
Abstraction Elimination
for Kappa Calculus

Adam Megacz
megacz@cs.berkeley.edu

9.Nov.2011

1

Outline
� Overview: the problem and solution in broad strokes

� Detail: kappa calculus and abstraction elimination

� Applications: some initial results

2

Part I: Overview

3

Lambda calculus is great

� It has first-class functions
� Unfortunately: first-class functions don’t work everywhere

� Circuits (Lava, Hawk, ...)

� Nested Data Parallelism (NESL, Nepal, DPH)

� Dataflow Concurrency (Kahn-McQueen)

� GPU Shader Programs

� Cryptocurrency contracts

4

Lambda calculus without first-class functions?
� Usual strategy: the “grammar hack”:

σ ::= Int | Bool | . . . (ground types)

τ ::= σ | σ->τ (first-order types)

� Complicates (or ruins) principal types

� Poor interaction with polymorphism

� Two sorts of types means lots of things (type variables, etc) have to

come in two flavors

6

Lambda calculus without first-class functions?
� Alternative: Kappa calculus (Lambek, Hasegawa)
� In a nutshell:

� Each term has a pair of types: its source type and target type
� Compose functions instead of applying them.

� The source type of free variables is always the unit type.

� Unfortunately, programming without first-class functions is very
repetitive

� I propose: use a heterogeneous two-level language.
� Kappa calculus based object language

� Lambda calculus based meta language

� In homogeneous two-level languages, you build an object program in
order to run it.

� In a heterogeneous two-level language you build object programs for

other reasons.

� I propose: to realize object language programs as combinator
expressions.

8

Part II: Details

10

Kappa Calculus: Principles

Simply-typed lambda calculus is a notation for natural deduction proof
terms in which:

� Propositions are closed under implication (->)

� Modus ponens as the basic inference rule

Simply-typed kappa calculus is a notation for natural deduction proof
terms in which:

� Propositions are always implications

� Cut is the basic inference rule

� The deduction theorem holds for only some propositions.

12

Lambda Calculus

vs. Kappa Calculus

τ := Int | Bool | τ->τ | . . .

e := x | e e | λx.e

Note: -> is no longer part of the grammar for types; instead, e : τ1->τ2
is a ternary relation asserting e has source type τ1 and target type τ2.

[Var]
x:τ

->τ �

� x:τ

->τ �

Γ1 � e1:τ1

τ1->τ2

Γ2 � e2:τ1->τ3[App]
Γ1, Γ2 � e2

◦

e1:τ3

τ1->τ3

Γ, x:τ1

1->τ1

� e:τ3

τ2->τ3

[Abs]
Γ � (λx.e):τ1->τ3

(κx.e):(τ1 × τ2)->τ3

14

Lambda Calculus vs. Kappa Calculus

τ := Int | Bool | 1 | τ × τ | . . .

e := x | e ◦ e | κx.e | raiseτ (e)

Note: -> is no longer part of the grammar for types; instead, e : τ1->τ2
is a ternary relation asserting e has source type τ1 and target type τ2.

[Var]
x:τ->τ � � x:τ->τ �

Γ1 � e1:

τ1

τ1->τ2 Γ2 � e2:τ2->τ3[App]
Γ1, Γ2 � e2◦e1:τ1->τ3

Γ, x:1->τ1 � e:τ2->τ3[Abs]
Γ � (κx.e):(τ1 × τ2)->τ3

Γ � e : τ1->τ2[Raise]
Γ � raiseτ3(e) : (τ1 × τ3)->(τ2 × τ3)

14

Type Equality vs. Isomorphism

In Hasegawa’s work,

1×A = A = A×1

(A×B)×C = A×(B×C)

Later I will weaken these from equalities to isomorphisms, which will
clutter the presentation. For now, I will invoke a rule “[Cheat]” when I
appeal to these equalities.

