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Abstract

Verifying Security Properties in Electronic Voting Machines

by

Naveen K. Sastry

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor David Wagner, Chair

Voting is the bridge between the governed and government. The last few years have brought a

renewed focus onto the technology used in the voting processand a hunt for voting machines that

engender confidence. Computerized voting systems bring improved usability and cost benefits but

also the baggage of buggy and vulnerable software. When scrutinized, current voting systems are

riddled with security holes, and it difficult to prove even simple security properties about them. A

voting system that can be proven correct would alleviate many concerns.

This dissertation argues that a property based approach is the best start towards a fully

verified voting system. First, we look at specific techniquesto reduce privacy vulnerabilities in a

range of voting technologies. We implement our techniques in a prototype voting system. The com-

ponentised design of the voting system makes it amenable to easily validating security properties.

Finally, we describe software analysis techniques that guarantee that ballots will only be stored if

they can later be accurately reconstructed for counting. The analysis uses static analysis to enable
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dynamic checks in a fail-stop model.

These successes provide strong evidence that it is possibleto design voting systems with

verifiable security properties, and the belief that in the future, voting technologies will be free of

security problems.

Professor David Wagner
Dissertation Committee Chair
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Chapter 1

Introduction

1.1 The voting problem: motivation

The 2000 Presidential election brought attention to the importance of accurately recording

and tabulating ballots, and a hunt for new technologies to fixthe unearthed problems. Election

officials faced considerable difficulty deciphering voters’ selections. Direct Recording Electronic

(DRE) voting machines were seen as one solution and are now deployed in many counties. These

computerized machines offer advantages over traditional lever, paper, or punch card voting systems.

They eliminate classes of ballot marking errors using software logic to rule out voting for multiple

candidates where only one is allowed, for example. Since voters interact with a computer screen,

the DRE machines can adopt the interface that best suits the needs of a voter. For example, they can

switch to large, high-contrast fonts for voters with reduced visual acuity. Additionally, tabulating

the results is quicker than with other systems since each machine effectively maintains a running

sum.

However, the advantages that current DRE systems offer do not come without risk. DREs
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are built upon general purpose computers, and are designed with standard software development

techniques. Standard software development techniques often lead to code that is buggy and suffers

from latent vulnerabilities. Voting software is no different: Kohno et al. recently performed a secu-

rity audit and showed the software on these machines is not well designed and riddled with severe

security bugs [42]. This study is not unique in its conclusions, as others have found innumerable

security problems in commercial voting code [18, 25, 72, 90,94].

Currently deployed DREs use a single monolithic application written in an unsafe lan-

guage, such as C. Unless great care is taken, software written in C can suffer from buffer overruns,

improper type coercions, and programmer errors that lead tomemory safety violations. In addition,

the software is just too complex to be sure all security bugs can be eliminated even with a careful

audit. This naturally begs the question: can we do better?

One option is for counties to deploy non-DRE based voting technology, of which there are

several options, such as optical scan readers. But given theprevalence and advantages of DREs, it

is necessary to address their shortcomings. In this dissertation, we focus on DREs. Thus far, voting

and security experts have come to two potentially viable remedies to sidestep the issue of buggy

voting software in DREs. Both approaches are designed to detect voting machine errors and still

yield the proper election tally.

In the first, DREs are augmented with printers to produce paper records of the voter’s

choices. Before leaving the voting booth, the voter checks the printed record accurately represents

their choices [50]. This voter verified paper audit trail (VVPAT) can serve as an official recourse in

case the electronic record is suspect.

Alternatively, C. Andrew Neff and David Chaum have each comeup with innovative
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solutions that rely on cryptography [19, 60, 61]. After voting on a traditional DRE, their systems

engage in a cryptographic protocol with the voter. During the protocol, the DRE prints a specially

formated receipt. The receipt does not reveal any information about the voter’s choices, but it

does allow the voter to take the receipt home and verify theirvote hasn’t been changed after they

voted and that their vote will be counted. This property, called universal verifiability, is unique to

cryptographic voting protocols.

Both solutions offer advantages over existing DREs, however in this dissertation we show

that those two solutions are not sufficient since there are classes of privacy violations left unad-

dressed. We also propose new techniques that begin to address their shortcomings in DRE based

voting machines.

1.1.1 Approach

The solutions we pursue are aimed at one central goal: simplifying an auditor’s task in

verifying the correctness of security properties in votingmachines. This is distinct from another,

perhaps more obvious goal: eliminating security bugs from voting machines. While the latter goal

is more appropriate for many software applications, it is not sufficient for the voting context. As

Dan Wallach has said, “The purpose of an election is not to name the winner, it’s to convince the

loser they lost” [85]. Consequently, it is not enough to eliminate all security bugs: we must develop

ways for interested third parties to verify for themselves that the voting machine is free of security

bugs.

Making it easier to verify the absence of security bugs is particularly relevant given that

voting machines currently receive little oversight. Counties rely on a handful ofIndependent Testing

Authorities (ITAs) to ensure that a vendor’s voting machine complies with voting standards and
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meets nominal security requirements. In one study, we found16 critical security vulnerabilities in

Diebold voting code [90], while CIBER, an ITA given the same mandate to evaluate the same code,

produced a vastly different report and only found three security vulnerabilities [21]. This contrast

highlights the main motivation for this work: to help auditors and citizens verify that their voting

system is secure.

In verifying a voting system, an auditor or concerned citizen must analyze a voting system

against a set of measurable criteria. For example, one such criterion may be that a voting system

always gives the voter a chance to review their ballot and correct any mistakes they discover before

casting. We call these measurable criteriaproperties. The Voluntary Voting System Guidelines

produced by the United States Election Assistance Commission is one such list of these properties.

These properties are created to reflect societal goals, norms, and laws with respect to voting. Since

goals can often be vague, it is important to have a precise definition of what is being verified.

Properties are meant to embody this greater specificity and measurability. Hence, high-level societal

goals are translated into low-level technical requirements. Note the explicit difference between a

societal goal and a measurable and precise security property.

Typically, there are a number of established techniques to verify a system satisfies a set

of properties. One technique often used is manual inspection of the system’s code, design, and

procedures. This labor intensive process aims to either prove or disprove a specific property through

reasoning. Doing so adequately requires reading and understanding the relevant parts of the system

undergoing inspection. In a well designed system, it is possible to limit the scope of the system

under consideration and study a smaller portion of it.

Another technique, calledstatic analysis, involves using computer programs to analyze
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source code to validate security properties and is built upon a wealth of prior work. Static analysis

tools attempt to automate the process of manual human inspection. Depending upon the sophistica-

tion of the static analysis tool used and the difficulty of theproperty being analyzed, static analysis

can require additional help from the programmer. For example, a particular analysis may require

the programmer to add annotations to the source code, or possibly to rewrite the code and thereby

make it easier for the static analysis tool.

Static analysis and manual inspection each offer the benefitof detecting security problems

while the system is being designed and are able to catch security errors before the voting system

is deployed in the field. Naturally, there is a tremendous advantage to finding problems before

any voter ever touches the voting machine; but for certain properties, it may be simpler to employ

a dynamic analysis, whereby behavior that contradicts the property is detected while the voting

machine is run, either during testing or in the course of an actual election. If the voting machine

exhibits behavior that contradicts a security requirement, the DRE software can flag an error and

prevent the voter from continuing. Dynamic analysis requires changes to the program code so it

actively checks its own behavior. The programmer can enact the changes directly , or possibly with

the assistance of a software tool.

This dissertation draws on all three techniques to prove a small set of properties, allowing

us to gain confidence in certain aspects of a voting machine’sbehavior.
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1.2 Contributions and summary of results

1.2.1 Properties

In Chapter 2 we outline high-level security goals for votingsystems. These security goals

are informed by convention, law, and social policy. As discussed, though, the security goals must

be translated into more testable, concretepropertiesfor voting systems. This chapter discusses six

properties that we focus on during the course of this dissertation. We produce a voting system

implementation in which we successfully verify three of thesix properties and refer to additional

work that details how to achieve similar success with the fourth property.

A fully verified voting machine would require verifying significantly more than a handful

of properties. However, building and verifying all those properties in a voting machine is currently

too daunting for us to consider. Recognizing that we should keep this as an end goal, we must start

by verifying a few key properties. Current voting machines are not designed with verification in

mind. Consequently, there is much value in a voting machine where it is possible to verify even a

few properties. This is a positive first step.

1.2.2 Cryptographic voting protocols and privacy implications

Cryptographic voting protocols provide voters with a novelmechanism to verify their

vote is properly recorded and counted. They are meant to augment DREs and provide voters with

an end-to-end guarantee of the proper tabulation of their vote. Proponents of cryptographic voting

protocols cite the end-to-end verifiability property as a reason for requiring less scrutiny of the

software on these DREs. They argue that a vigilant voter would detect the effects of tampering by

buggy software or malicious poll workers. This would lessenthe necessity to trust the software
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since the voter provides an end-to-end check of their ballot’s integrity.

When using a cryptographic voting protocol, the voter typically takes home a receipt. For

privacy protection, the receipt is specially designed to not reveal any of the voter’s choices. These

protocols usually expect the users to check their receipt with an online version after voting; this

check ensures the proper recording and counting of their vote. They can detect tampering or buggy

voting machines via mathematical proofs of correctness.

Cryptographic voting protocols offer the promise of verifiable voting without the need to

trust the integrity of any software in the system. However, these cryptographic protocols are only

one part of a larger system composed of voting machines, software implementations, and election

procedures, and we must analyze their security by considering the system in its entirety. In Chap-

ter 3, we analyze the security properties of two different cryptographic protocols, one proposed by

Andrew Neff and another by David Chaum. We discovered several potential weaknesses in these

voting protocols which only became apparent when considered in the context of an entire voting

system. These weaknesses include: subliminal channels in the encrypted ballots and denial of ser-

vice attacks. These attacks could compromise election integrity, erode voter privacy, and enable vote

coercion. Whether the attacks succeed or not will depend on how these ambiguities are resolved in a

full implementation of a voting system, but we expect that a well designed implementation and de-

ployment may be able to mitigate or even eliminate the impactof these weaknesses. However, these

protocols must be analyzed in the context of a complete specification of the system and surrounding

procedures before they are deployed in any large scale public election.

So, while the protocols offer the promise of skipping verification, their current implemen-

tations do not offer the same guarantees that the theoretical results would indicate. This gap in the
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realized systems means that as currently conceived, it is still necessary to verify security properties

about the software implementation.

1.2.3 Privacy through reboots

The privacy problems present in cryptographic voting protocols are prevalent in other

voting technologies as well. In Chapter 4, we cover privacy problems for a range of voting tech-

nologies. We introduce a simple idea to cut down on privacy leaks: rebooting after each voter. We

outline the solution and then describe the conditions necessary to implement reboots to help allevi-

ate privacy concerns. This technique, when combined with restrictions on how a program accesses

its persistent storage, allows one to show that informationfrom one voter’s session cannot leak to

another voter’s session.

Employing this reboot technique to guarantee privacy need not be limited to voting ap-

plications. It is also of independent interest, and is likely applicable in other computation domains

where users share the same hardware one after another in independent sessions. For example, users

may demand privacy guarantees from the ATM machines or transit kiosks they use since they pro-

vide each machine with their financial details in conductingtheir transactions.

1.2.4 An architecture to verify voting

Realizing that we need new techniques to prove that specific security properties hold in

voting machines, we explore a particular architecture specifically designed to make verification

easier. In Chapter 5, we use specific properties about voting, off the shelf hardware, isolation, and

architectural decisions to allow easy verification of two critical security properties.

We develop the architecture in a series of design exercises driven by two specific prop-
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erties that we introduce in Chapter 2. We expand upon the privacy-reboot idea from Chapter 4 in

a real system and implement it. The final design facilitates manual verification of these security

properties, which we also discuss. Finally, we present the voting system’s design and discuss our

experience building a prototype implementation in Java andC.

1.2.5 Dynamically verifying properties

Some properties are best verified using software analysis. In Chapter 6, we look at proving

the correctness of serialization—the process of storing the in-memory representation of a data struc-

ture, such as a ballot, to a permanent store such as a disk. Trusting computerized voting requires

that serialization, and its mate deserialization, work together reliably and predictably.

We propose to use a dynamic check to guarantee proper recovery of the ballot from stor-

age. Before the ballot is to be stored to disk, the DRE checks that the tallier (used to count the

votes) will be able to be reconstruct the serialized ballot for proper counting at the end of the day.

If an error is found, the voting machine alerts the voter and election officials of the error and re-

fuses to proceed. Since the tallier is to be run later under potentially different conditions, the check

must guarantee that deserialization will always yield the same results, even in a potentially different

execution environment. For a deserialize function to always yield the same result, its return value

must only depend on its arguments and any constants compiledinto the code. It may not depend on

non-deterministic inputs. We call such functionsenvironment-free. We develop a static analysis to

check the environment-free property in Java code. Proving the deserialize function is environment-

free allows enables the DRE to check at run-time that the serialized ballot will always be able to

properly to be deserialized. We describe the results of the environment free static checker and the

results of using it to prove the correctness of serialization.
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The environment-freechecker is potentially useful to check other functions thatfollow

the serialization/deserialization pattern. More broadly, serialization is just one of a family of com-

mon data transformation routines that litter programs. Twoothers in the family include encryp-

tion/decryption and compression/decompression. In Chapter 6, we show the checker also can be

used to prove that decryption is the inverse of encryption for an AES implementation. We believe,

therefore, that the environment-free checker is useful outside the voting context.
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Chapter 2

Voting goals & properties

In this chapter, we start with an overview of the voting process. This will serve as useful

background for the remaining chapters.

