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Part I: Sparse Signals and Denoising

Overview:

• sparsity

• incoherency

• sparsity based reconstruction
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Sparse Signals and Denoising in 1D

• strong connection between CS and sparse signal denoising

• the sparsity of signal x ∈ Rn, is the number of zero components of x

• similarly, the cardinality of x, card(x), is the number of nonzeros,

we often use ||x||0 to denote cardinality
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Sparse signal example

Generate x ∈ R128 with 5 nonzero coefficients (randomly permuted)

>> x = [[1:5]/5 zeros(1,128-5)];

>> x = x(randperm(128));
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Corrupted sparse signal

Corrupt sparse signal with random Gaussian noise σ = 0.05 (y = x+ n)

>> y = x + 0.05*randn(1,128);
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Denoising

Many approaches for denoising (or regularization), i.e., estimation of the
signal from noisy data:

• ℓ2-norm or Tychonov penalty

• ℓ∞-norm or minimax

• ℓ1-norm penalty (more on this soon)
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ℓ2-norm denoising

This optimization trades the norm of the solution with data consistency.

argmin
1

2
||x̂− y||22 + λ

1

2
||x̂||22

The solution for this problem is

x̂ =
1

1 + λ
y
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Sample solutions

Observe what happens when plot result for λ = 0.1
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Is the solution sparse?
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Sparse signals and the ℓ1-norm

Now we will penalize the ℓ1-norm, i.e.,

||x||1 =
∑

|xi|

Specifically we will solve:

argmin
1

2
||x̂− y||22 + λ||x̂||1
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Solution

Variables x̂i’s are independent, so minimize each seperately by solving

argmin
1

2
|x̂i − yi|

2 + λ|x̂i|

The solution to each x̂i has a closed form. The solution is

x̂ =







y + λ if y < −λ

0 if |y| < λ

y − λ if y > λ

(This is called soft-thresholding or shrinkage).

• Show Movie

Ohrid, June 17, 2011 10



Soft thresholding or shrinkage function

SoftThresh (complex input case) function:

S(u, λ) =

{

0 if |u| ≤ λ
(|u|−λ)

|u| u if |u| > λ
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Matlab implementation

Write a function SoftThresh that accepts u and λ and returns S(u).
Plot for u ∈ [−10, 10] and λ = 2.
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Back to our example

Apply SoftThresh to the noisy signal with λ = 0.1.

0 20 40 60 80 100 120
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

n

x̂

Is the solution sparse?
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Random Frequency Domain Sampling and Aliasing

• a strong connection between compressed sensing and denoising

• explore this connection and the importance of incoherent sampling

• in compressed sensing, we undersample the measurements

• measure subset of k-space, Xu = Fux where Fu is a Fourier transform
evaluated only at a subset of frequency domain samples.

Ohrid, June 17, 2011 14



Example: Uniform vs random undersampling

• start with the Fourier transform of a sparse signal

• undersample k-space by taking 32 equispaced samples

• compute the inverse Fourier transform, filling the missing data with
zeroes

• multiply by 4 to correct for the fact that we have only 1/4 the samples

>> X = fftc(x);

>> Xu = zeros(1,128);

>> Xu(1:4:128) = X(1:4:128);

>> xu = ifftc(Xu)*4;

this is uniform sampling and minimum ℓ2 norm solution (why?).
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Result in signal domain

Plot of the absolute value of the result. Describe what you see.
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Will we be able to reconstruct the original signal from the result?
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Random sampling

Now, undersample k-space by taking 32 samples at random.
>> X = fftc(x);

>> Xr = zeros(1,128);

>> prm = randperm(128);

>> Xr(prm(1:32)) = X(prm(1:32));

>> xr = ifftc(Xr)*4;
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Results

Plot the real and imaginary value, and describe the result.
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Reconstruct the original signal?

• Will we be able to reconstruct the signal from the result?

• How does this resemble the denoising problem?

This is the important part, so say it out loud:

By random undersampling, we’ve turned the ill-conditioned problem
into a sparse signal denoising problem.
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Reconstruction from Randomly Sampled Frequency

Domain Data

Inspired by the denoising example, we will add an ℓ1 penalty and solve,

argmin
1

2
||Fux̂− Y ||22 + λ|x̂|1

• x̂ is the estimated signal

• Fux̂ is the undersampled Fourier transform of the estimate

• Y are the samples of the Fourier transform that we have acquired

variables are coupled through FT, no closed-form solution
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Iterative solution algorithm

Projection Over Convex Sets (POCS) type algorithm, iterate between
soft-thresholding and constraining data consistency

Let X̂ = Fx̂. Initially set X̂0 = Y .