16

Useful Definitions

id = κx .x : τ->τ

drop = κx .id1 : τ->1

copy = κx .raise(x) ◦ x : τ->(τ × τ)

swap = κx .κy .raise(y) ◦ x : (τ1 × τ2)->(τ2 × τ1)

lowerτ (e)
def
= swap ◦ raiseτ (e) ◦ swap : (τ1 × τ2)->(τ2 × τ1)

(if e : τ1->τ2)

e1e2
def
= e1 ◦ raise(e2)

18

Useful Definitions: id

idτ = κx .x : τ->τ

id

[Var]
x :1->τ � x : 1->τ [Abs]� κx .x : τ × 1 -> τ

[Cheat]� κx .x : τ -> τ

20

Useful Definitions: drop

drop = κx .id1 : τ->1

drop

...
� id : 1->1 [Weak]

x :1->τ � id : 1->1 [Abs]� κx .id : τ × 1 -> 1
[Cheat]� κx .id : τ -> 1

22

Useful Definitions: copy

copy = κx .raise(x) ◦ x : τ -> τ × τ

copy

[Var]
x :1->τ � x : 1->τ [Raise]
x :1->τ � raise(x) : 1× τ->τ × τ

[Cheat]
x :1->τ � raise(x) : τ->τ × τ

[Var]
x :1->τ � x : 1 -> τ

[Comp]
x :1->τ, x :1->τ � raise(x) ◦ x : 1 -> τ × τ

[Contr]
x :1->τ � raise(x) ◦ x : 1 -> τ × τ

[Abs]
� κx .raise(x) ◦ x : τ × 1 -> τ × τ

[Cheat]
� κx .raise(x) ◦ x : τ -> τ × τ

24

Useful Definitions: swap

swap = κx .κy .raise(y) ◦ x : τ1 × τ2 -> τ2 × τ1

swap

[Var]
y :1->τ2 � y : 1->τ2 [Raise]
y :1->τ2 � raise(y) : 1× τ1->τ2 × τ1

[Cheat]
y :1->τ2 � raise(y) : τ1->τ2 × τ1

[Var]
x :1->τ1 � x :1->τ1

[Comp]
y :1->τ2, x :1->τ1 � raise(y) ◦ x : 1 -> τ2 × τ1

[Exch]
x :1->τ1, y :1->τ2 � raise(y) ◦ x : 1 -> τ2 × τ1

[Abs]
x :1->τ1 � κy .raise(y) ◦ x : τ2 × 1 -> τ2 × τ1

[Cheat]
x :1->τ1 � κy .raise(y) ◦ x : τ2 -> τ2 × τ1

[Abs]
� κx .κy .raise(y) ◦ x : τ1 × τ2->τ2 × τ1

26

Penrose Diagrams

g ◦ f

f g

raise f

f

lower g

g

28

Penrose Diagrams

id = κx .x : α->α

drop= κx .id1 : α->1

copy= κx .raise(x) ◦ x : α->(α× α)

swap= κx .κy .raise(y) ◦ x : (α× β)->(β × α)

id drop copy swap

30

The Combinator Basis

e ::= x | e ◦ e | κx .e | raiseτ (e) (kappa calculus exps)

c ::= idτ | c ◦ c | raiseτ (c) | lowerτ (c) (combinator exps)

| dropτ | copyτ | swapτ1,τ2

� Abstraction elimination is the translation E : e→c ; this eliminates all
binding forms and free variables.

� On previous slides we saw how to define each of these combinators
using κ-abstraction and free variables; substituting these provides
the reverse translation S : c→e.

32

Visualizing Kappa Abstraction as a Penrose Diagram

x:1->τ1 � e:τ2->τ3[Abs]
�

S(Ex(e)):(τ1 × τ2)->τ3

κx.e

e

Ex(e)

x1

τ1

τ1

τ1

τ2

τ3

34

Visualizing Kappa Abstraction as a Penrose Diagram

x:1->τ1 � e:τ2->τ3[Abs]
� (κx.e)

S(Ex(e))

:(τ1 × τ2)->τ3

κx.e

e

Ex(e)

x1

τ1

τ1

τ1

τ2

τ3

34

Visualizing Kappa Abstraction Elimination

x:1->τ1 � e:τ2->τ3

[Abs]

� (κx.e)

S(Ex(e))

:(τ1 × τ2)->τ3

κx.e

e

Ex(e)

x1

τ1

τ1

τ1

τ2

τ3

34

Visualizing Kappa Abstraction Elimination

x:1->τ1

�

e:τ2->τ3[Abs]

� S(Ex(e)):(τ1 × τ2)->τ3

κx.e

e

Ex(e)

x1

τ1

τ1

τ1

τ2

τ3

34

Abstraction Elimination Algorithm

� Most of the abstraction elimination process consists of re-arranging
inputs and outputs.