We then present a number of different security goals for voting systems. Goals reflect so-

cietal desires based on laws and convention. They make statements about the entire voting process,

can often be subjective and stateable without many technical details. Goals guide system designers

when they are forced to make engineering tradeoffs. The listof goals should not be seen as a static

list; for example, the secret ballot, providing privacy andcoercion resistance, was only adopted in

the 1880s in the United States. The list of voting goals evolves with the advent of new technology.

We consider six currently accepted goals, and one that may beon the horizon. Achieving these goals

requires not only impeccable technology, but also stringent procedures, including voter education,

machine maintenance, pollworker training, and dispute resolution. We concern ourselves with the

behavior of the entire system, not just the voting technology.

But goals are not sufficient; it is still difficult to measure avoting system against a goal: a
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Figure 2.1: Major steps in the voting process when using DREs.

goal is broad and encompasses many facets. We must be very clear about whatspecificproperties we

aim to achieve in our system. A property is a more measurable requirement than a goal and is meant

to be specific and objective; determining whether a voting system satisfies a property should not be

ambiguous. An example property is that, when the voter is making their selection for a particular

race, the voting system must present all candidates in a format in accordance with election laws. A

voting machine that always exhibits the property could not conditionally omit certain candidates, or

present certain candidates in a smaller font. Upon reading the source code, it should be possible to

determine whether this property holds.

We focus on six properties that the rest of the dissertation addresses. The list is by no

means exhaustive, but is chosen to reflect important properties that are first and important building

blocks for any voting machine.
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2.1 Voting overview

Pre-election setup. The full election process incorporates many activities beyond what a voter

typically experiences in the voting booth. Although the exact processes differ depending on the

specific voting technology in question, Figure 2.1 overviews the common steps for DRE-based

voting. In the pre-election stage, election officials prepare ballot definition files describing the

parameters of the election. Ballot definition files can be very complex [52], containing not only a

list of races and information about how many selections a voter can make for each race, but also

containing copies of the ballots in multiple languages, audio tracks for visually impaired voters

(possibly also in multiple languages). Additionally, the ballot presented to the voter may vary based

on the precinct as well as the voter’s party affiliation. Election officials generally use external

software to help them generate the ballot definition files. After creating the ballot definition files,

an election worker will load those files onto the DRE voting machines. Before polls open, election

officials generally print a “zero tape,” which shows that no one cast a ballot prior to the start of the

election.

Active voting. When voter Alice wishes to vote, she must first interact with election officials to

prove that she is eligible to vote. The election officials then give her some token or mechanism to

allow her to authenticate herself to the DRE as an authorizedvoter. Once the DRE verifies the token,

the DRE displays the ballot information appropriate for Alice, e.g., the ballot might be in Alice’s

native language or, for primaries, be tailored to Alice’s party affiliation. After Alice selects the

candidates she wishes to vote for, the DRE displays a “confirmation screen” summarizing Alice’s

selections. Alice can then either accept the list and cast her ballot, or reject it and return to editing
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her selections. Once she approves her ballot, the DRE storesthe votes onto durable storage and

invalidates her token so that she cannot vote again.

Finalization & post-voting. When the polls are closed, the DRE ensures that no further votes can

be cast and then prints a “summary tape,” containing an unofficial tally of the number of votes for

each candidate. Poll workers then transport the removable storage medium containing cast ballot

images, along with the zero tape, summary tape, and other materials, to a central facility for tallying.

During the canvass, election officials accumulate vote totals and cross-check the consistency of all

these records.

Additional steps. In addition to the main steps above, election officials can employ various au-

diting and testing procedures to check for malicious behavior. For example, some jurisdictions use

parallel testing, which involves sequestering a few machines, entering a known set of votes, and

checking whether the final tally matches the expected tally.Also, one could envision repeating

the vote-tallying process with a third-party tallying application, although we are unaware of any

instance where this particular measure has been used in practice. While these additional steps can

help detect problems, they are by no means sufficient.

2.2 Voting goals

In this section, we enumerate a number of broad goals for voting systems.

Goal 1. One voter/one vote:The cast ballots should exactly represent the votes cast by legitimate

voters. Malicious parties should not be able to add, duplicate, or delete ballots.
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This goal emphasizes that each legitimate voter should haveexactly one vote toward each race. It

should be impossible for the voters themselves, designers of the voting technology, election officials,

or other people to subvert this goal. Procedures and voting policy can greatly impact whether this

particular goal is successfully achieved. For example, it is imperative that the polling station be

staffed with adequate supplies of voting materials (whether it be voting machines or blank ballots).

Insufficient allocation or resources impinges on this goal;poor technology design can also adversely

affect the goal, either by increasing the amount of resources needed, or through errors that can

surreptitiously allow people to add or drop ballots at will.It also requires the poll workers to

determine who is a legitimate voter.

Goal 2. Cast-as-intended: A voter should be able to reliably and easily cast the ballot that they

intend to cast.

Cast-as-intended gets to the heart of voting – in essence, the voter must be able to reliably and

consistently express their desired opinion for a particular election. Meeting this goal requires over-

coming many challenges. Broadly, 1) the voting machine mustpresent all choices for their particular

ballot in a non-biased manner. As subtle changes in layout, order, or presentation can influence the

voter to favor one choice over another, the voting machine must present all choices in as equitable

manner as possible; 2) the voter must be able to express theirdesires among the choices. The voting

machine should not make it more difficult to chose one candidate over another; 3) the completed

ballot must be stored without changes and kept for tallying under all conditions. It is also impera-

tive that the voter must be able to express their selections easily and efficiently and should strive to

reduce inadvertent errors.

There are a host of issues underlying each of the three above challenges. As just one
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example, a voter who is unfamiliar with computers must have the same opportunities to express

their votes as a computer-literate person. On electronic voting technology, this can be challenging.

Designing user interfaces and ballot layouts that are unambiguous to first-time users is challenging.

Goal 3. Counted-as-cast:The final tally should be an accurate count of the ballots thathave been

cast.

The counted-as-cast goal assures the accuracy of the final tally. Achieving this goal requires that

ballots are not modified or lost, and will properly be reconstructed in a form that reflects the original

cast ballot form. The challenge is assuring this despite poor procedures, lost or broken voting

machines, and ambiguities in determining the voter’s intent.

Goal 4. Verifiability: It should be possible for participants in the voting processto prove that

the voting system obeys certain properties. For example, when referring to goals 2 and 3 (cast-as-

intended and counted-as-cast), the voter should be able to prove to themselves that their ballot own

ballot was cast-as-intended, and all voters should be able to prove to themselves (and others) that

all of the ballots are properly counted-as-cast.

Verifiability is a property that allows voting participantsto easily prove the correct operation of

some portion of the voting process. When discussing verifiability, it is critical to consider who is

verifying the particular property under consideration. When the voter is performing the verification,

it is imperative to consider the usability of the verification process. A property cannot reasonably

called verifiable by the voter if it requires the voter to analyze source code. It would take the

average voter far too long to learn the required skills. However, it would be appropriate to call such

a property verifiable by software experts since they possessthe required skills.

In this dissertation, we seek to enable software experts to verify a set of security properties.



17

Chapter 3 analyzes two cryptographic voting protocols thatprovide verifiably cast-as-

intended and verifiably counted-as-cast to the voters.Verifiably cast-as-intendedmeans each voter

should be able to verify her ballot accurately represents the vote she cast. Often, this includes

looking at a website after voting.Verifiably counted-as-castmeans everyone should be able to

verify that the final tally is an accurate count of the ballotscontained on the website, for example.

The difficult in achieving verifiability is doing so while also preserving a voter’s privacy. Typically,

solutions that strive for verifiability of cast-as-intended and counted-as-cast include at least some

cryptographic techniques.

Goal 5. Privacy: Ballots and all events during the voting process should be remain secret.

A voter should be able to trust that their ballot and all interactions with the voting machine will

remain hidden. In cases where the ballot is published, it should not be possible to link the ballot

with the voter. The first part of the goal would even preclude indirect privacy leaks, whereby the

voting machine changes its behavior in response to votes that have already been cast. Preserving

privacy requires effort from the voting machine designers as well as the poll workers, since lapses

by either can result in privacy leaks.

Goal 6. Coercion resistance: A voter should not be able to prove how she voted to a third party

not present in the voting booth.

Coercion resistance is related to privacy. A voter should not be able to collude with an outsider in

order to prove how they voted. Put another way, a voter shouldnot be able to subvert their own

privacy. There is a typical caveat with this goal: coercion resistance is not offered when the voter

brings another person (or the electronic equivalent: a recording device) into the polling booth with
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them. In this case, the voter’s companion can directly observe all of the voter’s interactions with the

voting machine

2.3 Specific properties

As stated, properties are measurable aspects of a voting system goals. One must be careful

in which properties are required. It is possible that designing a voting system to exhibit one security

property may help one goal to the detriment of another. As oneexample, a property requiring

voting systems to provide voters with a printout of their onscreen selections to take home may help

guarantee cast-as-intended, but at the cost of coercion resistance.

Resolving these tradeoffs requires guidance from policy makers. They are in the best

position to guard and balance different stakeholders’ interests. It is the job of computer scientists to

point out the tradeoffs.

We now present specific properties that this dissertation work will address. These prop-

erties represent some aspect of one or more of the above goals, but aren’t sufficient on their own to

guarantee any of these goals are met.

Property 1. None of a voter’s interactions with the voting machine, including the final ballot, can

affect any subsequent voter’s sessions1.

This property has implications for Goals 2 and 5. A DRE that achieves Property 1 will prevent

two large classes of attacks: one against election integrity and another against privacy. One way to

understand this property is to consider a particular votingsystem design that exhibits the property.
�

Note that some interactions may be unavoidable. For example, an electronic ballot box that becomes “full” on a
voting machine should not allow subsequent voters to vote. This interaction is a desired and unavoidable interaction. The
remedy here is to ensure that if the ballot box becomes full, there will be no subsequent voters.
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A DRE can be “memoryless,” so that after indelibly storing the ballot, it erases all traces of the

voter’s actions from its RAM. This way, a DRE cannot use the voter’s choices in making future

decisions.

A DRE that is memoryless cannot decide to change its behaviorin the afternoon on elec-

tion day if it sees the election trending unfavorably for onecandidate. Similarly, successful verifi-

cation of this property guarantees that a voter, possibly with the help of the DRE or election insider,

cannot learn how a prior voter voted.

We discuss this property in Chapters 3 and 4.

Property 2. A ballot cannot be cast without the voter’s consent to cast it.

Property 2 ensures the voter’s ballot is only cast with theirconsent; a voting machine that always

exhibits this property will help achieve Goal 2 (Cast-as-intended). When a ballot is cast with the

voter’s consent and at the proper time, guarantees that the voter has had the chance to see all races

and has had the option of editing their selections before casting. Additionally, when combined with

other security measures, this property helps guarantee theballot box cannot be stuffed by the DRE.

If each cast operation requires a human’s input, and the DRE cannot automatically cast additional

ballots.

Property 3. The DRE cannot leak information through the on-disk format.Additionally, the ballot

box should be history-independent and tamper evident.

Part of Property 3 directly supports Goal 5 (Privacy). Requiring the on-disk format to be history-

independent means that it should not leak the order that voters voted on the DRE. A DRE exhibiting

this property would reduce the burden on procedures to safeguard the electronic ballot box. If the

ballot box were not history-independent, the ballot box would contain the order in which voters
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voted. It would then be easy for an adversary to correlate theorder in which voters voted with

the order in which they entered the polling station and then link ballots to people. This ultimately

compromises voter privacy.

This property can also further Goal 3 (Counted-as-cast). Ifthe on-disk format of the ballot

box does not reveal the vote order, it may be possible to publish an exact copy of the ballot box.

This allows anyone to collate the ballot boxes from all DREs in a precinct and recreate the final

tally to double check the tabulation process2. The ballot box must be history-independent in order

to safely publish it.

We can use the techniques developed in conjunction with Molnar et al. in implementing

Property 3 [55].

Property 4. The DRE only stores ballots that have been approved by the voter.

Property 4 refers to a few conditions. The DRE must not changethe ballot after the voter chooses

their candidates. Additionally, the voter must have a chance to see the contents of the ballot and

approve or reject it. The ballot structure may be passed through confirmation screens and to serial-

ization mechanisms before it is ultimately stored; throughall this, it must remain unmodified. This

is another aspect of Goal 2 (Cast-as-intended).

Property 5. There should be a canonical format for the ballot so there is only one way to represent

the voter’s choices.

Violation of Property 5 could violate the voter’s privacy, even if the voter approves the ballot. Sup-

pose the voter’s choice, “James Polk” were stored with an extra space: “JamesPolk”. The voter
�

However, there are some subtleties to publishing the ballotboxes: if the votes are to be published, they must be done
in a manner that does not enable vote-selling. For example, avote-buyer may offer cash if a voter makes a selection for a
high-profile race and then fills in a particular string for a write-in candidate in a different race. The vote-buyer will only
pay if one ballot among the published ballots contains the pre-arranged string and a vote for the candidate they ordered.
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would not likely notice anything were amiss, but this could convey privacy leaking-information in

a subliminal channel, described in Chapter 3.

Property 6. The ballot counted in the tally stage should be the same as thein-memory copy ap-

proved by the voter at the voting machine.

This property, an aspect of Goal 3 (Counted-as-cast), guarantees that the ballot recording software

can properly hand off the ballot to the tally machine. It requires that the serialized version of the in-

memory ballot the voter fills out must be properly deserialized into an equivalent in-memory copy

when needed by the tallying software.