1. Compute inverse FT to get signal estimate x̂i = F ∗X̂i

2. Apply SoftThresh x̂i = S(x̂i, λ) in the signal domain

3. Compute the FT X̂i = Fx̂i

4. Enforce data consistency in the frequency domain

X̂i+1[j] =

{

X̂i[j] if Y [j] = 0
Y [j] otherwise

5. Repeat until ||x̂i+1 − x̂i|| < ǫ
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Matlab implementation

• Y is randomly sampled Fourier data with zeros for non-acquired data

• Initialize estimate of Fourier transform of the signal as X = Y

The core of the iteration can then be written as

>> x = ifftc(X);

>> xst = SofthThresh(x,lambda);

>> X = fftc(xst);

>> X = X.*(Y==0) + Y;
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Results

Apply the algorithm (at least 300 iterations) to the undersampled signal
with λ = {0.01, 0.05, 0.1} and plot the results.
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Plots

Make a plot of error between the true x and x̂i as a function of the
iteration number, plotting the result for each of the λs.
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Part II: Sparsity of Medical Imaging

• Medical Images are generally not sparse.

• Images have a sparser representation in a transform domain

• The transform depends on the type of signal
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Sparsity of Brain Scans

The file brain.mat contains a very pretty axial T2-weighted FSE image of
a brain stored in the matrix im. Load the file and display the magnitude
image

>> load brain.mat

>> figure, imshow(abs(im),[])
Axial T2-weighted Brain image

Is the brain image sparse?
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The Wavelet Transform

The Wavelet transform is known to sparsify natural images.

• Orthogonal transformation (Here)

• Wavelet coefficients are band-pass filters

• Coefficients hold both position and frequency information

• There are many kinds of wavelets (Haar, Daubechies, Symmlets,...)

• Fast to compute
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Matlab Implementation

• Original code from Wavelab (David Donoho)
http://www-stat.stanford.edu/~wavelab/

• The Matlab class @Wavelet implements the Wavelet transform

• Usage:

>> W = Wavelet; % Daubechies-4 wavelet operator

>> im_W = W*im; % Forward Wavelet transform

>> im_rec = W’*im_W; % Inverse Wavelet transform

• The function imshowWav.m conveniently displays wavelet coefficients.

>> Figure, imshowWAV(im_W)
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Wavelet Transform of a Brain Scan

Compute the Wavelet transform of the brain images and display the
coefficients.

>> W = Wavelet; % Daubechies-4 wavelet operator

>> im_W = W*im; % forward Wavelet transform

>> figure, imshowWAV(im_W)
Wavelet Transform
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Sparsity in The Wavelet Domain

• Each band of wavelet coefficients represent a scale (frequency band) of
the image.

• The location of the wavelet coefficient within the band represent its
location in space.

• What you see are edges of the image at different resolutions and
directions.

Wavelet Transform

Is the signal sparse?
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Wavelet Thresholding

Threshold the wavelet coefficients retaining only the largest 10% of the
coefficients. Plot the reconstructed image. (Take a note of the threshold
for later)

• Show Movie

>> m = sort(abs(im_W(:)),’descend’);

>> ndx = floor(length(m)*10/100);

>> thresh = m(ndx);

>> im_W_th = im_W .* (abs(im_W) > thresh);

>> im_denoise = W’*im_W_th;

>> figure, imshow(abs(cat(2,im,im_denoise, ...

(im-im_denoise)*10)),[0,1]);
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Wavelet Denoising

Original Thresholded 15% Difference (x10)

Q) What has been thresholded?
A) The wavelet transform sparsifies the brain image, and concentrates the
“important” image energy into a subset of the coefficients. This helps us
denoise the image by thresholding the coefficients which contain mostly
noise!
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Wavelet Over Denoising

Repeat the experiment with a threshold of 2.5%

Original Thresholded 2.5% Difference (x10)

What have been thresholded?
What’s the approximate sparsity of the image?
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Part III: Compressed Sensing MRI

• In MRI # of measurements ∝ scan time

• Reduce samples to reduce time

• Extrapolate missing samples by enforcing sparsity in transform
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Variable-Density Random Sampling

The variable mask_vardens is a ×3-fold subsampled, variable-density
random mask, drawn from a probability distribution given by
pdf_vardens.

Variable-Density Random Sampling PDF
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Linear Reconstruction

Compute the 2D Fourier transform of the image. Multiply with the mask,
divide by the PDF. Compute the inverse Fourier transform and display the
result.

>> M = fft2c(im);

>> M_us = (M.*mask_vardens)./pdf_vardens;

>> im_us = ifft2c(M_us);

>> figure, imshow(abs(cat(2,im,im_us, (im_us-im)*10)),[0,1])
Original Reconstructed Difference (x10)
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Compressed Sensing MRI Reconstuction

Implement the POCS algorithm for 2D images. Use lambda value from the
thresholding experiment. Use 20 iterations.

>> DATA = fft2c(im).*mask_vardens;

>> im_cs = ifft2c(DATA./pdf_vardens); % initial value

>> figure;

>> for iter=1:20

>>im_cs = W’*(SoftThresh(W*im_cs,0.025));

>>im_cs = ifft2c(fft2c(im_cs).*(1-mask_vardens) + DATA);

>>imshow(abs(im_cs),[]), drawnow;

>> end
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Results

Original Linear Compressed Sensing
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