetDB.

Limitations of DPA. DPA has two major limitations. First,
its query model works best for data-parallel queries. As we

have shown, this is sufficient for many popular query serv-
ing systems, but not some specialized query types like graph
traversal queries. Nonetheless, we believe DPA would have
made many of today’s query serving systems easier to develop,
and can augment them with missing functionality.

Second, DPA is not designed to provide low latency for
small point updates, especially with transactional guarantees.
Small transactional updates are rare in query serving systems
because these are often updated in bulk (e.g., using data col-
lected in a message queue like Kafka). However, they are
common in other context such as online transactional process-
ing (OLTP) workloads, which DPA does not target.

6 Distributing Systems with DPA
To demonstrate the practicality of DPA, we use it to distribute
four systems. First, we port Druid, Solr, and MongoDB to
DPA, replacing their native distribution layers. Then, we build
a new system using DPA: a simplified data warehouse based
on the single-node column store MonetDB.

We implement each of our four systems in <1K lines of
code (LoC). This number includes all code needed to imple-
ment the DPA interfaces with each system’s already-existing
single-node implementation, but not any code in Uniserve.
This demonstrates that DPA simplifies building distributed
query serving systems, as it replaces custom distribution lay-
ers totaling ~90K LoC in Solr, ~120K LoC in MongoDB, and
~70K LoC in Druid. For comparison, Uniserve itself is ~10K
LoC. This smaller size is because Uniserve makes use of tools
like ZooKeeper and gRPC for basic functionality that other
systems implemented themselves.

Solr. We described the port of Solr in Section 3.4.

Druid. In our port of Druid [68], actors encapsulate single-
node Druid datasources. These are analogous to database
tables and are backed by Druid segments, which are opti-
mized tabular stores for timeseries data. We implement most
actor manipulation and update functionality using the Druid
datasource API. Serializing and deserializing data is easy
because Druid segments live in portable directories on disk.

All Druid queries aggregate filtered and grouped data from
datasources. Our port supports most common Druid queries:
simple aggregations (sums, counts, or averages) of filtered and
grouped data. It could easily be extended to support any other
query by adding support for more aggregation operators. Our
Druid queries use retrieve and combine operators to separately
query actors then aggregate the results. Druid uses a similar
model natively. We can also use scatter and gather operators
to support Druid’s recently-added [58] broadcast joins.

MongoDB. In our port of MongoDB [15], actors encapsu-
late single-node MongoDB collections, analogous to database
tables. We implement most actor manipulation and update
functionality using the MongoDB API for manipulating col-
lections. We implement actor data serialization and deserial-
ization using the mongodump and mongorestore tools.

8



MongoDB queries apply an “aggregation pipeline” of op-
erators to a collection. These operators perform tasks such
as filtering, grouping, and accumulating documents. We can
support any MongoDB operator, but so far have only imple-
mented operations for filtering, projecting, summing, count-
ing, and grouping data. Our query implementations are simi-
lar to those in our Druid port and those in native MongoDB:
querying actors separately, then combining the results.

MonetDB. We have built using DPA a simplified data ware-
house based on the single-node column store MonetDB [49].
It stores data in MonetDBLite [63], the embedded implemen-
tation of MonetDB. Each server runs MonetDBLite embed-
ded in the same JVM as the Uniserve layer. Actors encapsu-
late MonetDB tables and implement interface methods using
equivalents in the MonetDBLite API.

Our simplified data warehouse supports a large subset of
SQL, including selection, projection, equijoins, grouping, and
aggregation. We implement simple aggregation queries with
retrieve and combine operators, as in other systems. To exe-
cute more complex queries, such as joins, we use scatter and
gather operators to shuffle or broadcast data, then use retrieve
and combine operators to produce a query result.

7 Experimental Evaluation
We evaluate DPA and Uniserve using the four systems dis-
cussed in Section 6. As we have shown, DPA makes distribut-
ing these systems considerably simpler; each requires <1K
lines of code to distribute as compared to the tens of thousands
of lines in custom distribution layers (~90K in Solr, ~120K in
MongoDB, and ~70K in Druid). Our evaluation shows that:

1. Distributed systems built using DPA and a specialized
single-node system, such as our MonetDB-based simpli-
fied data warehouse, can match or outperform compara-
ble distributed systems such as Spark-SQL and Redshift.

2. DPA ports of distributed systems match the performance
of natively distributed systems under ideal conditions,
such as static workloads without load skew.

3. DPA ports of distributed systems provide new features
such as elasticity and load balancing and so outperform
natively distributed systems under less ideal conditions –
workloads that change, have load skew, or have failures.

7.1 Experimental Setup

We run most benchmarks on a cluster of m5d.xlarge AWS
instances, each with four CPUs, 16 GB of RAM, and an at-
tached SSD. We evaluate using Apache Solr 8.6.1, Apache
Druid 0.20.1, MongoDB 4.2.3, and MonetDBLite-Java 2.39.
We use four data servers for smaller-scale benchmarks and
forty for large-scale benchmarks. In both cases, an additional
node is set aside for the coordinator.