We do not expect these to be an exhaustive list of the desirable security properties; rather,

they are properties that we believe are important and that wecan easily achieve with the contribu-

tions of this work.
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Chapter 3

Cryptographic voting protocols

In this chapter, we look at two cryptographic voting protocols. They provide the voter the

opportunity to verify their own vote was cast-as-intended and that all votes were counted-as-cast.

This is a major step forward in the capabilities of voting systems.

However, in this chapter, we show it is imperative to view cryptographic protocols as a part

of a complete voting system and consider the security implications of all surrounding procedures and

the implementations of the protocols. Doing so for these protocols reveals privacy vulnerabilities

through subliminal channels (the ramifications of which will be mitigated through some strategies

suggested in Chapter 4), and opportunities for denial of service attacks.

Parts of this work are drawn with permission from previouslypublished work [39].

3.1 Introduction

Trustworthy voting systems are crucial for the democratic process. Recently,direct record-

ing electronicvoting machines (DREs) have come under fire for failing to meet this standard. The
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Weakness Protocols Threat Model Affects

Random subliminal channels Neff Malicious DRE colluding Voter privacy &
w/ outsider coercion resistance

Semantic subliminal channelsChaum Malicious DRE colluding Voter privacy &
w/ outsider coercion resistance

Denial of service attacks Neff & Malicious DRE or Voter confidence &
Chaum tallying software election integrity

Table 3.1: Summary of weaknesses we found in Neff’s and Chaum’s voting schemes.

problem with paperless DREs is that the voting public has no good way to tell whether votes were

recorded or counted correctly, and many experts have arguedthat, without other defenses, these

systems are not trustworthy [42, 57].

Andrew Neff and David Chaum have recently proposed revolutionary schemes for DRE-

based electronic voting [19, 60, 61]. The centerpiece of these schemes consists of novel and sophis-

ticated cryptographic protocols that allow voters to verify their votes are cast and counted correctly.

Voting companies Votegrity and VoteHere have implemented Chaum’s and Neff’s schemes, respec-

tively. These schemes represent a significant advance over previous DRE-based voting systems:

voters can verify that their votes have been accurately recorded, and everyone can verify that the

tallying procedure is correct, preserving privacy and coercion resistance in the process. The ability

for anyone to verify that votes are counted correctly is particularly exciting, as no prior system has

offered this feature.

This chapter presents a first step towards a security analysis of these schemes. Our goal

is to determine whether these new DRE-based cryptographic voting systems are trustworthy for use

in public elections. We approach this question from a systems perspective. Neff’s and Chaum’s

schemes consist of the composition of many different cryptographic and security subsystems. Com-

posing security mechanisms is not simple, since it can lead to subtle new vulnerabilities [28, 48, 64].
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Consequently, it is not enough to simply analyze a protocol or subsystem in isolation, as some at-

tacks only become apparent when looking at an entire system.Instead, we perform a whole-system

security analysis.

In our analysis of these cryptographic schemes, we found weaknesses in that subliminal

channels may be present in the encrypted ballots. These attacks could potentially compromise

election integrity, erode voter privacy, and enable vote coercion. In addition, we found several

detectable but unrecoverable denial of service attacks. Wenote that these weaknesses only became

apparent when examining the system as a whole, underlining the importance of a security analysis

that looks at cryptographic protocols in their larger systems context.

The true severity of the weaknesses depends on how these schemes are finally imple-

mented. During our security analysis, one challenge we had to deal with was the lack of a complete

system to analyze. Although Neff and Chaum present fully specified cryptographic protocols, many

implementation details—such as human interfaces, systemsdesign, and election procedures—are

not available for analysis. Given the underspecification, it is impossible to predict with any confi-

dence what the practical impact of these weaknesses may be. Consequently, we are not yet ready

to endorse these systems for widespread use in public elections. Still, we expect that it may be

possible to mitigate some of these risks with procedural or technical defenses, and we present coun-

termeasures for some of the weaknesses we found and identifysome areas where further research

is needed. Our results are summarized in Table 3.1.
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3.2 Preliminaries

David Chaum and Andrew Neff have each proposed a cryptographic voting protocol for

use in DRE machines [13, 19, 60, 61, 89]. Although these protocols differ in the details of their

operation, they are structurally similar. Both protocols fit within the DRE voting steps in Figure 2.1.

However, they introduce a few extra actions, which we outline here.

In the pre-voting stage, a set ofelection trusteeswith competing interests are chosen such

that it is unlikely that all trustees will collude. The trustees interact amongst themselves before the

election to choose parameters and produce key material usedthroughout the protocol. The trustees

should represent a broad set of interest groups and governmental agencies to guarantee sufficient

separation of privilege and discourage collusion among thetrustees.

Active voting begins when a voter visits a polling station tocast her vote on election

day, and ends when that ballot is cast. To cast her vote, the voter interacts with a DRE machine

in a private voting booth to select her ballot choices. The DRE then produces an electronic ballot

representing the voter’s choices and posts this to a public bulletin board. This public bulletin board

serves as the ballot box. At the same time, the DRE interacts with the voter to provide areceipt.

Receipts are designed to resist vote buying and coercion, and do not allow the voter to prove to a

third party how she voted. Also, each voter’s ballot is assigned a uniqueballot sequence number

(BSN). BSNs ease auditing and verification procedures, without compromising voter privacy.

After all ballots have been posted to the bulletin board, canvassing stage begins. The elec-

tion trustees execute a publicly verifiable multistage mix net, where each trustee privately executes

a particular stage of the mix net [33, 61]. To maintain anonymity, the trustees strip each ballot of

its BSN before it enters the mix net. Each stage of the mix net takes as input a set of encrypted
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ballots, partially decrypts or re-encrypts them (depending on the style of mix net), and randomly

permutes them. The final result of the mix net is a set of plaintext ballots which can be publicly

counted but which cannot be linked to the encrypted ballots or to voter identities. In cryptographic

voting protocols, the mix net is designed to be universally verifiable: the trustee provides a proof

which any observer can use to confirm that the protocol has been followed correctly. This means a

corrupt trustee cannot surreptitiously add, delete, or alter ballots.

At various points during this process, voters and observersmay engage in election verifi-

cation. After her ballot has been recorded on the public bulletin board, the voter may use her receipt

to verify her vote was cast as intended and will be accuratelyrepresented in the election results.

Note that the receipt does not serve as an official record of the voter’s selections; it is only intended

for convincing the voter that her ballot was cast correctly.Election observers (e.g., the League of

Women Voters) can verify certain properties about ballots on the public bulletin board, such as, that

all ballots are well-formed or that the mix net procedure wasperformed correctly.

Both the Chaum and Neff protocols require DREs to contain special printing devices for

providing receipts. The security requirements for the printer are: 1) the voter can inspect its output,

and 2) neither the DRE nor the printer can erase, change, or overwrite anything already printed

without the voter immediately detecting it. There are some differences in the tasks these devices

perform and additional security requirements they must meet, which we will discuss later.

3.2.1 Threat models

We must consider a strong threat model for voting protocols.In national elections, bil-

lions of dollars are at stake, and even in local elections, controlling the appropriation of municipal

funding in a large city can be sufficient motivation to compromise significant portions of the election
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system [41]. We consider threats from three separate sources: DREs, talliers, and outside coercive

parties. To make matters worse, malicious parties might collude together. For example, malicious

DREs might collude with outside coercers to buy votes.

Malicious DREs can take many forms [5]. A programmer at the manufacturer could insert

Trojan code, or a night janitor at the polling station could install malicious code the night before the

election. We must assume malicious DREs behave arbitrarily. Verification of all the DRE software

in an election is hard, and one goal of Neff’s and Chaum’s schemes is to eliminate the need to verify

that the DRE software is free from Trojan horses.

We also must consider malicious parties in the tallying process, such as a malicious bul-

letin board or malicious trustees. These parties wield significant power, and can cause large prob-

lems if they are malicious. For example, if the bulletin board is malicious, it can erase all the ballots.

If all the software used by the trustees is malicious, it could erase the private portions of the trustees’

keys, making ballot decryption impossible.

To evaluate a voting system’s coercion resistance, we must consider outside coercive par-

ties colluding with malicious voters. We assume the coerceris not present in the voting booth.

Attacks where the coercer is physically present are outsidethe scope of voting protocols and can

only be countered with physical security mechanisms. Similarly, attacks where a voter records her

actions in the poll booth (e.g., with a video or cell phone camera) are also outside the scope of

voting protocols, and we do not consider them here.

Finally, we must consider honest but unreliable participants. For example, voters and poll

workers might not fully understand the voting technology orutilize its verification properties, and a

malicious party might be able to take advantage of this ignorance, apathy, or fallibility to affect the
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outcome of the election.

3.3 Two voting protocols

In this section, we describe Neff’s and Chaum’s voting protocols in detail.

3.3.1 Neff’s scheme

Andrew Neff has proposed a publicly verifiable cryptographic voting protocol for use in

DREs [60, 61]. During election initialization, the trustees perform a distributed key generation

protocol to compute a master public key; decryption will only be possible through the cooperation

of all trustees in a threshold decryption operation. Also, there is a security parameter
�
. A DRE can

surreptitiously cheat with a probability of��� . Neff suggests�� � � � ��.

Neff’s scheme is easily extensible to elections with multiple races, but for the sake of

simplicity assume there is a single race with candidates�	 
 � � � 
 �� . After a voter communicates

her choice�
 to the DRE, the DRE constructs an encrypted electronic ballot representing her choice

and commits to it. Each ballot is assigned a unique BSN. The voter is then given the option of

interacting with the DRE further to obtain a receipt. In Figure 3.1, we show an example of a receipt

taken from the VoteHere website. This receipt enables the voter to verify with high probability that

her vote is accurately represented in the tallying process.

After the voter communicates her intended choice�
 to the DRE, it constructs averifiable

choice (VC) for �
. A VC is essentially an encrypted electronic ballot representing the voter’s

choice�
 (see Figure 3.2). A VC is a� � �
matrix of ballot mark pairs(BMPs), one row per

candidate (recall that
�

is a security parameter). Each BMP is a pair of El Gamal ciphertexts. Each
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Figure 3.1: This is an example of a detailed receipt for Neff’s scheme, taken from the VoteHere
website,http://www.votehere.com .
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0 1 0 0 1 0 1

11 1 0 0 1 1

1 00 10 11 0

1 0 1 0 1 1 0

1

1

0

1 2 3 �� �
��
��

��

Figure 3.2: A verifiable choice (VC) in Neff’s scheme.� represents an encryption of bit�. This
VC represents a choice of candidate� � . Note the second row contains encryptions of�� 
 � 	 and
��
 �	, and the unchosen rows contain encryptions of�� 
 �	 and ��
 � 	.

ciphertext is an encryption of 0 or 1 under the trustees’ joint public key, written � or � for short.

Thus, each BMP is a pair� 	 �� , an encryption of�� 	 
 �� 	.
The format of the plaintexts in the BMPs differs between the row corresponding to the

chosen candidate�
 (i.e., row
) and the other (“unchosen”) rows. Every BMP in row
 should take

the form � � or � � . In contrast, the BMPs in the unchosen rows should be of the form � �

or � � . Any other configuration is an indication of a cheating or malfunctioning DRE. More

precisely, there is a� � �
matrix � so that the�-th BMP in unchosen row
 is �� �� � �� �� , and

the�-th BMP in the choice row
 is � 
 �� � 
 �� .

Consider the idealized scenario where all DREs are honest. The trustees can tally the votes

by decrypting each ballot and looking for the one row consisting of �� 
 � 	 and ��
 �	 plaintexts. If

decrypted row
 consists of�� 
 � 	 and ��
 �	 pairs, then the trustees count the ballot as a vote for

candidate�
.1

In the real world, we must consider cheating DREs. Up to this point in the protocol,

the DRE has constructed a VC supposedly representing the voter’s choice�
, but the voter has no

assurance this VC accurately represents her vote. How can wedetect a dishonest DRE?
�

This is a simplified view of how the trustees tally votes in Neff’s scheme, but it captures the main idea.
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Neff’s scheme prints the pair�BSN
hash�� � 		 on the receipt and then splits verification

into two parts: 1) at the polling booth, the DRE will provide an interactive proof of correct con-

struction of the VC to the voter; 2) later, the voter can compare her receipt to what is posted on

the bulletin board to verify that her ballot will be properlycounted. At a minimum, this interactive

protocol should convince the voter that row
 (corresponding to her intended selection) does indeed

contain a set of BMPs that will be interpreted during tallying as a vote for�
, or in other words,

each BMP in her chosen row is of the form� � . Neff introduces a simple protocol for this: for

each such BMP, the DRE provides apledgebit � ; then the voter randomly selects the left or right

position and asks the DRE to provide a proof that the ciphertext in that position indeed decrypts to

� ; and the DRE does so by revealing the randomness used in the encryption. Here we are viewing

the ciphertext � as a commitment to�, and � is openedby revealing� along with the random-

ness used during encryption. If this BMP has been correctly formed as� � , the DRE can always

convince the voter by using the value� as a pledge; however, if the BMP contains either� � or

� � , the voter has a	� probability of detecting this. By repeating the protocol for each of the
�

BMPs in row
, the probability that a malformed row escapes detection is reduced to� 	� 	� . The role

of the interactive protocol is to ensure that the receipt will be convincing for the person who was in

the voting booth but useless to anyone else.