� Note the similarity between structural rules for natural deduction
and the drop/copy/swap combinators:

� e : τ[Weak]
Γ � e : τ

drop

Γ, Γ � e : τ
[Cont]

Γ � e : τ

copy

Γ1, Γ2 � e : τ
[Exch]

Γ2, Γ1 � e : τ

swap

� This is how the abstraction elimination algorithm is defined: by
walking the proof tree, replacing each inference rule with the
corresponding combinator.

36

Loose Ends

To get rid of 1×A = A = A×1 we need to introduce cancell, cancelr,
uncancell, and uncancelr.

cancell uncancell cancelr uncancelr

To get rid of (A×B)×C = A×(B×C) we need to introduce assoc and
unassoc.

assoc

(A× B)
×
C

A
×

(B × C)

unassoc

(A× B)
×
C

38

Implementation

� Modified version of GHC

� Expressions extended with code brackets <[e]> and escape ~~e
� Types extended with code types <[τ]>@α
� Flattening pass:

� Builds the typing derivation for expressions inside code brackets.

� Walks the derivation, eliminating abstractions.

� Passes the resulting combinator expression (ordinary Haskell) to the

rest of the compiler.

40

Part III: Applications

42

Examples

square =
\times -> <[\y -> ~~times y y]>

copy times

This diagram, and all the rest on future slides, were produced by running
the flattener and instantiating the resulting term with GArrowTikZ

square :: <[(a,a)~~> b]> -> <[a ~~> b]>

44

Two-Level Syntax

timesTwelve =
\const ->
\times ->

<[\y -> ~~times y ~~(const 12)]>

uncancelr second

const 12

times

timesTwelve :: (Int -> <[()~~>a]>) ->
<[(b,a)~~> c]> ->
<[b ~~> c]>

46

Unrolling

toEigthPower times = pow 8
where
pow 0 x = const 1
pow 1 x = x
pow n x = <[~~times

~~(pow (n/2) x)

~~(pow (if n ‘mod‘ 2 == 0
then n/2
else n/2+1) x)]>

copy

second

copy

second

copy

first

copy

first

copy

second

copy

first

copy second

second

times

first

times

times

first

second

times

first

times times times

48

The SHA-256 Algorithm

a b c d + e f g h

ror
13

ror
2

ror
22

⊗

maj mux

+ + +

ror
11

ror
6

ror
25

⊗

+ + +

Magic
Constants

Padded
Expanded
Message

The SHA-256 Algorithm. Each solid rectangle is a 32-bit state
variable; the path into each rectangle computes its value in the next
round based on the values of the state variables in the previous round.
The standard specifies initialization values for the state variables prior to
the first message block.

50

One Round of SHA-256

sha256round =
<[\load input k_plus_w ->

let a = ~~(fifo 32) (mux2 load a_in input)
b = ~~(fifo 32) a
c = ~~(fifo 32) b
d = ~~(fifo 32) c
e = ~~(fifo 32) (mux2 load e_in d)
f = ~~(fifo 32) e
g = ~~(fifo 32) f
h = ~~(fifo 32) g
s0 = xor3 (~~(rotRight 2) a_in)

(~~(rotRight 13) a_in)
(~~(rotRight 22) a_in)

s1 = xor3 (~~(rotRight 6) e_in)
(~~(rotRight 11) e_in)
(~~(rotRight 25) e_in)

a_in = adder t1 t2
e_in = adder t1 d
t1 = adder

(adder h s1)
(adder (mux2 e g f) k_plus_w)

t2 = adder s0 (maj3 a b c)
in h]>

52

32 Copies of the Circuit

The region in red holds 32 copies
of the SHA-256 circuit. Slices
shown in blue are the “overhead”
shared among all copies (address
generators, etc).

54

Questions?

More information:

http://www.cs.berkeley.edu/~megacz/garrows/

56

Can’t you Just Erase the Brackets?

� No; many reasons. Easy ones:
� Expressions: brackets distinguish repetitive structure from feedback.

� Types: a stream of pairs is not the same thing as a pair of streams.

