
The Kettle Manual

Version 1.10.5 of Sat Sep 25 10:48:27 PDT 2004

1 Introduction

Kettle is a theorem prover using the cooperating-decision procedures model due to Shostak and Nelson. It
was originally designed as the theorem proving engine for constructing proof-carrying code. As such, Kettle
can produce concrete representations of proofs for all facts that it proves.

This documentation is very incomplete at the moment.
A PDF version and a PS version of this document.
online API documentation

2 Installation

Kettle should run on any architecture that has an Ocaml compiler. We use it all the time on Linux and on
Windows/cygwin.

If you are using Windows, get the cygwin distribution and make sure to get all Development tools (Dev),
the XFree86-bin, XFree86-lib and XFree86-prog packages (XFree86) as well as TclTk package (lib). (you
need the latter to use the the GUI). You should get also the ocaml package.

Next you need to tell Ocaml where Tcl is located: add an environment variable

export TCL_LIBRARY=/usr/share/tcl8.4

On cygwin, you can alternatively set in the Control Panel/System/Advanced TCL LIBRARY to c:\cygwin\usr\share\tcl8.4.
Now you can configure and build Ocaml (if not on cygwin):

./configure
Make sure the last step has configured Labltk
make world
make opt
make install

Now you are ready to build Kettle:

1. Download the Kettle distribution.

2. Unzip and untar the source distribution. This will create a directory called kettle whose structure is
explained below.
tar xvfz kettle-1.10.5.tar.gz

3. Enter the kettle directory and run the configure script and then GNU make to build the distribu-
tion. If you are on Windows, at least the configure step must be run from within bash.

1

cd kettle
./configure
make
cd test
make quicktest

This should leave the executable file obj/x86 WIN32/kettle.asm.exe (or x86 LINUX as might be the
case).

To test that you have Kettle working you can run:

cd test
make quicktest

To test if the (experimental) GUI works, do

cd test
make prove/equality/uninterpreted GUI=1

The above command will run the prover on the file equality/uninterpreted.cvc and will leave a proof
in the file equality/uninterpreted.prf.

2

3 The Kettle Theorem Prover

3.1 The Input Language

Kettle supports goals written either in the CVS syntax, or in the LF syntax. In lieu of a documentation,
you can start by looking at examples in the test/uninterpreted directory. You can find examples of LF
inputs in the files with extension .p, and examples of CVC input are in files with the extension .cvc.

3.2 Command Line Options

Kettle must be invoked with the names of the files containg goals to prove. Additionally, Kettle supports
the following command line options:

• -help Print a help message

• -lfinput Use LF input language (default)

• -cvsinput Use the CVS input language

• -verbose Turn on verbose mode

• -log xxx Sends the logging output to the given file. By default this output is sent to stderr

• -o xxx Write the proof in the given file.

• -listprocs List the identifiers of the satisfiability procedures that have been built in Kettle.

• -enable XX Enable the given satisfiability procedure. Multiple -enable options may be given. Use
-enable ALL to enable all procedures.

• -disable XX Disable the given satisfiability procedure. Multiple -disable options may be given. Use
-disable ALL to disable all procedures.

• -debug XX Turn on debugging output for the given satisfiability procedure.

• -lfi Use LFi representation for proofs.

• -oracle Use the oracle representation for proofs. At the moment this works only for select procedures.

• -checkproofs Do proof checking before printing the proofs. This is useful for discovering prover bugs.

• -nostop Does not stop on errors.

• -pause Gives you a chance to continue after an error.

• -gui Use the Graphical User Interface.

4 The Graphical User Interface

If you invoke Kettle with the -gui argument, it will invoke the GUI after proving a fact. The purpose of
the GUI is to show what goals were successful (and to show a proof for them) and which were not. The
GUI is only useful if the input to Kettle contains annotations naming the various parts of the predicate to
be proved. We discuss below an example of an input file containing GUI annotations, but if you are anxious
you can find this example in the test/arith/gui.p file and you can play with it by running:

> cd test
> make prove/arith/gui EXTRAARGS=-gui

3

4.1 The GUI Annotations

For the GUI to work the input file must contain annotations in the form of a new predicate constructor.
For example, if p is a predicate then the following is an annotated version of p, saying that the name of the
predicate is "this is p" and that it corresponds to line 9 in the file named foo.java:

(block [file:"foo.java",line:9,name:"this is p"] p)

This section is written using the LF input language. For the CVC input language the same is true except
that the syntax for the above example is

BLOCK [file:"foo.java",line:9,name:"this is p"]
p
ENDBLOCK

There must be a block annotation surrounding each top-level predicate to be proved. This will give the
name that the GUI will show for the top-level predicate.

Each assumption and each goal that is encountered in the predicate are associated with the innermost
block that contains them. If you want the maximum amount of information in the GUI you must have
a block annotation for each assumption and for each goal. For example, the following input describes a
predicate with two parts, the first part having an assumption and two goals.

Sat_p1 : pf
(block [file:"foo.java",line:9,name:"this is p"]
(block [file:"foo.java",line:9,name:"Part1"]

(=> (x < 0)
(block [file:"foo.java",line:10,name:"Part1-Goal1"]

(<= (+ x 1) 0)
)
(block [file:"foo.java",line:11,name:"Part1-Goal2"]

(<= (+ x 1) 0)
))

)
(block [file:"foo.java",line:29,name:"Part2"]

(block [file:"foo.java",line:11,name:"Part2-Goal1"]
(= 0 0)

)
)

)

The nested structure of the blocks gives the hierarchy.