In practice, it is unrealistic to assume the average voter will be able to parse the VC and

carry out this protocol unassisted within the polling station. Instead, Neff’s scheme enables the

voter to execute it later with the assistance of a trusted software program. The DRE first prints the

pledges on the receipt, and then receives and prints the voter’s challenge. The challenge�
 for the

row 
 is represented as a bit string where the�-th bit equal to 0 means open the left element of the
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��
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Figure 3.3: An opened verifiable choice (OVC) in Neff’s scheme. � represents an encryption of bit
�, and � represents an opened encryption of bit�. An opened encryption of� contains both� and
the randomness� used to encrypt� in the VC.

�-th BMP and 1 means open the right element.

The DRE then constructs anopened verifiable choice(OVC) according to the voter’s

challenge and submits it to the bulletin board. In Figure 3.3, we show an example of an OVC

constructed from the VC in Figure 3.2. We represent an openedencryption of bit� in an half-

opened BMP by � . In the OVC, the opened BMPs in row
 are opened according to�
, so that

each half-opened BMP contains a pair of the form� �� (if �
 �� � �) or � � � (if �
 �� � �). To

ensure that the OVC does not reveal which candidate was selected, the BMPs in the unchosen rows

are also half-opened. In unchosen row
 , the DRE selects an
�
-bit challenge�� uniformly at random

and then opens this row according to�� . Thus, an OVC consists of an� � �
matrix of half-opened
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BMPs. Consequently, the usual invocation of the receipt formation protocol is as follows:

�� Voter � DRE � 

� � DRE � Printer � BSN
hash�� � 	
� � DRE � Printer � commit�� 	 
 � � � 
� � 	
� � Voter � DRE � �


� � DRE � Printer � � 	 
 � � � 
 ��

� � DRE � B. Board � � � �

Here we define� 
 �� � � 
 �� and� � �� � �� �� � �� �� (
 �� 
). While at the voting booth, the voter only

has to check that the challenge�
 she specified does indeed appear on the printed receipt in the
-th
position (i.e., next to the name of her selected candidate).Later, the voter can check that the OVC

printed in step 5 does appear on the bulletin board and matches the hash printed in step 2 (and that

the candidates’ names are printed in the correct order), andthat the OVC contains valid openings of

all the values pledged to in step 3 in the locations indicatedby the challenges printed in step 5. Note

that the VC can be reconstructed from the OVC, so there is no need to print the VC on the receipt

or to post it on the bulletin board.

To prevent vote buying and coercion, the voter is optionallyallowed to specify challenges

for the unchosen rows between steps 2 and 3, overriding the DRE’s default random selection of��
(
 �� 
). If this were omitted, a vote buyer could tell the voter in advance to vote for candidate�


and to use some fixed value for the challenge�
, and the voter could later prove how she voted by

presenting a receipt with this prespecified value appearingas the
-th challenge.

After the election is closed, the trustees apply a universally verifiable mix net to the col-

lection of posted ballots. Neff has designed a mix net for El Gamal pairs [58, 61], and it is used

here.
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�� Voter � DRE � 

� � DRE � Printer � BSN
hash�� � 	
� � DRE � Voter � basic or detailed?

� � Voter � DRE � � 
 where� � �
basic
detailed�

�� � DRE � Printer � commit�� 	 
 � � � 
� � 	
�� � Voter � DRE � �


�� � DRE � Printer � � 	 
 � � � 
 ��

� � DRE � B. Board � � � �

Figure 3.4: Summary of receipt generation in Neff’s scheme with the option of basic or detailed
receipts. Steps�� 
 ��, and�� happen only if� � detailed.

In VoteHere’s implementation of Neff’s scheme, voters are given the option of taking

either adetailedor basicreceipt. The detailed receipt contains all the informationdescribed in this

section (Figure 3.1), but a basic receipt contains only the pair (BSN, hash(� � )). This decision is

made separately for each race on a ballot, and for each race that a voter selects a detailed receipt she

must independently choose the choice and unchosen challenges for that race.

A basic receipt affords a voter only limited verification capabilities. Since a basic receipt

foregoes the pledge/challenge stage of Neff’s scheme, a voter cannot verify her ballot was recorded

accurately. However, a basic receipt does have some value. It enables the voter to verify that the

ballot the DRE committed to in the poll booth is the same one that appears on the bulletin board.

Since the DRE must commit to the VC before it knows whether thevoter wants a detailed or basic

receipt, a DRE committing a VC that does not accurately represent the voter’s selection is risking

detection if the voter chooses a detailed receipt. The receipt protocol augmented with this additional
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Pres: Polk
Sen: Adams

...

����������
���������

� �� �
Top layer

� �� �
Bottom layer

Figure 3.5: Representation of the printed ballot and transparencies in Chaum’s scheme. The top two
images show the ballot as well as a zoomed in portion of the twooverlayed transparencies portrayed
below.

choice is summarized in Figure 3.4.

3.3.2 Chaum’s visual crypto scheme

David Chaum uses a two-layer receipt based on transparent sheets for his verifiable voting

scheme [13, 19, 89]. A voter interacts with a DRE machine to generate a ballot image� that

represents the voter’s choices. The DRE then prints a special image on each transparency layer.

The ballot bitmaps are constructed so that overlaying the top and bottom transparencies (	 and
 )

reveals the voter’s original ballot image. On its own, however, each layer is indistinguishable from

a random dot image and therefore reveals nothing about the voter’s choices (see Figure 3.5).

The DRE prints cryptographic material on each layer so that the trustees can recover the

original ballot image during the tabulation phase. The voter selects either the top or bottom layer,



36

Encoding for Transparency1: 0:
Encoding for Overlay ��: ��: or

� � Truth Table � � � � � �� � � =
� � � � � �� � � =
� � � � � �� � � =
� � � � � �� � � =

Figure 3.6: Visual cryptography overview. A printed pixel on a single transparency has a value in�
� 
 ��, encoded as shown in the first row. We apply the visual xor operator � � by stacking two

transparencies so that light can shine through areas where the subpixels are clear. The pixels in the
overlay take values from

�
�� 
 ���. The bottom table shows the truth table for the visual xor operator

and its parallels to the binary xor operator.

and keeps it as her receipt. A copy of the retained layer is posted on the bulletin board, and the other

layer is destroyed. The voter can later verify the integrityof their receipt by checking that it appears

on the bulletin board and that the cryptographic material iswell formed.

Visual cryptography exploits the physical properties of transparencies to allow humans

to compute the xor of two quantities without relying on untrusted software. Each transparency is

composed of a uniform grid ofpixels. Pixels are square and take values in
�
� 
 ��. We print for

a 0-valued pixel and for a 1-valued pixel. We refer to each of the four smaller squares within

a pixel assubpixels. Overlaying two transparencies allows light to shine through only in locations

where both subpixels are clear, and the above encoding exploits this so that overlaying performs

a sort of xor operation. Pixels in the overlay take values in
�
�� 
 ���. Pixels in the overlay have a

different appearance than those in the individual transparency layer:�� appears as or , while

�� appears as . Using � � to represent the visual overlay operation, we see that� � � � � ��,

� � � � � ��, and in general if� � � � � then� � � � � �� (see Figure 3.6).

Chaum’s protocol satisfies three properties:
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1. Visual Check: Given the desired ballot image� , the DRE must produce two transparencies

	 and
 so that	 � � 
 � � . This property allows the voter to verify the correct formation

of the two transparencies.

2. Recovery: Given a single transparency	 or 
 and the trustee keys, it must be possible to

recover the original ballot image� .

3. Integrity: 	 and
 contain a commitment. There is a way to open	 or 
 and to verify the

opening so that for all other top and bottom pairs	 �
and
 �

such that	 � � � 
 � � � and	 �

(or 
 �
) does not decrypt to� , then
 �

(or 	 �
) is unopenable. In other words, for a pair of

transparencies that overlay to form� (or a close enough approximation for the voter to accept

it as � ), the DRE should only be able to generate a witness for a transparency if the other

transparency decrypts to� .

We will consider each pixel to have a type� � �
, � � in addition to its value� �

� 
 ��.

The pixel’s type will determine how we compute the value. We label pixels on the transparency so

that no pixels of the same type are adjacent to each other, forming a repeating grid of alternating

pixel types. Additionally, when the two transparencies arestacked, we require that
�

-pixels are

only atop � -pixels and � -pixels are only atop
�

-pixels. The upper left corner of the top

transparency looks like:E P E
P E P
E P E

, and the upper left corner of the bottom transparency looks like: P E P
E P E
P E P

.

The
�

-pixels in a layer come from a pseudorandom stream. The stream is composed of� separate

streams, one from each trustee. Each of these trustee streams is based on the trustee number and

the voter’s BSN; the seed will be encrypted using each trustee’s public key requiring the trustee to

participate in the decryption process. The value of the� -pixel is set so that overlaying it with

the corresponding
�

-pixel in the other layer yields a ballot pixel. An� -pixel alone reveals no
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information: it is the xor of a
�

-pixel and the ballot image.

Details on transparency formation

The pseudorandom stream for a given transparency is composed of � pseudorandom

streams, each of which is seeded by a different value. For each of the top and bottom transparencies,

there is one stream per trustee. The
th trustee’s seed for the top is

��
 � � �sign� � �BSN	 
 
	 (3.1)

where BSNrepresents the unique ballot sequence number assigned to the voter and sign�� ��	 is a

signature using�� , a key specific to the DRE, and
� ��	 is a hash function. The
th trustee’s seed for

the bottom is

��
 � � �sign�� �BSN	 
 
	 (3.2)

The hash expansion function
� � ��	 is used to generate the trustee stream. Trustee streams are xored

together to produce the pseudorandom stream for the top layer:

� 	 � ��

	 	

� � ���
 	 (3.3)

The corresponding bottom stream uses the bottom seeds:

� 
 � ��

	 	

� � ���
 	 (3.4)

We can now define each pixel’s value. We view the ballot as a stream of pixels� , and

� 

� denotes the
�
 pixel. A
�

-pixel 
 on the top transparency is assigned the value
� 	 

�. The

� -pixel 
 on the bottom transparency is defined to have value
� 	 

� � � 

�. When viewing the

two transparencies in alignment, then, the voter sees the original ballot stream� because
� 	 

� � �
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�� 	 

� � � 

�	 �
� 	 

� � �� 	 

� � � 

�	 � � 

�. When taken alone, neither transparency reveals

any information since each pixel is either pseudorandomly generated or the xor of a pseudorandom

quantity and the original ballot.

After constructing the two layers, the DRE appends an onion encryption of the seeds so

the trustees can jointly recover
� 	 or

� 
 . The DRE adds

�
 � ��� ���� ������ � �� � � ����� ���� ���� � ��� 	 				
� 	 � ��� ���� ������ � �� � � ����� ���� ���� � ��� 					 (3.5)

to each transparency.
� 	 and

�
 are known as dolls.
�� � ��	 is a public-key encryption function

that uses the
th trustee’s public key,�
.
The voter is then presented a choice to either choose the top or bottom transparency as

a receipt. After the voter chooses a receipt layer, the DRE appends signatures committing to the

voter’s and its choices. Without loss of generality, assumethe voter keeps the top transparency

as a receipt. The DRE then prints sign�� �BSN	 as an opening for the top layer (see the integrity

requirement of the previous section). This opening allows the voter to verify that the DRE properly

formed��
 and that the DRE printed the
�

-pixels on the chosen layer as it should. By recreating

the onion encryption, the voter can verify that
� 	 is properly formed. Finally, the DRE appends

a copy of the chosen layer to the bulletin board. We show a summary of Chaum’s protocol in

Figure 3.7.

When the voter performs these checks, a malicious DRE has only a ��� chance of evad-

ing detection. By extension, its chance of changing a significant number of ballots without being

caught is exponentially small. For instance, a DRE can cheatby forming the
�

-pixels incorrectly

so the voter will see what they expect in the overlay yet the ballot will decrypt to some other im-
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�� Voter � DRE � candidate choices

� � DRE � Printer � transparency images

� � DRE � Printer � BSN
�
 
� 	
� � Voter � Printer � � where� � �

top
bottom�

� � DRE � Printer � sign�� �BSN	 

sign�DRE

�BSN
� 	 
�
 
chosen transparency	

Figure 3.7: Summary of Chaum’s protocol.

age. However, the voter will detect cheating if her receipt transparency contains incorrectly formed

�
-pixels. Therefore, a malicious DRE must commit to cheatingon either the top or bottom trans-

parency (not both, or else it will surely be caught) and hope the voter does not choose that layer as

a receipt.

Tabulation & verification

Chaum uses a Jakobsson et al. style mix net to decode the transparency chosen by the

voter and recover their choices from� in the tallying phase [33]. The values of the pseudorandom

pixels do not contain any information, while the encrypted pixels contain the ballot image xor-ed

with the pseudorandom pixels from the other transparency. For each ballot that a trustee in the mix

net receives, trustee
 in the mix net recovers its portion of the pseudorandom stream. Let’s assume

the voter chose a top transparency. In the case, trustee
 will first decrypt the doll provided by the

DRE (Equation (3.5)) to obtain��
 and then xor
� � ���
 	 into the � -pixels in the encrypted ballot.

This trustee next permutes all of the modified ballots and passes the collection to the next trustee.
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When the ballots exit the mix net, the
�

-pixels still contain pseudorandom data, but the encrypted

pixels will contain the voter’s ballot pixels from� .

3.4 Subliminal channels

Subliminal channels, also known as covert communication channels, arise in electronic

ballots when there are multiple valid representations of a voter’s choices. If the DRE can choose

which representation to submit to the bulletin board, then the choice of the representation can serve

as a subliminal channel. Subliminal channels are particularly powerful because of the use of public

bulletin boards in voting protocols. A subliminal channel in ballots on the bulletin board could

be read by anyone (if the decoding algorithm is public) or only by a select few (if the decoding

algorithm is secret).