When benchmarking Solr, Druid, and MongoDB natively,
we place the master (Solr ZooKeeper instance, Druid coordi-
nator, MongoDB config and mongos servers) on a machine
by itself and a data server (SolrCloud node, Druid historical,
MongoDB server) on each other node. We also disable query
caching and set the minimum replication factor to 1.

When benchmarking systems with Uniserve, we use the
implementations described in Section 6. We place the Unis-
erve coordinator and a ZooKeeper server on a machine by
themselves and data servers on the other nodes.

7.2 Experiment Workloads

We evaluate each system with a representative workload taken
when possible from the system’s own benchmarks. All of our
comparison systems achieve state-of-the-art performance on
their benchmarks, so DPA also achieves state-of-the-art per-
formance by matching them. We benchmark Solr with queries
from the Lucene nightly benchmarks [57]. We run each query
on a dataset of 1M Wikipedia documents (more for large-scale
benchmarks) taken from the nightly benchmarks. We use two
representative nightly benchmark queries–an exact query for
the number of documents that include the phrase “is also” and
a sloppy query for the number of documents that include a
phrase within edit distance four of the phrase “of the.”

We benchmark Druid with two of the benchmark queries
from the Druid paper [53, 68]. These are TPC-H queries mod-
ified by the Druid developers to reflect the strengths of Druid;
we run each against 6M rows of TPC-H data. The queries
we use are sum_all, which sums four columns of data; and
parts_details, which performs a group-and-aggregate.

We benchmark MongoDB using YCSB [38], simulating an
analytics workload. Before running the workload, we insert
10M sequential items (10GB of data) into the database. We
run a workload of 100% scans, where each scan retrieves one
field from each of uniformly between 1000 and 2000 items.
We base our YCSB client implementation on the MongoDB
YCSB client from the YCSB GitHub repository [22].

We benchmark our data warehouse using representative
TPC-H queries (Q1, Q3, and Q10) at scale factors of 5 and
25, requiring 5GB and 25GB of data respectively.

7.3 Benchmarks

Ideal Conditions. We first benchmark our Solr, Druid, and
MongoDB ports on a uniform workload where each data item
is equally likely to be queried. We run each benchmark with
several client workers; each repeatedly makes the query and
waits for it to complete, recording throughput and latency. We
start with a single worker and add more until throughput no
longer increases, showing results in Figure 5. We find that, as
expected, our ports’ performance is similar to native system
performance on all benchmarks.

Scalability. We next evaluate the scalability of Uniserve,
scaling the Solr benchmarks with one client worker from four
to forty servers. We scale the amount of data to maintain a

9



200 300 400 500
Throughput (queries/sec)

10

100

La
te

nc
y 

(m
s)

a) Solr Exact

20 30
Throughput (queries/sec)

100

1000

La
te

nc
y 

(m
s)

b) Solr Sloppy

25 30
Throughput (queries/sec)

100

1000

La
te

nc
y 

(m
s)

d) Druid Sum

2.75 3.00 3.25
Throughput (queries/sec)

1000

10K
La

te
nc

y 
(m

s)

e) Druid Parts Details

500 1000
Throughput (queries/sec)

10

100

La
te

nc
y 

(m
s)

f) Mongo YCSB

Native p50 Native p99 Uniserve p50 Uniserve p99

Figure 5: Throughput versus latency for native systems and DPA
ports on uniform and static query workloads. Our ports match native
system performance.

10 20 30 40
Number of Servers

0

10

20

30

40

Th
ro

ug
hp

ut
 (q

/s
ec

) a) Solr Exact

10 20 30 40
Number of Servers

0.0

0.2

0.4

0.6

0.8

1.0

Th
ro

ug
hp

ut
 (q

/s
ec

) b) Solr Sloppy
Uniserve Throughput Ideal Throughput

Figure 6: Uniserve scalability on the Solr benchmarks.

constant 5 GB of data per server (from 20 GB at 4 servers to
200 GB at 40 servers). We show results in Figure 6. Uniserve
query performance scales near-linearly.

Data Warehouse Benchmarks. We next benchmark our
simplified data warehouse based on MonetDB, comparing
its performance with native MonetDB, Spark-SQL [27], and
Redshift [46]. We use three TPC-H queries: Q1, an aggrega-
tion query; Q3, a three-way join; and Q10, a four-way join.
We implement Q3 and Q10 using scatter and gather operators
to perform both broadcast and shuffle joins. We show results
in Figure 7. We run multiple trials of each benchmark, report-
ing the average of results after performance stabilizes. This
ensures Spark-SQL and Redshift can cache data in memory.