58

Expression Brackets distinguish repetition from feedback

demo const times =
<[\x ->

let out = ~~times (~~times ~~(const 2) out) x
in out

]>
loopl

copy

swap

uncancell

const 2

times

times

Slogan: “Recursion (letrec) inside the brackets means feedback.”60

Expression Brackets distinguish repetition from feedback

toEigthPower times = pow 8
where
pow 0 x = const 1
pow 1 x = x
pow n x = <[~~times

~~(pow (n/2) x)

~~(pow (if n ‘mod‘ 2 == 0
then n/2
else n/2+1) x)]>

copy

second

copy

second

copy

first

copy

first

copy

second

copy

first

copy second

second

times

first

times

times

first

second

times

first

times times times

Slogan: “Recursion outside the brackets means repetitive structure.”
62

Type Brackets matter too (1/2)

Phase distinction:

Int -> <[() ~~> Int]>
<[(Int,()) ~~> Int]>

64

Type Brackets matter too (2/2)

Imagine realizing a combinator expression as some sort of asynchronous
stream-processing network:

� The type (<[Int]> , <[Int]>) is for pairs of streams of Ints

� Can read a single Int even if the other stream is empty.

� The type <[(Int , Int)]> is for streams of pairs of Ints

� Will always get either a pair of Ints or none at all.

66

Type Brackets matter too (2/2)

Imagine realizing a combinator expression as some sort of asynchronous
stream-processing network:

� The type (<[Int]> , <[Int]>) is for pairs of streams of Ints

� Can read a single Int even if the other stream is empty.

� The type <[(Int , Int)]> is for streams of pairs of Ints

� Will always get either a pair of Ints or none at all.

� These types are not equal, nor are they even isomorphic!

66

Type Brackets matter too (2/2)

Imagine realizing a combinator expression as some sort of asynchronous
stream-processing network:

� The type (<[Int]> , <[Int]>) is for pairs of streams of Ints
� Can read a single Int even if the other stream is empty.

� The type <[(Int , Int)]> is for streams of pairs of Ints
� Will always get either a pair of Ints or none at all.

� These types are not equal, nor are they even isomorphic!

66

Type Brackets matter too (2/2)

Imagine realizing a combinator expression as some sort of asynchronous
stream-processing network:

� The type (<[Int]> , <[Int]>) is for pairs of streams of Ints
� Can read a single Int even if the other stream is empty.

� The type <[(Int , Int)]> is for streams of pairs of Ints
� Will always get either a pair of Ints or none at all.

� These types are not equal, nor are they even isomorphic!

� Neither of the above is isomorphic to a stream of coproducts (hint:
think about buffering and backpressure).

66

Generalized Arrows

class Category g => GArrow g (**) u where
--id :: g x x
--(>>>) :: g x y -> g y z -> g x z

ga_first :: g x y -> g (x ** z) (y ** z)
ga_second :: g x y -> g (z ** x) (z ** y)

ga_cancell :: g (u**x) x
ga_cancelr :: g (x**u) x
ga_uncancell :: g x (u**x)
ga_uncancelr :: g x (x**u)

ga_assoc :: g ((x** y)**z) (x**(y **z))
ga_unassoc :: g (x**(y **z)) ((x** y)**z)

ga_copy :: g x (x**x)
ga_drop :: g x u
ga_swap :: g (x**y) (y**x)

ga_loop :: g (x**z) (y**z) -> g x y

68

Every Arrow is a GArrow

instance Arrow a => GArrow a (,) () where
ga_first = first
ga_second = second
ga_cancell = arr (\((),x) -> x)
ga_cancelr = arr (\(x,()) -> x)
ga_uncancell = arr (\x -> ((),x))
ga_uncancelr = arr (\x -> (x,()))
ga_assoc = arr (\((x,y),z) -> (x,(y,z)))
ga_unassoc = arr (\(x,(y,z)) -> ((x,y),z))

instance Arrow a => GArrowDrop a (,) () where
ga_drop = arr (\x -> ())

instance Arrow a => GArrowCopy a (,) () where
ga_copy = arr (\x -> (x,x))

instance Arrow a => GArrowSwap a (,) () where
ga_swap = arr (\(x,y) -> (y,x))

instance ArrowLoop a => GArrowLoop a (,) () where
ga_loop = loop

... but GArrow does not let arbitrary Haskell functions “leak” in since there is no arr.

70