A subliminal channel in an encrypted ballot carrying the voter’s choices and identifying

information about the voter threatens voter privacy and enables vote coercion. For example, as

Keller et al. note, a DRE could embed in each encrypted ballotthe time when the ballot was cast

and who the voter chose for president [40]. Then, a maliciousobserver present in the polling place

could record when each person voted and later correlate thatwith the data stored in the subliminal

channel to recover each person’s vote. Alternatively, if a malicious poll worker learns a voter’s

BSN, she can learn how a person voted since each encrypted ballot includes the BSN in plaintext.

Detecting such attacks can be quite difficult: without specific knowledge of how to decode the

subliminal channel, the encrypted ballots may look completely normal. The difficulty of detection,

combined with the enormous number of voters who could be affected by such an attack, makes the

subliminal channel threat troubling.
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The above scenarios illustrate how an adversary can authentically learn how someone

voted. Coercion then becomes simple: the coercer requires the voter to reveal their BSN or the time

at which they voted, then later verifies whether there existsa ballot with that identifying information

and the desired votes.

The threat model we consider for subliminal channel attacksis a malicious DRE colluding

with an external party. For example, a malicious programmercould introduce Trojan code into

DREs and then sell instructions on how to access the subliminal channel to a coercer.

Neither Neff’s nor Chaum’s protocol completely address subliminal channels in ballots.

In this section, we present subliminal channel vulnerabilities in these protocols and some possible

mitigation strategies.

One interesting observation is that subliminal channels are a new problem created by

these protocols. Subliminal channels only become a seriousproblem because the bulletin board’s

contents are published for all to see. Since all the ballots are public and anonymously accessible,

decoding the channel does not require any special access to the ballots. Subliminal channels are

not a significant problem with current non-cryptographic DREs because electronic ballots are not

public.

3.4.1 Randomness

Several cryptographic primitives in Neff’s scheme requirerandom values, and subliminal

channel vulnerabilities arise if a malicious DRE is free to choose these random values.2 These prim-
�

Chaum’s scheme, as originally published, does not specify which encryption primitives should be used to construct
the onion encryption in Equation 3.5 [19]. Subsequently, Chaum has related to us that he intended the encryption to use
a deterministic encryption scheme [20] precisely to avoid using random values and the associated subliminal channel
vulnerability. There is some risk in using this non-standard construction since the widely accepted minimum notion of
security for public key encryption is IND-CPA, which requires a source of randomness.
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itives use randomness to achieve semantic security [26], a strong notion of security for encryption

schemes which guarantees that it is infeasible for adversaries to infer even partial information about

the messages being encrypted (except maybe their length). Each choice for the random number

allows a different valid ballot, which creates opportunities for subliminal channels.

Subliminal channels are easy to build in protocols or encryption schemes that use random-

ness. If a cryptographic protocol requests the DRE to choosea random number� and then publish it,

the DRE can encode�� � bits through judicious selection of� . Alternatively, given any randomized

encryption scheme
�� ��
 �	, the DRE can hide a bit� in an encryption of a message� by computing

� �
�� �� 
 � 	 repeatedly using a new random number� each time until the least significant bit of

� ��	 is �. More generally, a malicious DRE can use this technique to hide
�

bits in � with expected

� ��� 	 work. Thus, all randomized encryption schemes contain subliminal channels.

Random subliminal channel attack. Neff’s scheme uses randomness extensively. Each BMP

consists of a pair of El Gamal ciphertexts, and the El Gamal encryptions are randomized. In forming

the OVC, the DRE reveals half of the random values� used in the encryptions (Figure 3.3).

For each BMP, one of the encryption pairs will be opened, revealing the random encryp-

tion parameter� . This presents a subliminal channel opportunity.3 Although the DRE must commit

to the ballot before the voter chooses which side of the BMP toopen, a malicious DRE can still

embed�� � bits of data for each BMP by using the same� for both encryptions in the BMP. In this

way� is guaranteed to be revealed in the ballot.

This attack enables a high bandwidth subliminal channel in each voter’s encrypted ballot.
�

Another way a malicious DRE could embed a subliminal channelin Neff’s scheme is if the voter doesn’t choose all
her unchoice challenges (i.e., the DRE is free to choose someof them). However, Neff outlines a variant of his proposal
that solves this using two printers [60].
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For example, in an election with 8 races and 5 candidates per race, there will be
�� � � ballot mark

pairs, where Neff suggests
� � ��. A reasonable value of�� � is 1024 bits. The total channel, then,

can carry 128 bytes in each of the 400 BMPs, for a total of 51200bytes of information per ballot.

This is more than enough to leak the voter’s choices and identifying information about the voter.

3.4.2 Mitigating random subliminal channels

Eschew randomness. One approach to prevent subliminal channels is to design protocols that

don’t require randomness. Designing secure protocols thatdo not use randomness is tricky, since

so many proven cryptographic primitives rely on randomnessfor their security. Proposals relying

on innovative uses of deterministic primitives, includingChaum’s, deserve extra attention to ensure

that forgoing randomness does not introduce any security vulnerabilities. Ideally, they would be

accompanied by a proof of security.

Random tapes and their implementation. In a personal communication, Neff suggested that

DREs could be provided with pre-generated tapes containingthe random bits to use for all of their

non-deterministic choices, instead of allowing them to choose their own randomness [59]. With a

random tape for each BSN, the ballot becomes a deterministicfunction of the voter’s choices and

the random tape for that BSN. As long as the BSN is assigned externally before the voter selects

her candidates, the ballots will be uniquely represented. This will eliminate the threat of random

subliminal channels in encrypted ballots.

It is not enough for the intended computation to be deterministic; it must be verifiably so.

Thus, we need a way to verify that the DRE has used the bits specified on the random tape, not some

other bits. We present one possible approach to this problemusing zero-knowledge (ZK) proofs [27]
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which allows everyone to verify that each DRE constructed ballots using the random numbers from

its tape. We imagine that there are several optimizations tothis approach which improve efficiency.

Suppose before the election, the trustees generate a series� � �	 
 � � �� 
 � � � of random values

for each BSN�, and post commitments� �� � �		 
 � �� � �� 	 
 � � � on a public bulletin board. The election

officials then load the random values� � �	 
 � � �� 
 � � � on the DRE which will use BSN�.

During the election, for each randomized function evaluation
� �� 
 �	, the DRE uses the

next random value in the series and furnishes a ZK proof proving it used the next random value in

the series. For example, in Neff’s scheme, along with each� , which is an El Gamal encryption

� �� 
 �	, the DRE includes a non-interactive zero knowledge proof ofknowledge proving that 1) it

knows a value� � �
 which is a valid opening of the commitment� �� � �
 	 and 2)
� �� � �
 
 �	 � � .

Verifying that each� � �
 is used sequentially within a ballot enables any observer toverify that the

encryption is deterministic, so there can be no random subliminal channels in� or its opening � .

However, there is a wrinkle to the above solution: under mostschemes, constructing the

zero-knowledge proof itself requires randomness, which creates its own opportunities of subliminal

channels. It may be possible to determinize the ZK proof using research on unique zero-knowledge

proofs (uniZK) [45, 46].

This approach may require further analysis to determine whether it is able to satisfy the

necessary security properties.

Trusted hardware. Utilizing trusted hardware in DREs can also help eliminate subliminal chan-

nels. In this approach, the trusted hardware performs all computations that require random inputs

and signs the encrypted ballot it generates. The signature enables everyone to verify the ballot was

generated inside the trusted hardware. As long as trustees verify the DRE’s trusted hardware is
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running the correct software and the trusted hardware isn’tcompromised, DREs will not be able to

embed a random subliminal channel.

3.4.3 Multiple visual and semantic representations

A tabulator that accepts multiple equivalent visual or semantic representations of the

voter’s choice creates another subliminal channel opportunity. For example, if the tabulator ac-

cepts both James Polk and JamesPolk (with an extra space) as the same person, then a DRE can

choose which version to print based on the subliminal channel bit it wants to embed.

Semantic subliminal channel attack. Chaum’s scheme is vulnerable to multiple visual represen-

tations. A malicious DRE can create alternate ballot imagesfor the same candidate that a voter

will be unlikely to detect. Recall that Chaum’s scheme encrypts an image of the ballot, and not an

ASCII version of the voter’s choices. The voter examines twotransparencies together to ensure that

the resulting image accurately represents their vote. A DREcould choose to use different fonts to

embed subliminal channel information; the choice of font isthe subliminal channel. To embed a

higher bandwidth subliminal channel, the DRE could make minor modifications to the pixels of the

ballot image that do not affect its legibility. Unless the voter is exceptionally fastidious, these mi-

nor deviations would escape scrutiny as the voter verifies the receipt. After mixing, the subliminal

channel information would be present in the resulting plaintext ballots.

There is no computational cost for the DRE to embed a bit of information in the font. It

can use a simple policy, such as toggling a pixel at the top of acharacter to encode a one, and a pixel

at the bottom to encode a zero. On a 10 race ballot, using such apolicy just once per word could

embed 30 bits of information.
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There is a qualitative difference between the semantic subliminal channels and the random

subliminal channels. The information in the semantic channels will only become apparent after the

mix net decrypts the ballot since the channel is embedded in the plaintext of the ballot. In contrast,

the random subliminal channels leak information when the ballots are made available on the bulletin

board.

Mitigation. To prevent the semantic subliminal channel attack, election officials must establish of-

ficial unambiguous formats for ballots, and must check all ballots for conformance to this approved

format. Any deviation indicates a ballot produced by a malicious DRE. Such non-conforming bal-

lots should not be allowed to appear on the bulletin board, since posting even a single suspicious

ballot on the bulletin board could compromise the privacy ofall voters who used that DRE. Un-

fortunately, the redaction of such deviant ballots means that such ballots in will not be able to be

verified by the voter through normal channels.

An even more serious problem is that this policy violates assumptions made by the mix

net. One would need to ensure the mix net security propertiesstill hold when a subset of the

plaintexts are never released.

The order in which ballots appear will also need to be standardized. Otherwise, a DRE

can choose a specific ordering of ballots on the public bulletin board as a low bandwidth subliminal

channel [42]. Fortunately, it is easy to sort or otherwise canonicalize the order of ballots before

posting them publicly.
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3.4.4 Discussion

Subliminal channels pose troubling privacy and voter coercion risks. In the presence of

such attacks, we are barely better off than if we had simply posted the plaintext ballots on the bulletin

board in unencrypted form for all to see. The primary difference is that subliminal channel data may

be readable only by the malicious parties. This situation seems problematic, and we urge protocol

designers to design voting schemes that are provably and verifiably free of subliminal channels.

3.5 Denial of service attacks and election recovery

Although Neff’s and Chaum’s schemes can detect many attacks, recovering legitimate

election results in the face of these attacks may be difficult. In this section, we present several

detectable but irrecoverable denial of service (DoS) attacks launched at different stages of the voting

and tallying process. We consider attacks launched by malicious DREs and attacks launched by

malicious tallying software, and discuss different recovery mechanisms to resist these attacks.

3.5.1 Denial of service (DoS) attacks

Launched by malicious DREs. Malicious DREs can launch several DoS attacks which create

detectable, but unrecoverable situations. We present two classes of attacks: ballot deletion and

ballot stuffing.

In a ballot deletion attack, a malicious DRE erases voters’ ballots or submits random bits

in their place. Election officials and voters can detect thisattack after the close of polls, but there is

little they can do at that point. Since the electronic copy serves as the only record of the election, it

is impossible to recover the legitimate ballots voted on that DRE.
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DREs can launch more subtle DoS attacks using ballot stuffing. Recall that both Neff’s

and Chaum’s schemes use ballot sequence numbers (BSNs) to uniquely identify ballots. BSNs

enable voters to find and verify their ballots on the public bulletin board, and by keeping track of

the set of valid BSNs, election officials can track and audit ballots.

In theBSN duplication attack, a DRE submits multiple ballots with the same BSN. Elec-

tion officials will be able to detect this attack after the ballots reach the bulletin board, but recovery

is difficult. It is not clear how to count ballots with the sameBSN. Suppose a DRE submits 100

valid ballots (i.e., from actual voters) and 100 additionalballots, using the same BSN for all the

ballots. How do talliers distinguish the invalid ballots from the valid ones?

In theBSN stealing attack, a malicious DRE “steals” BSNs from the set of BSNs it would

normally assign to legitimate voters’ ballots. For a particular voter, the DRE might submit a vote

of its own choosing for the BSNit is supposed to use, and on thevoter’s receipt print a different

(invalid) BSN. Since the voter will not find her ballot on the bulletin board, this attack can be

detected, but recovery is tricky: how do election officials identify the injected ballots and remove

them from the tally?

Neff’s and Chaum’s scheme enable voters and/or election officials to detect these attacks,

but recovery is non-trivial because 1) the voters’ legitimate ballots are missing and 2) it is hard to

identify the invalid ballots injected by the DRE.

Launched by malicious tallying software. DoS attacks in the tallying phase can completely ruin

an election. For example, malicious tallying softwares candelete the trustees’ keys, making decryp-

tion and tallying of the encrypted ballots forever impossible. Malicious bulletin board software can

erase, insert, or delete ballots.
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Selective DoS. An attacker could use DoS attacks to bias the outcome of the election. Rather than

ruining the election no matter its outcome, a more subtle adversary might decide whether to mount a

DoS attack or not based on who seems to be willing the race. If the adversary’s preferred candidate

is winning, the adversary need do nothing. Otherwise, the adversary might try to disrupt or ruin

the election, forcing a re-election and giving her preferred candidate a second chance to win the

election, or at least raising questions about the winner’s mandate and reducing voters’ confidence in

the process.