We first investigate the overhead Uniserve adds to single-
node MonetDB. On a single node, our data warehouse per-
forms the same as native MonetDB on the aggregation query
Q1 and significantly but not unreasonably worse on Q3 and
Q10 due to the communication cost of shuffling. We then
compare our system to Spark-SQL and Redshift on 160 cores
(forty servers for Uniserve and Spark-SQL, five dc2.8xlarge

Q1 Q3 Q100

1000

2000

3000

La
te

nc
y 

(m
s) 2446

407 367

2440

853 444

a) 4 Cores (Single Node), Scale Factor 5

Q1 Q3 Q100

1000

2000

3000

La
te

nc
y 

(m
s)

2316 2666
2069

424 539 459289 334 190

b) 160 Cores, Scale Factor 25

MonetDB Spark-SQL Redshift Uniserve

Figure 7: Comparison between our simplified data warehouse,
single-node MonetDB, Spark-SQL, and Redshift on TPC-H queries
Q1, Q3, and Q10 on 4 cores (single-node) and on 160 cores with
TPC-H scale factors of 5 and 25. Uniserve is competitive on a single
node and outperforms Spark-SQL and matches Redshift at scale.

1M 10M 100M
0

50000

Ti
m

e 
(m

s)
810 4740

38K

930 4990

39K
a) Solr

1M 10M 100M
0

50000

Ti
m

e 
(m

s)

80 690 725090 660 6490

b) Mongo

1M 10M 100M
0

100000

Ti
m

e 
(m

s)

35K 40K
80K

35K 40K
82K

c) Druid

Native Uniserve

Figure 8: Execution time of 1 MB, 10 MB, and 100 MB updates
with native systems and with Uniserve. Uniserve matches native
system performance.

Redshift servers). We find that our data warehouse outper-
forms Spark-SQL and matches Redshift. This shows that by
distributing a single-node system like MonetDB, DPA can in
<1K lines of code match or outperform popular distributed
systems like Redshift and Spark-SQL on their core workloads.

Update Performance. We next investigate Uniserve update
performance. We benchmark 1 MB, 10 MB, and 100 MB
updates on Solr, Druid, and MongoDB, using each system’s
benchmark dataset. We use these bulk writes because they
are typical of query serving system workloads. We compare
native system performance to Uniserve performance, showing
results in Figure 8. For Solr and Druid, we provide eventual
consistency, matching those systems’ semantics; for Mon-
goDB we enable update serializability (through two-phase
commit in Uniserve) and perform the update on four partitions
in parallel. We find that across the board, Uniserve matches
native system update performance.

Hotspots. To demonstrate the importance of load balancing,
we next investigate the performance of the default Uniserve
load balancer on benchmarks with load skew. We compare
against Druid, whose load balancer ensures each server hosts

10



50 100 150
Throughput (queries/sec)

100

1000

La
te

nc
y 

(m
s)

a) Varying Throughput

0.25 0.50 0.75
Fraction of Load to Hotspot

0

500

1000

1500

2000

La
te

nc
y 

(m
s)

b) Varying Skew
Druid p50 Druid p99 Uniserve p50 Uniserve p99

Figure 9: Effect of query skew and load balancing for Druid- and
Uniserve-distributed queries. On the left, we vary throughput in a
workload where one slice of data receives 7/8 of queries; Uniserve
balances load and so outperforms Druid. On the right, we vary
the fraction of queries received by the hot slice; Uniserve keeps
performance constant as skew increases but Druid does not.

the same amount of data but does not balance query load.
First, we execute a workload where 7/8 of the queries are
sent to a single slice of data (four months) and scatter the rest
uniformly on the remainder of the data, showing results in
Figure 9a. Because Uniserve balances load in the hotspot, it
outperforms Druid by up to 3×.

We next repeat the experiment, fixing the number of clients
at twelve but varying the fraction of queries sent to the hotspot.
We show results in Figure 9b. We find that changing skew
does not affect Uniserve performance because Uniserve keeps
load balanced under any load distribution. However, Druid
performance worsens with increasing skew.

Dynamic Load. To demonstrate the importance of elasticity
in query serving systems, we next investigate the performance
of the default Uniserve auto-scaler on a dynamic workload.
We run the Solr sloppy benchmark for six hours sending
queries at a target throughput, which varies from 240 to 1300
uniformly distributed queries per minute. Uniserve starts with
one server and adds or removes more as load changes. We
show results in Figure 10. We see that Uniserve is always able
to scale to meet the target throughput. As load increases, it
adds servers so there are always enough to process each query
in time. As load decreases, it removes unnecessary servers but
keeps enough to process incoming queries. Because the target
query runs in parallel on all actors, adding servers decreases
latency (as the query can run in parallel on more cores on
more servers) and removing servers increases latency.

Importantly, Uniserve can resize clusters without losing per-
formance. By prefetching replicas of moved actors onto new
servers before serving any queries, Uniserve guarantees that
queries need not contend with actor transfers for resources. As
a result, Uniserve can add or remove servers without affecting
throughput or median latency. Tail latency does spike briefly
when a server is added, but this represents only the handful
of queries sent between when Uniserve notifies servers of the
new server and when it notifies clients.