4.2 The GUI panes

The GUI has four panes: Position, Source, Goals and Assumptions. The Position pane shows a hierarchical
view of the verification steps. There is a root node, whose children are the individual predicates to be proved.
Nodes with a little triangle handle are internal nodes in the hierarchy. If you click on the handle you can
collapse or expand the hierarchy under that node. If you click on the label for a node, then the source pane
shows the line to which it corresponds.

The Assumptions pane shows the assumptions that are in scope at the start of a block (not including the
assumptions in the block itself). Typically, as you go does in the hierarchy, you will have more assumptions.
Assumptions have names (e.g. H 1), which are refered from the proofs.

The Goal pane shows different things for different kinds of nodes. If you are on a goal node (typically a
leaf) then you will see the goals for that node, along with their proofs. If you are on an assumption node,
you will see in the Goals pane the assumption(s) that the node is adding.

In both the Assumptions and the Goals panes you can double click on a line and you get a pretty-printed
version of the line in a separate window.

4

If all goals are successful then the GUI will start with all nodes collapsed. If there are failed goals then
the tree is expanded to show all the failures. Also, the failed goals and all the parent nodes are collored red.

The GUI will try to find the files to show in the Source pane based on the information contained in the
predicate annotations, along with a set of search directories (semicolon separated path names). The search
directories, along with all configuration elements of the GUI are saved in a file called kettle gui.cfg in the
current directory and are restored automatically at the next invocation.

5 The Kettle Architecture

Kettle can parse input files in the LF or CVC format.
The code for the main proving engine is in Engine. The engine is given a thunk that when invoked will

return the next input fragment. Input fragments are things like a literal to prove in the current context,
an assumption to add to the current context, an indication to pop the last assumption, etc. The data type
for the input language is described in the Input file. This architecture was essential for proving very large
sequences of literals, what would not all fit in memory at once.

The actual inputs are written in terms of logical expressions and formulas, defined in Logic. Proofs of
formulas can be written using the language defined in Proof. The same module also defines a proof checker
that is enabled when you pass the --checkproofs argument on the command line.

The Engine module is initialized with a list of satisfiability procedures to use, and a proof generator.
A satisfiability procedure consists of one or more ML modules, one of which exports a structure of type
Satproc.entries. That structure contains entry points to the main operations that a satisfiability procedure
supports.

In order to add a satisfiability procedure you can take the following steps:

• Choose a short name for it (say, “foo”). Then change the configure.ac file to add to the list of
“features” the name of the procedure. Add “foo=yes”, if you want it to be enabled by default, or
“foo=no” if you want it disabled by default. Make sure to run “autoconf” when you edit this file.

• Create the ML files that implement the procedures. Say that you have the files “src/foo1.ml”,
“src/foodir/foo2.ml”. Say that the module foo1 contains the entry point.

• In Makefile.in add a section

ifdef USE_FOO
SATMODULES += foo1 foo2
SOURCEDIRS += src/foodir
endif

• Further down in Makefile.in, where the file features.ml is being described, add

ifdef USE_FOO
echo ‘‘ Foo1.entries; ‘‘ >> $@

endif

• Now you can include the module foo in the build (if not included by default), by doing configure
--with-foo.

• If the module is included in the build, you can use the command line options --enable and --disable
to enable or disable it for a particular run.

Also, before starting the engine, you must set the current UI to use. If you pass the --gui argument to
Kettle, you will use the GUI, otherwise you use a text user interface.

5

6 Annotation Language

The following is the grammar for annotations:
Annotation A ::= ANN(AName, AA1,AA2, . . .)
Annotation name AName ::= Predident | Ident
Annotation argument AA ::= E | P | "..." | { Reg1,Reg2, . . . }
Predicate start startpred ::= ’A’ - ’Z’ | ’¡’ | ’¿’ | ’=’
Expression start startident ::= ’a’ - ’z’ | ’ ’ | ’%’ | ’$’ | ’ !’ | ’̂’ | ’&’ | ’*’

| ’+’ | ’-’ | ’\’ | ’?’ | ’—’ | ’/’ | ’ ’
Predicate constructor Predident ::= Startpred (Startpred | Startident | [’0’ - ’9’]) *
Expression constructor Ident ::= Startident (Startpred | Startident | [’0’ - ’9’]) *
Number Num ::= [’0’ - ’9’] +
Register Reg ::= Architecture dependent gcc notation
Predicate P ::= TRUE | FALSE

| (AND P1 P2 . . .) | (OR P1 P2 . . .)
| (=> P1 P2) | (ALL [Ident] P) | (EXISTS [Ident] P)
| (Predident E1 E2 . . .)

Expression E ::= Num | Reg | Ident
| (+ E1 E2) | (- E1 E2) | (* E1 E2) | Num(E) | (Ident E1 E2 . . .)

Important syntactic notes:

• Identifiers are classified in two separate categories, depending on the first letter. If the first letter is a
capital letter or one of the characters “>”, “<”, or “=” then the identifier is a predicate constructors.
Otherwise it is an expression constructor, or a variable.

• Register names typically have the same syntax as expression constructors, but the parser will recognize
them by their standard gcc notation. For example, on MIPS “$a0” and “$4” are two names for the
4th register.

• The names for the logical connectives are all capitals and are case sensitive. If you write “true” it will be
taken as the expression constructor “true”. (Maybe we ought to declare the arity of new constructors
in order to catch simple typos like this?)

• The “n(e)” expression is an abbreviation for “(sel mem (add n e))”.

7 Changes

6