There are many ways that selective DoS attacks might be mounted:

� If an outsider has a control channel to malicious DREs, the outsider could look at the polls

and communicate a DoS command to the DREs.

� An autonomous DRE could look at the pattern of votes cast during the day, and fail (deleting

all votes cast so far at that DRE) if that pattern leans towards the undesired candidate. This

would disrupt votes cast only in precincts leaning against the attacker’s preferred candidate.

� If trustees’ software is malicious, it could collude to see how the election will turn out, then

cause DoS if the result is undesirable. Note that if all trustees are running the same tallying

software, this attack would require only a single corruptedprogrammer.

Selective DoS attacks are perhaps the most troubling kind ofDoS attack, because they threaten

election integrity and because attackers may have a real motive to launch them.

3.5.2 Mitigation strategies and election recovery

Note that in all these attacks, non-malicious hardware or software failures could cause the

same problems. This may make it hard to distinguish purposeful attacks from unintentional failures.
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The above attacks create irrecoverable situations becausevoters’ legitimate ballots are

lost or corrupted, the bulletin board contains unidentifiable illegitimate ballots submitted by mali-

cious DREs, or both. In this section, we evaluate two recovery mechanisms for these DoS attacks:

revotingand avoter verified paper audit trail.

Revoting. One recovery strategy is to allow cheated voters to revote. Depending on the scope of

the attack or failure, this could range from allowing only particular voters to revote to completely

scrapping the election and starting over. However, revoting is problematic. Redoing the entire elec-

tion is the most costly countermeasure. Alternatively, election officials could allow only those voters

who have detected cheating to revote. Unfortunately, this is insufficient. Less observant voters who

were cheated may not come forward, and it may be hard to identify and remove illegitimate ballots

added by a malicious DRE. Revoting does not help with selective DoS.

Voter verified paper audit trail. A voter verified paper audit trail (VVPAT) system produces a

paper record verified by the voter before her electronic ballot is cast [51]. This paper record is cast

into a ballot box. The paper trail is an official record of the voter’s vote but is primarily intended for

use in recounts and auditing.

It would not be hard to equip cryptographic voting systems with a VVPAT. This would

provide a viable mechanism for recovering from DoS attacks.In addition to providing an indepen-

dent record of all votes cast, VVPAT enables recovery at different granularities. If election officials

conclude the entire electronic record is questionable, then the entire VVPAT can be counted. Alter-

natively, if only a single precinct’s electronic record is suspect, then this precinct’s VVPAT record

can be counted in conjunction with the other precincts’ electronic records. This approach enables
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officials to keep the universal verifiability of the uncorrupted precincts while recovering the legiti-

mate record of the corrupted precinct.

A third benefit of VVPAT is that it provides an independent wayto audit that the cryp-

tography is correctly functioning. This would be one way to help all voters, even those who do not

understand the mathematics of these cryptographic schemes, to be confident that their vote will be

counted correctly.

3.6 Implementing secure cryptographic voting protocols

A secure implementation of Neff and Chaum’s protocol will still need to resolve many

issues. In this section, we outline important areas that Neff and Chaum have not yet specified.

These parts of the system need to be fully designed, implemented, and specified before one can

perform a comprehensive security review. Also, we list three open research problems which we feel

are important to the viability of these schemes.

3.6.1 Underspecifications

Bulletin board. Both protocols rely on a public bulletin board to provide anonymous, read only

access to the data. The data must be stored robustly, overcoming software and mechanical failures

as well as malicious attacks. Further, only authenticated parties should be able to append messages

to the bulletin board. An additional requirement is to ensure that the system delivers the same copy

of the bulletin board contents to each reader. If the bulletin board were able to discern a voter’s

identity, say by IP address, it could make sure the voter always saw a mix transcript that included

a proof that their vote was counted. But, for the official transcript, the mix net and bulletin board
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could collude to omit the voter’s ballot. In this scenario, the voter would think her vote had been

counted but in reality it was not.

Neff and Chaum have not yet elaborated on a proposed bulletinboard architecture or

the properties they require. We imagine that the principlesof distributed storage systems, such as

Farsite, CFS, or OceanStore [3, 22, 70], might be applicablein the bulletin board setting. However,

without a further specification of exactly which architecture would be used, we cannot evaluate the

system’s security.

BSN assignment. Neff’s and Chaum’s schemes do not specify how to assign BSNs to voters’

ballots. BSNs could be assigned externally by a smartcard initializer which authorizes a voter to use

a DRE, or be assigned by DREs, say by a monotonically increasing counter prefixed by the DRE

machine ID.4 Clever BSN assignment combined with careful auditing and sign-in procedures could

help limit the scope of some of the DoS attacks in Section 3.5,but since DREs can always erase or

corrupt a voter’s electronic ballot after she casts it, we still must consider recovery mechanisms.

Tallying software. Both Neff’s and Chaum’s schemes treat the tallying softwareas a black box.

We surmise, that it, too, has stringent requirements on its correct implementation. If all trustees

use tallying software from a single source, then this software might collude without the trustees’

knowledge and invalidate the system’s integrity guarantees. Though�-version programming might

be able to counter this threat, it makes software development very expensive and requires detailed

interface specifications to ensure that all versions of the software will interoperate. We have not

seen any details on how to ensure that the tallying software cannot collude.
�

David Chaum later conveyed to us that he intended his scheme to use a counter to assign BSNs [20].
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3.6.2 Open research problems

Subliminal channels. Developing cryptographic protocols that address subliminal channels would

help resist privacy and coercion attacks. Subliminal channels in the ballots subvert the confidential-

ity guarantees provided by encryption. We present some techniques in Section 3.4 to eliminate

subliminal channels in encrypted ballots, but we believe this is still an area for future research.

Mix net security models. We would like to see a definition of security for mix nets that is com-

prehensive for the voting setting. Such a definition must be natural enough to inspire confidence that

it is the correct model. For instance, Jakobsson illustrates a subtle privacy violation if the encryption

used in the mixes do not provide non-malleability [32], and others have shown similar results [66].

This illustrates the importance and non-triviality of formulating a correct security model for mix

nets. We believe the security of cryptographic voting systems would benefit from a thorough study

of the relationship between the mix net requirements and those of the rest of the system.

Humans as protocol participants. These voting protocols require voters to not just use a cryp-

tographic system, but also to participate in a cryptographic protocol. Cryptographic protocols are

fragile to deviations and mistakes in their implementation, and humans have been known to make

mistakes. A high level understanding of the protocol is not sufficient; to minimize errors, voters

often need to understand how the protocol works. Alternatively, voting protocols must be designed

to be as resilient as possible to mistakes made by the averagevoter. Voter education could help,

but this raises an important human-computer interaction problem: how do we educate voters about

these issues without discouraging them that these systems are too complicated to securely use?
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3.7 Conclusion

We laud Neff’s and Chaum’s ambitious goal: developing a coercion free, privacy preserv-

ing voter-verifiable election system. Their systems represent a significant security improvement

over current DRE-based paperless systems. Neff’s and Chaum’s schemes also strive to limit re-

liance on trusted software and hardware. Most notably, these schemes do not require voters to trust

DREs since voters can detect malicious behavior.

Neff’s and Chaum’s schemes are fully specified at the cryptographic protocol level, but

they are underspecified from the systems and human interaction level. Due in part to this underspec-

ification, we have discovered a number of potential weaknesses which only became apparent when

considered in the context of an entire voting system. We expect that a well designed implementation

and deployment may be able to mitigate or even eliminate the impact of these weaknesses.

We found solutions for some of these weaknesses, but we also identified new challenges

and open problems for electronic voting systems. First, subliminal channels have the potential to

erode voter privacy and enable voter coercion. Any system that uses a public bulletin board must

ensure that the ballots it posts have a unique representation. Second, these voting protocols present

a new research challenge by placing human voters directly within an interactive cryptographic pro-

tocol. Protocol designers have previously assumed participants are infallible computer agents, but

voting protocols must cope with human error and ignorance.

Despite these challenges, we are optimistic about the future prospects of these voting

systems.
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Chapter 4

Privacy

In this chapter, we study the privacy problem, identify several challenges in assuming

the secrecy of the ballot, and then propose techniques to address these issues. We start with a

generalized description of a voting session, and then describe how privacy can be violated in a

range of different voting technologies. Finally, we describe a general approach to prevent privacy

violations. We outline our novel solution in this chapter, and in Chapter 5, apply this generalized

solution to one particular voting implementation in further detail.

4.1 Voting sessions

A typical voting machine is used many times throughout the day by many voters. Cost,

space, and manageability constraints necessitate reusingvoting machines throughout the day since

we cannot afford to give each voter their own voting machine.This creates the real possibility of

voter information flowing from one voter to another through the voting machine.

We define avoting sessionas one voter’s interactions with the voting machine. Recalling
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Section 2.1, all voting sessions are encompassed within theactive voting phase. A voting session

starts with the voter’s first use of a particular voting machine and ends when they leave the voting

machine. It is assumed that only one voter uses the machine during each session. After each voting

session, the machine returns to a start state and readies itself for the next voter’s session.

4.2 Avenues for information flows

In this section, we look at different voting technologies and highlight some of the ways

privacy violations might occur. Table 4.1 summarizes the ways that private information might leak

out of the machine as well as the relative severity of the potential leak.

4.2.1 DRE

A voting session with a DRE begins with the voter presenting their authentication token

and ends after they make their selections, confirm the choices, and leave the voting machine. A

DRE has many output devices: the voting screen, audio output, and the electronic ballot box. DREs

with VVPAT [51] contain also have a printer for the paper receipt. Each of these output devices

presents a different avenue for data to leak.

With corrupt software, a DRE could reveal previous voters’ selections to the screen. Just

as in Section 3.4, the malicious DRE could reveal the ballot casting times for all ballots for a

specific candidate. Correlating this information with whenvoters leave the polling booth easily

reveals voters’ choices. A party could activate malicious code to gain access to this confidential

data with a specific and unusual sequence of inputs. Assume that each vote can be represented with

a four or five bits, or alternatively one ASCII character; with a ballot of 100 races, a single voter’s
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Voting Technology Output Channel Flow capacity Notes

DRE Screen Large
VVPAT printed record Medium
Audio accessibility interface Small
Vote storage Large We can prevent leaks using [55]

Cryptographic voting protocols Receipt Medium
Screen Large
Audio accessibility interface Small
Bulletin board Large Can be read anonymously over the Internet
Vote storage Large We can prevent leaks using [55]

Ballot marking device Screen Large
Marked ballot Large

Optical scan reader Confirmation screen Small
Vote storage Large We can prevent leaks using [55]

Table 4.1: Ways that prior vote information might escape from a voting machine in different voting technologies.
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choices can fit in one line of text. This means that over 100 voters’ full ballots can fit onto two pages

of text. It would be inconceivable to copy two full pages of ASCII gibberish down by hand, but a

digital camera would be a convenient tool to download the data from the DRE.

The audio output device, used to improve accessibility for voters with visual impairments,

can also be used to surreptitiously leak prior voters’ data.A malicious DRE could simply read out

prior voter’s selections. However, this is a slow process, so it is infeasible to quickly leak all prior

voters’ data.

DREs store their ballots into an electronic ballot box. Thisis usually a removable memory

device that is used for summing the votes cast on the DRE. Depending upon the voting jurisdiction’s

procedures, the contents of the ballot box may be made public. This represents a large potential

vehicle for information leakage. The ballot box 1) may contain extraneous data that reveals voters’

selections in unused portions of the ballot box device; or 2)may encode hidden data using the order

the elements are on disk. These allow a malicious voting machine to leak casting time of all of the

votes. Using a standardized data format and the techniques developed in conjunction with Molnar

et al [55], it is possible to eliminate privacy leaks from a electronic ballot boxes.

Finally, some DREs are being equipped with VVPAT printers. Even though the voter

does not keep or even touch the paper record, it represents anoutput channel to convey private

information. The paper record displays the entire list of a voter’s selections. After reviewing the

printed voter record, the machine queries the voter and either prints an acceptance note on the record,

or a spoil note and allows the voter to edit their response andagain review the printed ballot. Since

the printed record is retained by election officials and could undergo later scrutiny, a malicious DRE

must attempt to disguise private data it is conveying. One way for the DRE to leak a prior voter’s
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choices is by printing the selections to the printer. So as not to arouse suspicion with extra votes in

the paper record, the DRE could then spoil the printed record, mimicking a voter who changed their

mind.

4.2.2 Cryptographic voting protocol

Chapter 3 addresses cryptographic voting protocols and theprivacy risks that they face.

The ones discussed there augment normal DREs, and so inherittheir risks, as well as new ones

through the bulletin boards. The receipt the voter takes with them could also contain private data

detailing prior voters’ selections. The amount of data is bounded by the receipt’s size, but a clever

encoding can leak a substantial amount of data. The systems described in that chapter are based on

DREs, so have similar privacy problems with the screen and vote storage mechanisms.

4.2.3 Ballot marking device

Ballot marking devices are similar to DREs in presenting their choices, but instead of

storing an electronic ballot, they print a ballot readable both by machines and humans. The voter

reviews the printed ballot and upon accepting it takes it to the optical scan reader that scans the

ballot and stores a paper copy, or discards the printed ballot and enters new selections.

Since voters interact with ballot marking devices in a similar fashion to DREs, it is natural

that ballot marking devices face similar privacy vulnerabilities. Just as a malicious DRE can use the

screen or audio interface to convey private information, socan ballot marking devices.