Failures. We next investigate how Uniserve deals with
server failures, using the Druid sum_all benchmark. We run

0

500

1000

Th
ro

ug
hp

ut
 (q

ue
rie

s/
m

in
ut

e) a) Target and Actual Query Throughput

Target
Actual

0

25

50

75

100

CP
U 

Us
ag

e 
(%

) b) Average Cluster CPU Usage

0

2

4

Se
rv

er
s

c) Number of Cluster Servers

0 50 100 150 200 250 300 350
Time Elapsed (min)

100

1000

La
te

nc
y 

(m
s)

d) p50 and p99 Query Latency

p99
p50

Figure 10: On the Solr sloppy benchmark with Uniserve auto-
scaling, varying target throughput and observing effects on actual
throughput, average cluster CPU usage, the number of cluster servers,
and query latencies. Uniserve scales the cluster so that actual through-
put always matches target throughput; resizing causes only brief (<1
sec) spikes in query latency. Latency decreases as cluster size in-
creases because all queries run on all data and their parallelism
increases as the data is spread over more servers.

this benchmark for ten minutes with a client sending 500 asyn-
chronous queries uniformly per minute. Three minutes into
the benchmark, we kill -9 a data server. We record how
many queries succeed during each minute of the benchmark.
We run the benchmark twice, once starting with four replicas
of each data partition or actor (one on each server), and once
with just a single replica. We show results in Figure 11.

When all servers have replicas of all partitions (11b), Unis-
erve recovers instantly, routing queries to replicas. Druid,
however, takes thirty seconds to begin routing queries to repli-
cas, resulting in hundreds of query failures. When there is
only one replica of each partition (11a), both systems fail hun-
dreds of queries but recover in approximately thirty seconds
by restoring replicas from durable cloud storage. However,
while all queries sent to Uniserve either fail or successfully
complete, some “successful” Druid queries return incorrect
results. This experiment confirms previously-reported issues
Druid faces in large-scale deployments [54] and shows how
Uniserve can address them.

8 Related Work
Actors Actor models are abstractions for concurrent com-
putation built around stateful agents called actors [25]. Prior
surveys [52] identified five characteristics of an actor model:
actors encapsulate their own state, communicate only through

11



2.5 5.0 7.5 10.0
Time Elapsed (min)

0

200

400

Qu
er

ie
s/

M
in

ut
e a) Druid - RF 1

2.5 5.0 7.5 10.0
Time Elapsed (min)

0

200

400

Qu
er

ie
s/

M
in

ut
e b) Druid - RF 4

Druid Queries/Minute Uniserve Queries/Minute

Figure 11: Query throughput (targeting 500 queries/min) of Druid-
and Uniserve-distributed sum_all queries when one data server is
killed after three minutes. The left graph shows performance starting
with a single replica of each partition; the right graph with four.

message passing, exhibit location transparency, are mobile,
and are scheduled fairly. DPA actors support all five of these
properties: they encapsulate shards of data, do not share state,
are addressable through partition keys, can be moved between
servers, and share resources on each machine. Other systems
based on actors include Erlang [29], a programming langauge
with built-in actor support; Akka [8], which supports actors
on the JVM, including persistent actors with durable state;
Orleans [32,34], which supports virtual actors that are only in-
stantiated on-demand when required; and Ray [59,67], where
developers can call remote procedures on stateful actors.

Critically, most existing actor models focus on concurrent
computations, not the parallel ones performed by query serv-
ing systems and DPA. Programs may spawn millions of ac-
tors, but clients send messages to individual actors. Most
actor models do not support cross-actor transactions, requir-
ing users to manually implement protocols such as two-phase
commit. Eldeeb and Bernstein extended Orleans with a trans-
actional actor concept [42], but that work focused on allowing
clients to make multiple calls to the same actor as a single
transaction and tracking these calls’ effects on downstream
actors through message passing, which would be expensive
for the large data-parallel operations that DPA targets. DPA
instead reasons about parallel operators directly, taking ad-
vantage of the fact that query serving systems mostly need
to support bulk updates as opposed to many concurrent write
transactions, and offers multiple consistency levels to support
different system designs. Early versions of Akka also sup-
ported transactional actors on the same server [2], but this
was removed because the mechanism was hard to extend to
multiple servers [1].

Other Distributed Programming Models One class of
programming model often used for parallel queries are batch
frameworks like MapReduce [41], Hadoop [64], Percola-
tor [62], Dryad [69], and Spark [70]. Unlike query serving
systems, these only execute computations and do not provide
abstractions for managing data, typically assuming its im-
mutability. Moreover, they are not designed for low latency
and typically do not implement many of the optimizations
used in query serving systems, such as augmenting data with

secondary indexes. Researchers have attempted to build up-
datable data structures over Spark RDDs, such as PART [40],
but these are greatly limited by the immutability of RDDs.

Streaming and dataflow systems like Spark Streaming [26,
71], Naiad [60], and Flink [35] execute queries in real time on
streaming data. However, unlike query serving systems, they
focus primarily on continuous computation (incrementally
updating the result of a query as data comes in) and do not
perform data management or low-latency query serving. They
are often used to write data into a query serving system.

Cluster management systems like Helix [45], Mesos [47],
and YARN [66] are designed to deploy distributed systems
at scale. Mesos and YARN are primarily concerned with as-
signing resources to each application. Helix, like Uniserve,
automatically manages the applications running on it, provid-
ing features such as elasticity and fault tolerance. However, it
is not designed for query serving workloads and lacks a query
model and abstractions for consistency and atomicity.

The auto-sharding systems Slicer [24] and Centrifuge [23]
assign data and queries to shards based on partition keys, like
DPA. However, they only manage key affinity, telling applica-
tions what keys are assigned to what servers. DPA provides
abstractions for managing data and executing queries.

Thor [56] stores data in persistent distributed objects for
heterogeneous applications to access. These objects resemble
DPA actors, but Thor must run object operations on client
machines and does not provide high-level abstractions such
as a query model or configurable consistency guarantees.

Middleware systems for databases automatically distribute
data and queries across existing database installations and
provide features like fault tolerance [55, 61] and load balanc-
ing [30]. However, these solutions are typically specialized to
particular database types, like relational databases [36, 37] or
NoSQL stores [43], and do not provide general abstractions
to support a wide range of data and query models like DPA.

9 Conclusion
Query serving systems are an important emerging class of dis-
tributed systems that power many Internet applications. Tradi-
tionally, they have been implemented from scratch, requiring
substantial effort to add distributed query processing and data
management functionality. We presented data-parallel actors
(DPA), a high-level programming model that allows devel-
opers to build reliable, performant distributed query serving
systems by only writing single-node data structures and logic.
We showed that DPA can express the functionality of a wide
range of query serving systems, building a simplified data
warehouse and porting Druid, Solr, and MongoDB to DPA.
Our implementations require <1K lines of code, match current
systems on standard benchmarks, and add rich missing func-
tionality, e.g., improving system performance up to 3× on
skewed workloads by adding automatic load balancing. We
believe that DPA will be a valuable tool to help organizations
more easily develop these important systems.

12



References
[1] Akka 2.4 migration guide. https://doc.akka.io/

docs/akka/2.4/project/migration-guide-2.3.
x-2.4.x.html.

[2] Akka transactors documentation. https://doc.akka.
io/docs/akka/2.2/scala/transactors.html,
2015.

[3] How to Setup ElasticSearch Cluster with Auto-Scaling
on Amazon EC2? https://stackoverflow.com/
questions/18010752/, 2015.

[4] MongoDB Cluster with AWS Cloud Formation
and Auto-Scaling. https://stackoverflow.com/
questions/30790038/, 2016.

[5] Why Architecting for Disaster Recovery is Important
for Your Time Series Data. https://www.influxdata.
com/customer/capital-one/, 2018.

[6] How Walmart is Combating Fraud and Saving
Consumers Millions. https://www.elastic.co/
elasticon/tour/2019/dallas/, 2019.

[7] Enterprise Scale Analytics Platform Powered
by Druid at Target. https://imply.io/
virtual-druid-summit, 2020.

[8] Akka. https://akka.io/, 2021.

[9] Apache Solr. https://lucene.apache.org/solr/,
2021.

[10] Atlas. https://github.com/Netflix/atlas, 2021.

[11] ClickHouse. https://clickhouse.tech/, 2021.

[12] DB-Engines Ranking. https://db-engines.com/
en/ranking, 2021.

[13] Elasticsearch. www.elastic.co, 2021.

[14] InfluxDB. https://www.influxdata.com/, 2021.

[15] MongoDB. https://www.mongodb.com/, 2021.

[16] MongoDB for Analytics. https://www.mongodb.
com/analytics, 2021.

[17] OpenTSDB. http://opentsdb.net/, 2021.

[18] Pinecone. https://www.pinecone.io/, 2021.

[19] Shards and Indexing Data in SolrCloud, Aug 2021.

[20] Solr Distributed Requests. https://solr.apache.
org/guide/8_8/distributed-requests.html,
2021.

[21] Vespa. https://vespa.ai/, 2021.

[22] YCSB GitHub. https://github.com/
brianfrankcooper/YCSB, 2021.

[23] Atul Adya, John Dunagan, and Alec Wolman. Cen-
trifuge: Integrated lease management and partitioning
for cloud services. In NSDI, volume 10, pages 1–16,
2010.

[24] Atul Adya, Daniel Myers, Jon Howell, Jeremy Elson,
Colin Meek, Vishesh Khemani, Stefan Fulger, Pan Gu,
Lakshminath Bhuvanagiri, Jason Hunter, et al. Slicer:
Auto-sharding for Datacenter Applications. In 12th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI 16), pages 739–753, 2016.

[25] Gul A Agha. Actors: A model of concurrent compu-
tation in distributed systems. Technical report, Mas-
sachusetts Inst of Tech Cambridge Artificial Intelligence
Lab, 1985.

[26] Michael Armbrust, Tathagata Das, Joseph Torres, Bu-
rak Yavuz, Shixiong Zhu, Reynold Xin, Ali Ghodsi, Ion
Stoica, and Matei Zaharia. Structured streaming: A
declarative api for real-time applications in apache spark.
In Proceedings of the 2018 International Conference
on Management of Data, SIGMOD ’18, page 601–613,
New York, NY, USA, 2018. Association for Computing
Machinery.