The printer portion of the ballot marking device can be used for an even simpler attack.

The printer can be used to print a summary of all prior voter’sdecisions. A suitable encoding, such

as the one from Section 4.2.1, can easily fit all voter data on apage or two. To avoid suspicion, the
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ballot marking device would also print a legitimate ballot for casting.

The data obtained from a ballot marking device is less reliable than the data from either

a DRE or a cryptographic protocol solutions. Since the ballot marking device is used for ballot

preparation, but not casting, it can only possibly know which ballots have been prepared for casting.

Its knowledge of prepared ballots is a superset of the actualcast ballots. These attacks should

prove damaging to privacy, but it may not always be possible to know with absolute certainty how

someone voted.

4.2.4 Optical scan reader

Optical scan machines accept ballots created either with a ballot marking device or by a

person on a paper. Voters feed their ballots to the machine, which scans it and checks for errors

(blank ballots and overvotes, for example). Finding an error, it displays a short message on its LCD

screen and rejects the ballot; or if the ballot is error free,it scans the paper ballot and stores the

ballot in a locked ballot box.

Like DREs, optical scan machines contain a removable memorydevice that is counted

at the precinct. This represents a potentially large privacy channel. But as in the DRE case, fixed

ballot formats and techniques from Molnar et al. can preventprivacy leaks [55].

The small LCD screen presents another output channel. However, the likelihood of it

being exploited is small. Election officials must provide access control to the optical scan reader to

prevent voters from adding multiple ballots at once. Under the election officials watch, an adversary

spending lots of time memorizing the LCD screen, taking pictures, or writing copious notes, would

attract attention. For this reason, the optical scanner’s LCD is not a major threat.
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4.3 Reboots

One of the assumptions we started with, and a key enabler for privacy leaks, is the need

to multiplex voting hardware among multiple voters. Suppose, instead, that each voter uses a fresh

voting machine at the polling station. If the machines are not networked, it becomes trivial to see

that a machine cannot leak data about prior voters, since themachine starts without any vote state,

and is only used by a single voter. This approach, though, is not feasible since it dramatically

increases the cost for hardware as well as the cost for managing the infrastructure.

Our approach seeks to blend the purity of individual voter machines with the cost and

maintenance benefits of shared DREs.

A traditional DRE, for example the Diebold AccuVote-TS, is designed to run as a single

operating system process. The functions of the DRE—validating the voter, presenting choices,

confirming those choices, storing the ballot, and administrative functions—are all a part of the same

address space.

Let us examine one particular strategy we can use to better verify Property 1, which

requires that one voter’s selections must not influence the voting experience observed by the next

voter. Suppose after every voter has voted, the voting machine is turned off and then restarted. This

is enough to ensure that the voting machine’s memory will notcontain any information about the

prior voter’s selections when it starts up. Of course, the prior voter’s selections must still be recorded

on permanent storage (e.g., on disk) for later counting, so we also need some mechanism to prevent

the machine from reading the contents of that storage medium. One conservative strategy would

be to simply require that any file the voting machine writes tomust always be opened in write-only

mode, and should never be opened for reading. More generally, we can allow the voting machine
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to read from some files, such as configuration files, as long as it does not have the ability to write to

them. Thus the set of files on permanent storage are partitioned into two classes: a set of read-only

files (which cannot be modified by the voting machine), and a set of write-only files (which cannot

be read by the voting machine). To summarize, our strategy for enforcing Property 1 involves two

prongs:

1. Ensure that a reboot is always triggered after a voter endstheir session.

2. Check every place a file can be opened to ensure that data files are write-only, and configura-

tion files are read-only.

There must still be a mechanism to prevent the voting machinefrom overwriting existing data, even

if it cannot read that data.

Rebooting also helps to ensure that all voters are treated equally. After rebooting, the

memory is reset to a known state. This observation was made byCandea et al., who relied on the

idea to eliminate bugs that creep up unpredictably [16, 17].

We emphasize this design strategy is not the only way to verify this particular property.

Rather, it is one technique we can implement that reduces theproblem of enforcing Property 1 to

the problem of enforcing a checklist of easier-to-verify conditions that suffice to ensure Property 1

will always hold.

4.3.1 Applicability

While Candea et al. [16, 17] use prophylactic reboots to increase availability, we believe

the strategy of rebooting for privacy is novel. It is also broadly applicable to all of the different tech-

nologies mentioned, including DREs, DREs with cryptographic voting protocols, ballot marking
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devices, as well as optical scan readers. In each case, the reboot erases the memory between each

voter session, guaranteeing the voter starts with a known and clean memory state. After ensuring

the only session-writable storage is read only, it is simpleto verify prior voters’ private information

cannot be leaked at the voting machine.

In Chapter 5, we demonstrate the viability of the reboot approach to a specific platform to

guarantee Property 1 in addition to other properties.
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Chapter 5

Designing voting machines for

verification

In this chapter, we provide techniques to help vendors, independent testing agencies, and

others verify critical security properties in direct recording electronic (DRE) voting machines. We

expand upon the privacy preserving techniques presented inChapter 4 to address Property 1 and

also address Property 2 to guarantee a ballot is only cast with the voter’s consent. With a little

additional work, the other properties are amenable to our techniques. We rely on specific hardware

functionality, isolation, and architectural decisions toallow one to easily verify critical security

properties. We believe our techniques will help us verify other properties as well though we have

not demonstrated this. Verification of these security properties is one step towards a fully verified

voting machine.

Parts of this work are drawn with permission from previouslypublished work [74].
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5.1 Introduction

In this chapter we seek to answer how can we reason about, or even prove, relevant se-

curity properties in voting machines. As we have seen, the flurry of reports criticizing the trust-

worthiness of direct recording electronic (DRE) voting machines, computer scientists have not been

able to allay voters’ concerns about this critical infrastructure [42, 18, 72, 90]. The problems are

manifold: poor use of cryptography, buffer overflows, and inat least one study, poorly commented

code.

The ultimate security goal would be a system where any voter,without any special train-

ing, could easily convince themselves about the correctness of all relevant security properties. Our

goal is not so ambitious; we address convincing those with the ability to understand code the cor-

rectness of a few security properties. For clarity, we focuson two important security properties in

this chapter. These properties were originally described in Chapter 2. Briefly, recall that Property 1

states that a voter’s interactions should not affect any subsequent voter’s sessions. Property 2 states

that a ballot should not be cast without the voter’s consent.Verification of these properties, as well

as the others we described in Chapter 2, are a step towards thefull verification of a voting machine.

Current DREs are not amenable to verification of these security properties; for instance,

version 4.3.1 of the Diebold AccuVote-TS electronic votingmachine consists of 34 7121 lines of

vendor-written C++ source code, all of which must be analyzed to ensure Properties 1 and 2. One

problem with current DRE systems, in other words, is that thetrusted computing base (TCB) is

simply too large. The larger problem, however, is the code simply is notstructuredto verify security
�

Kohno et al. count the total number of lines in their paper [42]; for a fair comparison with our work, we look at
source lines of code, which excludes comments and whitespace from the final number. Hence, the numbers cited in their
paper differ from the figure we list.
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properties.

In this chapter, we develop a new architecture that significantly reduces the size of the

TCB for verification of these properties. Our goal is to make voting systems more amenable to

efficient verification, meaning that implementations can beverified to be free of malicious logic.

By appropriate architecture design, we reduce the amount ofcode that would need to be verified

(e.g., using formal methods) or otherwise audited (e.g., inan informal line-by-line source code

review) before we can trust the software, thereby enhancingour ability to gain confidence in the

software. We stress that our architecture assumes voters will be diligent: we assume that each voter

will closely monitor their interaction with the voting machines and look for anomalous behavior,

checking (for example) that her chosen candidate appears inthe confirmation page.

We present techniques that we believe are applicable to DREs. We develop a partial voting

system, but we emphasize that this work is not complete. As wediscussed in Section 2.1, voting

systems comprise many different steps and procedures: pre-voting, ballot preparation, audit trail

management, post-election, recounts, and an associated set of safeguard procedures. Our system

only addresses the active voting phase. As such, we donot claim that our system is a replacement

for an existing DRE or a DRE system with a paper audit trail system. See Section 5.6 for a discussion

of using paper trails with our architecture.

Technical elements of our approach. We highlight two of the key ideas behind our approach.

First, we focus on creating a trustworthy vote confirmation process. Most machines today divide

the voting process into two phases: an initial vote selection process, where the voter indicates who

they wish to vote for; and a vote confirmation process, where the voter is shown a summary screen

listing their selections and given an opportunity to reviewand confirm these selections before casting
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their ballot. The vote selection code is potentially the most complex part of the system, due to the

need for complex user interface logic. However, if the confirmation process is easy to verify, we

can verify many important security properties without analyzing the vote selection process. Our

architecture splits the vote confirmation code into a separate module whose integrity is protected

using hardware isolation techniques. This simple idea greatly reduces the size of the TCB and

means that only the vote confirmation logic (but not the vote selection logic) needs to be examined

during a code review for many security properties, such as Property 2.

Second, we use hardware resets to help ensure Property 1, as originally outlined in Sec-

tion 4.3. In our architecture, most modules are designed to be stateless; when two voters vote in

succession, their execution should be independent. We use hard resets to restore the state of these

components to a consistent initial value between voters, eliminating the risk of privacy breaches and

ensuring that all voters are treated equally by the machine.

Our architecture provides several benefits. It preserves the voting experience that voters

are used to with current DREs. It is compatible with accessibility features, such as audio interfaces

for voters with visual impairments, though we stress that wedo not implement such features in our

prototype. It can be easily combined with a voter-verified paper audit trail (VVPAT). Our prototype

implementation contains only 5 085 lines of trusted code.

5.2 Goals and assumptions

Security goals. For clarity, in this chapter we focus on enabling efficient verification of Proper-

ties 1 and 2 (see Chapter 2), though we hope to enable the efficient verification of other properties

as well. Property 1 reflects a privacy goal: an adversary should not be able to learn any information
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about how a voter voted besides what is revealed by the published election totals. Property 2 re-

flects an integrity goal: even in the presence of an adversary, the DRE should record the voter’s vote

exactly as the voter wishes. Further, an adversary should not be able to undetectably alter the vote

once it is stored. We wish to preserve these properties against the classes of adversaries discussed

below.

Wholesale and retail attacks. A wholesale attack is one that, when mounted, has the potential

of affecting a broad number of deployed DREs. A classic example might be a software engineer

at a major DRE manufacturer inserting malicious logic into her company’s DRE software. Prior

work has provided evidence that this it is a concern for real elections [5]. Such an attack could

have nationwide impact and could compromise the integrity of entire elections, if not detected.

Protecting against such wholesale attacks is one of our primary goals. In contrast, a retail attack

is one restricted to a small number of DREs or a particular polling location. A classic retail attack

might be a poll worker stuffing ballots in a paper election, orselectively spoiling ballots for specific

candidates.

Classes of adversaries. We desire a voting system that:

� Protects againstwholesaleattacks by election officials, vendors, and other insiders.

� Protects againstretail attacks by insiders when the attacksdo not involve compromising the

physical security of the DRE or the polling place (e.g., by modifying the hardware or software

in the DRE or tampering with its surrounding environment).

� Protects against attacks by outsiders, e.g., voters, when the attacksdo not involve compro-

mising physical security.
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We explicitly do not consider the following possible goals:

� Protect againstretail attacks by election insiders and vendors when the attacksdo involve

compromising physical security.

� Protect against attacks by outsiders, e.g., voters, when the attacksdo involve compromising

physical security.

On the adversaries that we explicitly do not consider. We explicitly exclude the last two ad-

versaries above because we believe that adversaries who canviolate the physical security of the

DRE will always be able to subvert the operation of that DRE, no matter how it is designed or

implemented. Also, we are less concerned about physical attacks by outsiders because they are

typically retail attacks: they require modifying each individual voting machine one-by-one, which

is not practical to do on a large scale. For example, to attackprivacy, a poll worker could mount a

camera in the voting booth or, more challenging but still conceivable, an outsider could use Tem-

pest technologies to infer a voter’s vote from electromagnetic emissions [43, 88]. To attack the

integrity of the voting process, a poll worker with enough resources could replace an entire DRE

with a DRE of her own. Since this attack is possible, we also donot try to protect against a poll

worker that might selectively replace internal componentsin a DRE. We assume election officials

have deployed adequate physical security to defend againstthese attacks.

We assume that operating procedures are adequate to preventunauthorized modifications

to the voting machine’s hardware or software. Consequently, the problem we consider is how to

ensure that the original design and implementation are secure. While patches and upgrades to the

voting system firmware and software may occasionally be necessary, we do not consider how to
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securely distribute software, firmware, and patches, nor dowe consider version control between

components.

Attentive voters. We assume that voters are attentive. We require voters to check that the votes

shown on the confirmation screen do indeed accurately reflecttheir intentions; otherwise, we will

not be able to make any guarantees about whether the voter’s ballot is cast as intended. Despite our

reliance on this assumption, we realize it may not hold for all people. Voters are fallible and not all

will properly verify their choices. To put it another way, our system offers voters theopportunityto

verify their vote. If voters do not take advantage of this opportunity, we cannot help them. We do

not assume that all voters will avail themselves of this opportunity, but we try to ensure that those

who do, are protected.

5.3 Architecture

We focus this chapter on our design and implementation of the“active voting” phase of

the election process (cf. Figure 2.1). We choose to focus on this step because we believe it to be one

of the most crucial and challenging part of the election, requiring interaction with voters and the

ability to ensure the integrity and privacy of their votes. We remark that we attempt to reduce the

trust in the canvassing phase by designing a DRE whose outputrecord is both privacy-preserving

(anonymized) and integrity-protected.