[27] Michael Armbrust, Reynold S Xin, Cheng Lian, Yin
Huai, Davies Liu, Joseph K Bradley, Xiangrui Meng,
Tomer Kaftan, Michael J Franklin, Ali Ghodsi, et al.
Spark SQL: Relational Data Processing in Spark. In
Proceedings of the 2015 ACM SIGMOD International
Conference on Management of Data, pages 1383–1394,
2015.

[28] Joe Armstrong. A History of Erlang. In Proceedings
of the Third ACM SIGPLAN Conference on History of
Programming Languages, pages 6–1, 2007.

[29] Joe Armstrong. Erlang. Communications of the ACM,
53(9):68–75, September 2010.

[30] Jaiganesh Balasubramanian, Douglas C Schmidt,
Lawrence Dowdy, and Ossama Othman. Evaluating the
Performance of Middleware Load Balancing Strategies.
In Proceedings. Eighth IEEE International Enterprise
Distributed Object Computing Conference, 2004. EDOC
2004., pages 135–146. IEEE, 2004.

[31] Jeff Barr. New AWS Auto Scaling – Unified Scaling
For Your Cloud Applications. 2018.

[32] Phil Bernstein, Sergey Bykov, Alan Geller, Gabriel Kliot,
and Jorgen Thelin. Orleans: Distributed virtual actors
for programmability and scalability. Technical Report
MSR-TR-2014-41, March 2014.

13

https://doc.akka.io/docs/akka/2.4/project/migration-guide-2.3.x-2.4.x.html
https://doc.akka.io/docs/akka/2.4/project/migration-guide-2.3.x-2.4.x.html
https://doc.akka.io/docs/akka/2.4/project/migration-guide-2.3.x-2.4.x.html
https://doc.akka.io/docs/akka/2.2/scala/transactors.html
https://doc.akka.io/docs/akka/2.2/scala/transactors.html
https://stackoverflow.com/questions/18010752/
https://stackoverflow.com/questions/18010752/
https://stackoverflow.com/questions/30790038/
https://stackoverflow.com/questions/30790038/
https://www.influxdata.com/customer/capital-one/
https://www.influxdata.com/customer/capital-one/
https://www.elastic.co/elasticon/tour/2019/dallas/
https://www.elastic.co/elasticon/tour/2019/dallas/
https://imply.io/virtual-druid-summit
https://imply.io/virtual-druid-summit
https://akka.io/
https://lucene.apache.org/solr/
https://github.com/Netflix/atlas
https://clickhouse.tech/
https://db-engines.com/en/ranking
https://db-engines.com/en/ranking
www.elastic.co
https://www.influxdata.com/
https://www.mongodb.com/
https://www.mongodb.com/analytics
https://www.mongodb.com/analytics
http://opentsdb.net/
https://www.pinecone.io/
https://solr.apache.org/guide/8_8/distributed-requests.html
https://solr.apache.org/guide/8_8/distributed-requests.html
https://vespa.ai/
https://github.com/brianfrankcooper/YCSB
https://github.com/brianfrankcooper/YCSB


[33] Andrzej Białecki, Robert Muir, and Grant Ingersoll.
Apache Lucene 4. In SIGIR 2012 Workshop on Open
Source Information Retrieval, page 17, 2012.

[34] Sergey Bykov, Alan Geller, Gabriel Kliot, James R
Larus, Ravi Pandya, and Jorgen Thelin. Orleans: Cloud
Computing for Everyone. In Proceedings of the 2nd
ACM Symposium on Cloud Computing, pages 1–14,
2011.

[35] Paris Carbone, Asterios Katsifodimos, Stephan Ewen,
Volker Markl, Seif Haridi, and Kostas Tzoumas. Apache
flink: Stream and batch processing in a single engine.
Bulletin of the IEEE Computer Society Technical Com-
mittee on Data Engineering, 36(4), 2015.

[36] Emmanuel Cecchet, George Candea, and Anastasia Ail-
amaki. Middleware-Based Database Replication: the
Gaps Between Theory and Practice. In Proceedings of
the 2008 ACM SIGMOD International Conference on
Management of Data, pages 739–752, 2008.

[37] Emmanuel Cecchet, Marguerite Julie, and Willy
Zwaenepoel. C-JDBC: Flexible Database Clustering
Middleware. In USENIX Annual Technical Conference,
number CONF, 2004.

[38] Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu
Ramakrishnan, and Russell Sears. Benchmarking Cloud
Serving Systems with YCSB. In Proceedings of the 1st
ACM symposium on Cloud computing, pages 143–154,
2010.

[39] Michael Curtiss, Iain Becker, Tudor Bosman, Sergey
Doroshenko, Lucian Grijincu, Tom Jackson, Sandhya
Kunnatur, Soren Lassen, Philip Pronin, Sriram Sankar,
et al. Unicorn: A system for searching the social graph.
Proceedings of the VLDB Endowment, 6(11):1150–
1161, 2013.

[40] Ankur Dave, Joseph E Gonzalez, Michael J Franklin,
and Ion Stoica. Persistent adaptive radix trees: Efficient
fine-grained updates to immutable data.

[41] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Sim-
plified Data Processing on Large Clusters. 2004.

[42] Tamer Eldeeb and Phil Bernstein. Transactions for dis-
tributed actors in the cloud. Technical Report MSR-TR-
2016-1001, October 2016.

[43] Felix Gessert, Florian Bücklers, and Norbert Ritter.
Orestes: A scalable database-as-a-service architecture
for low latency. In 2014 IEEE 30th international con-
ference on data engineering workshops, pages 215–222.
IEEE, 2014.

[44] Mainak Ghosh, Ashwini Raina, Le Xu, Xiaoyao Qian,
Indranil Gupta, and Himanshu Gupta. Popular is
Cheaper: Curtailing Memory Costs in Interactive Ana-
lytics Engines. In Proceedings of the Thirteenth EuroSys
Conference, pages 1–14, 2018.

[45] Kishore Gopalakrishna, Shi Lu, Zhen Zhang, Adam Sil-
berstein, Kapil Surlaker, Ramesh Subramonian, and Bob
Schulman. Untangling cluster management with helix.
In Proceedings of the Third ACM Symposium on Cloud
Computing, SoCC ’12, New York, NY, USA, 2012. As-
sociation for Computing Machinery.

[46] Anurag Gupta, Deepak Agarwal, Derek Tan, Jakub
Kulesza, Rahul Pathak, Stefano Stefani, and Vidhya
Srinivasan. Amazon Redshift and the Case for Sim-
pler Data Warehouses. In Proceedings of the 2015 ACM
SIGMOD International Conference on Management of
Data, pages 1917–1923, 2015.

[47] Benjamin Hindman, Andy Konwinski, Matei Zaharia,
Ali Ghodsi, Anthony D. Joseph, Randy Katz, Scott
Shenker, and Ion Stoica. Mesos: A platform for fine-
grained resource sharing in the data center. In 8th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI 11), Boston, MA, March 2011.
USENIX Association.

[48] Patrick Hunt, Mahadev Konar, Flavio Paiva Junqueira,
and Benjamin Reed. Zookeeper: Wait-free coordination
for internet-scale systems. In USENIX annual technical
conference, volume 8, 2010.

[49] S Idreos, F Groffen, N Nes, S Manegold, S Mullender,
and M Kersten. Monetdb: Two decades of research
in column-oriented database. IEEE Data Engineering
Bulletin, 2012.

[50] Jean-François Im, Kishore Gopalakrishna, Subbu Sub-
ramaniam, Mayank Shrivastava, Adwait Tumbde, Xiao-
tian Jiang, Jennifer Dai, Seunghyun Lee, Neha Pawar,
Jialiang Li, et al. Pinot: Realtime OLAP for 530 Mil-
lion Users. In Proceedings of the 2018 International
Conference on Management of Data, pages 583–594,
2018.

[51] Jeff Johnson, Matthijs Douze, and Hervé Jégou. Billion-
scale similarity search with gpus. IEEE Transactions on
Big Data, 7(3):535–547, 2021.

[52] Rajesh K Karmani, Amin Shali, and Gul Agha. Actor
frameworks for the jvm platform: a comparative analy-
sis. In Proceedings of the 7th International Conference
on Principles and Practice of Programming in Java,
pages 11–20, 2009.

[53] Xavier Léauté. Benchmarking Druid. 2014.

14



[54] Roman Leventov. The Challenges of Running Druid at
Large Scale, Nov 2017.

[55] Yi Lin, Bettina Kemme, Marta Patiño-Martínez, and
Ricardo Jiménez-Peris. Middleware Based Data Repli-
cation Providing Snapshot Isolation. In Proceedings of
the 2005 ACM SIGMOD International Conference on
Management of Data, pages 419–430, 2005.

[56] Barbara Liskov, Atul Adya, Miguel Castro, Sanjay Ghe-
mawat, R Gruber, U Maheshwari, Andrew C Myers,
Mark Day, and Liuba Shrira. Safe and efficient sharing
of persistent objects in thor. ACM SIGMOD Record,
25(2):318–329, 1996.

[57] Michael McCandless. Lucene nightly benchmarks.
2020.

[58] Gian Merlino. Druid Initial Join Support, Oct 2019.

[59] Philipp Moritz, Robert Nishihara, Stephanie Wang,
Alexey Tumanov, Richard Liaw, Eric Liang, Melih Eli-
bol, Zongheng Yang, William Paul, Michael I. Jordan,
and Ion Stoica. Ray: A distributed framework for emerg-
ing AI applications. In 13th USENIX Symposium on Op-
erating Systems Design and Implementation (OSDI 18),
pages 561–577, Carlsbad, CA, October 2018. USENIX
Association.

[60] Derek G. Murray, Frank McSherry, Rebecca Isaacs,
Michael Isard, Paul Barham, and Martín Abadi. Na-
iad: A timely dataflow system. In Proceedings of the
Twenty-Fourth ACM Symposium on Operating Systems
Principles, SOSP ’13, page 439–455, New York, NY,
USA, 2013. Association for Computing Machinery.

[61] Marta Patiño-Martinez, Ricardo Jiménez-Peris, Bettina
Kemme, and Gustavo Alonso. MIDDLE-R: Consistent
Database Replication at the Middleware Level. ACM
Transactions on Computer Systems (TOCS), 23(4):375–
423, 2005.

[62] Daniel Peng and Frank Dabek. Large-scale incremental
processing using distributed transactions and notifica-
tions. In Proceedings of the 9th USENIX Symposium on
Operating Systems Design and Implementation, 2010.

[63] Mark Raasveldt. MonetDBLite: An Embedded Analyti-
cal Database. In Proceedings of the 2018 International
Conference on Management of Data, pages 1837–1838,
2018.

[64] Konstantin Shvachko, Hairong Kuang, Sanjay Radia,
and Robert Chansler. The Hadoop Distributed File Sys-
tem. In 2010 IEEE 26th Symposium on Mass Storage
Systems and Technologies (MSST), pages 1–10. Ieee,
2010.

[65] Rebecca Taft, Essam Mansour, Marco Serafini, Jennie
Duggan, Aaron J Elmore, Ashraf Aboulnaga, Andrew
Pavlo, and Michael Stonebraker. E-Store: Fine-Grained
Elastic Partitioning for Distributed Transaction Process-
ing Systems. Proceedings of the VLDB Endowment,
8(3):245–256, 2014.

[66] Vinod Kumar Vavilapalli, Arun C. Murthy, Chris Dou-
glas, Sharad Agarwal, Mahadev Konar, Robert Evans,
Thomas Graves, Jason Lowe, Hitesh Shah, Siddharth
Seth, Bikas Saha, Carlo Curino, Owen O’Malley, San-
jay Radia, Benjamin Reed, and Eric Baldeschwieler.
Apache hadoop yarn: Yet another resource negotiator.
In Proceedings of the 4th Annual Symposium on Cloud
Computing, SOCC ’13, New York, NY, USA, 2013. As-
sociation for Computing Machinery.

[67] Stephanie Wang, Eric Liang, Edward Oakes, Ben Hind-
man, Frank Sifei Luan, Audrey Cheng, and Ion Stoica.
Ownership: A distributed futures system for fine-grained
tasks. In 18th USENIX Symposium on Networked Sys-
tems Design and Implementation (NSDI 21), pages 671–
686. USENIX Association, April 2021.

[68] Fangjin Yang, Eric Tschetter, Xavier Léauté, Nelson Ray,
Gian Merlino, and Deep Ganguli. Druid: A Real-Time
Analytical Data Store. In Proceedings of the 2014 ACM
SIGMOD International Conference on Management of
Data, pages 157–168, 2014.

[69] Yuan Yu, Michael Isard, Dennis Fetterly, Mihai Budiu,
Ulfar Erlingsson, Pradeep Gunda, and Jon Currey.
DryadLINQ: A System for General-Purpose Distributed
Data-Parallel Computing Using a High-Level Language.
8th USENIX Symposium on Operating Systems Design
and Implementation (OSDI), 2009.

[70] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das,
Ankur Dave, Justin Ma, Murphy McCauly, Michael J.
Franklin, Scott Shenker, and Ion Stoica. Resilient Dis-
tributed Datasets: A Fault-Tolerant Abstraction for In-
Memory Cluster Computing. In Presented as part of the
9th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 12), pages 15–28, San Jose,
CA, 2012. USENIX.

[71] Matei Zaharia, Tathagata Das, Haoyuan Li, Timothy
Hunter, Scott Shenker, and Ion Stoica. Discretized
streams: Fault-tolerant streaming computation at scale.
In Proceedings of the Twenty-Fourth ACM Sympo-
sium on Operating Systems Principles, SOSP ’13, page
423–438, New York, NY, USA, 2013. Association for
Computing Machinery.

[72] Siyuan Zhou and Shuai Mu. Fault-tolerant replication
with pull-based consensus in mongodb. In 18th USENIX

15



Symposium on Networked Systems Design and Imple-
mentation (NSDI 21), pages 687–703. USENIX Associ-

ation, April 2021.

16


	Introduction
	Background and Motivation
	Case Studies
	Motivating DPA

	DPA Overview and Interface
	Actors and Data
	Data Updates
	Queries
	Case Study: Solr

	Uniserve: A Runtime for DPA
	Architecture
	Update Consistency and Atomicity
	Fault Tolerance and Failure Recovery
	Load Balancing and Data Placement
	Elasticity and Auto-Scaling

	Generality of DPA
	Distributing Systems with DPA
	Experimental Evaluation
	Experimental Setup
	Experiment Workloads
	Benchmarks

	Related Work
	Conclusion