5.3.1 Architecture motivations

To see how specific design changes to traditional voting architectures can help verify

properties, we will go through a series of design exercises starting from current DRE architectures
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Figure 5.1: Our architecture, at an abstract level. For the properties we consider, the
������ ���� �� �

module need not be trusted, so it is colored red.

and finishing at our design. The exercises will be motivated by trying to design a system that clearly

exhibits Properties 1 and 2.

Resetting for independence. Chapter 4 highlights our approach to achieving privacy in a DRE.

Recall, to satisfy the conditions of the approach, two conditions must be met:

1. Ensure that a reboot is always triggered after a voter endstheir session.

2. Check every place a file can be opened to ensure that data files are write-only, and configura-

tion files are read-only.

For our architecture, we introduce a separate component whose sole job is to manage the

reset process. The
�
 �������

triggers the����� �!" ��
after a ballot is stored. The reset module then

reboots a large portion of the DRE and manages the startup process. We use a separate component

so that it is simple to audit the correctness of the����� �! " ��
.
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Isolation of confirmation process. In considering Property 2, which requires the voter’s consent

to cast in order for the ballot to be stored, we will again see how modifying the DRE’s architecture

in specific ways can help verify correctness of this property.

The consent property in consideration requires auditors toconfidently reason about the

casting procedures. An auditor (perhaps using program analysis tools) may have an easier time

reasoning about the casting process if it is isolated from the rest of the voting process. In our archi-

tecture, we take this approach in combining the casting and confirmation process, while isolating it

from the vote selection functionality of the DRE. With a careful design, we only need to consider

this sub-portion to verify Property 2.

From our DRE design in the previous section, we introduce a new component, called

the
����	��
 ��
� �� �

module. With this change, the voter first interacts with a
������ ���� �� �

module that presents the ballot choices. After making theirselections, control flow passes to the

����	��
 ��
� �� �
module that performs a limited role: presenting the voter’sprior selections and

then waiting for the voter to either 1) choose to modify theirselections, or 2) choose to cast their

ballot. Since the
����	��
 ��
� �� �

module has limited functionality, it only needs limited support

for GUI code; as we show in Section 5.5.1 we can more easily analyze its correctness since its scope

is limited. If the voter decides to modify the ballot, control returns to the
������ ���� �� �

module.

Note the voter interacts with two separate components: firstthe
������ ���� �� �

component

and then
����	��
 ��
� �� �

. There are two ways to mediate the voter’s interactions withthe two

components: 1) endow each component with its own I/O system and screen; 2) use one I/O system

and a trusted I/O “multiplexor” to manage which component can access the screen at a time. The

latter approach has a number of favorable features. Perhapsthe most important is that it preserves
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the voter’s experience as provided by existing DRE systems.A voting machine with two screens

requires voters to change their voting patterns, and can introduce the opportunity for confusion or

even security vulnerabilities. Another advantage is cost:a second screen adds cost and complexity.

One downside is that we must now verify properties about the�� " �� �� �����. For example, it must

route the input and output to the proper module at the appropriate times.

In the the final piece of our architecture, we introduce a
����	���

component. After the

voter interacts with the
������ ���� �� �

system and then the
����	��
 ��
� �� �

module to approve

their selection, the
����	���

component stores the ballot on indelible storage in its
�
 �������

and

then cancels the voter’s authentication token. Then, as we described above, it initiates a reset with

the ����� �! " ��
to clear the state of all modules.

Let us return to our original property: how can we verify thata ballot can only be cast

with the voter’s approval? With our architecture, it suffices to verify that:

1. A ballot can only enter the
����	���

through the
����	��
 ��
� �� �

module.

2. The
����	���

gives the voter the opportunity to review the exact contentsof the ballot.

3. A ballot can only be cast if the voter unambiguously signals their intent to cast.

To prove the last condition, we add hardware to simplify an auditor’s understanding of the system,

as well as to avoid calibration issues with the touch screen interface. A physical cast button, enabled

only by the confirmation module, acts as a gate to stop the ballot between the
������ ���� �� �

and

����	���
modules. The software in the

����	��
 ��
� �� �
module does not send the ballot to the

����	���
until the

	
���"��� �
is depressed; and, since it is enabled only in the

����	��
 ��
� �� �

module, it is easy to gain assurance that the ballot cannot becast without the voter’s consent. Sec-

tion 5.5.1 will show how we achieve this property based on thecode and architecture.
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There is a danger if we must adjust the system’s architectureto meet each particular

security property: a design meeting all security properties may be too complex. However, we

designed the architecture with the other security properties from Chapter 2 in mind. Isolating the

confirmation process is a key insight that can simplify verifying other properties. The confirmation

process is at the heart of many properties, and a small, easily understood confirmation process helps

not just in verifying Property 2. For other properties, we rely on software verification, as described

in Chapter 6.

5.3.2 Detailed module descriptions

Voter authentication. After a voter signs in at a polling station, an election official would give

that voter a voting token. In our implementation, we use a magnetic stripe card, but the token

could also be a smartcard or a piece of paper with a printed security code. Each voting token is

valid for only one voting machine. To begin voting, the voterinserts the token into the designated

voting machine. The
����	���

module reads the contents of the token and verifies that the token

is designated to work on this machine (via a serial number check), is intended for this particular

election, has not been used with this machine before, and is signed using some public-key signature

scheme. If the verification is successful, the
����	���

module communicates the contents of the

voting token to the
������ ���� �� �

module.

Vote selection. The
������ ���� �� �

module parses the ballot definition file and interacts with the

voter, allowing the voter to select candidates and vote on referenda. The voting token indicates

which ballot to use, e.g., a Spanish ballot if the voter’s native language is Spanish or a Democratic

ballot if the voter is a Democrat voting in a primary. The
������ ���� �� �

module is intended to
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follow the rules outlined in the ballot definition file, e.g.,allowing the voter to choose up to three

candidates or to rank the candidates in order of preference.Of course, the
������ ���� �� �

module is

untrusted and may contain malicious logic, so there is no guarantee that it operates as intended. The

������ ���� �� �
module interacts with the voter via the�� " �� �� �����.

Vote confirmation. After the voter is comfortable with her votes, the
������ ���� �� �

module sends

a description of the voter’s preferences to the
����	��
 ��
� �� �

module. The
����	��
 ��
� �� �

module interacts with the voter via the�� " �� �� �����, displaying a summary screen indicating the

current selections and prompting the voter to approve or reject this ballot. If the voter approves, the

����	��
 ��
� �� �
module sends the ballot image2 to the

����	���
module so it can be recorded.

The
����	��
 ��
� �� �

module is constructed so that the data that the
����	��
 ��
� �� �

module

sends to the
����	���

module is exactly the data that it received from the
������ ���� �� �

module.

Storing votes and canceling voter authentication tokens. After receiving a description of the

votes from the
����	��
 ��
� �� �

module, the
����	���

atomically stores the votes and cancels the

voter authentication token. Votes are stored on a durable, history-independent, tamper-evident, and

subliminal-free vote storage mechanism [55]. By “atomically,” we mean that once the
����	���

component begins storing the votes and canceling the authentication token, it will not be reset

until after those actions complete. After those actions both complete, the
����	���

will trigger a

reset by sending a message to the����� �!" ��
. Looking ahead, the only other occasion for the

����� �! " ��
to trigger a reset is when requested by

����	���
in response to a user wishing to

cancel her voting session.
�

A ballot imageis merely a list of who this voter has voted for. It need not be an actual image or picture.
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Cleaning up between sessions.Upon receiving a signal from the
����	���

, the����� �! " ��
will

reset all the other components. After those components awake from the reset, they will inform the

����� �! " ��
. After all components are awake, the����� �!" ��

tells all the components to start,

thereby initiating the next voting session and allowing thenext voter to vote. We also allow the

����	���
module to trigger a reset via the����� �!" ��

if the voter decides to cancel their voting

process; when a voter triggers a reset in this way, the voter’s authentication token is not canceled

and the voter can use that token to vote again on that machine at a later time. Although the
����	���

has access to external media to store votes and canceled authentication tokens, all other state in this

component is reset.

Enforcing a trusted path between the voter and the
����	��
 ��
� �� �

module. Although the

above discussion only mentions the�� " �� �� ����� in passing, the�� " �� �� ����� plays a central

role in the security of our design. Directly connecting the LCD and touch screen to both the

������ ���� �� �
module and the

����	��
 ��
� �� �
module would be unsafe: it would allow a ma-

licious
������ ���� �� �

module to retain control of the LCD and touch screen forever and display

a spoofed confirmation screen, fooling the voter into thinking she is interacting with the trusted

����	��
 ��
� �� �
module when she is actually interacting with malicious code. The �� " �� �� �����

mediates access to the LCD and touch screen to prevent such attacks. It enforces the invari-

ant that only one module may have control over the LCD and touch screen at a time: either

����	��
 ��
� �� �
or

������ ���� �� �
may have control, but not both. Moreover,

����	��
 ��
� �� �
is

given precedence: if it requests control, it is given exclusive access and
������ ���� �� �

is locked out.

Thus, our system can establish a trusted path between the voter interface and the
����	��
 ��
� �� �

module.
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5.3.3 Hardware-enforced separation

Our architecture requires components to be protected from each other, so that a malicious

������ ���� �� �
component cannot tamper with or observe the state or code of other components.

One possibility would be to use some form of software isolation, such as putting each component

in a separate process (relying on the OS for isolation), in a separate virtual machine (relying on the

VMM), or in a separate Java applet (relying on the JVM).

Instead, we use hardware isolation as a simple method for achieving strong isolation. We

execute each module on its own microprocessor (with its own CPU, RAM, and I/O interfaces).

This relies on physical isolation in an intuitive way: if twomicroprocessors are not connected

by any communication channel, then they cannot directly affect each other. Verification of the

interconnection topology of the components in our architecture consequently reduces to verifying

the physical separation of the hardware and verifying the interconnects between them. Historically,

the security community has focused primarily on software isolation because hardware isolation was

viewed as prohibitively expensive [71]. However, we argue that the price of a microprocessor has

fallen dramatically enough that today hardware isolation is easily affordable, and we believe the

reduction in complexity easily justifies the extra cost.

With this approach to isolation, the communication elements between modules acquire

special importance, because they determine the way that modules are able to interact. We carefully

structured our design to simplify the connection topology as much as possible. Figure 5.2 summa-

rizes the interconnectivity topology, and we describe several key aspects of our design below.

We remark that when multiple hardware components are used, one should ensure that the

same versions of code run on each component.



79

� � � � � � �

� � 	 	 � 
 � � � 	 � � � 
 � � � � 
 �

� � � � � � � � �

� � � � � � � � �� � � � � � � � 	 � �

� 
 � � � � � � � � � � �
� � � � 	 �

� � � 
 � � 
 � � � 	

� � � �
� � � � � 	

� � 	 
 � �
� � � � � 	

� � � � � � � � � � �

� � � � � � � � 
 � � � 	

� � � � 	
� � � � � �

� � � � � � 	  � � ! � � � � 	

� � � � � � � �

Figure 5.2: Our architecture, showing the hardware communication elements.

Buses and wires. Our hardware-based architecture employs two types of communication chan-

nels: buses and wires. Buses provide high-speed unidirectional or bidirectional communication

between multiple components. Wires are a simple signaling element with one bit of state; they can

be either high or low, and typically are used to indicate the presence or absence of some event. Wires

are unidirectional: one component (the sender) will set thevalue of a wire but never read it, and the

other component (the receiver) will read the value of the wire but never set it. Wires are initially

low, and can be set, but not cleared; once a wire goes high, it remains high until its controlling

component is reset. We assume that wires are reliable but buses are potentially unreliable.

To deal with dropped or garbled messages without introducing too much complexity, we
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use an extremely simple communication protocol. Our protocol is connectionless and does not

contain any in-band signaling (e.g., SYN or ACK packets). When a component in our architecture

wishes to transmit a message, it will repeatedly send that message over the bus until it is reset or

it receives an out-of-band signal to stop transmitting. Thesender appends a hash of the message

to the message. The receiver accepts the first message with a valid hash, and then acknowledges

receipt with an out-of-band signal. This acknowledgment might be conveyed by changing a wire’s

value from low to high, and the sender can poll this wire to identify when to stop transmitting.

Components that need replay protection can add a sequence number to their messages.

Using buses and wires. We now describe how to instantiate the communication paths in our

high-level design from Section 5.3.2 with buses and wires. Once the
����	���

module reads a valid

token, it repeatedly sends the data on the token to
������ ���� �� �

until it receives a message from

����	��
 ��
� �� �
. After storing the vote and canceling the authentication token, the

����	���

module triggers a reset by setting its wire to the����� �!" ��
high.

To communicate with the voter, the
������ ���� �� �

component creates a bitmap of an

image, packages that image into a message , and repeatedly sends that message to the�� " �� �� �����.

Since the
������ ���� �� �

module may send many images, it includes in each message a sequence

number; this sequence number does not change if the image does not change. Also included in the

message is a list of virtual buttons, each described by a globally unique button name and the x- and

y-coordinates of the region. The�� " �� �� ����� will continuously read from its input source (initially

the
������ ���� �� �

module) and draw to the LCD every bitmap that it receives witha new sequence

number. The�� " �� �� ����� also interprets inputs from the touch screen, determines whether the

inputs correspond to a virtual button and, if so, repeatedlywrites the name of the region to the
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������ ���� �� �
module until it has new voter input. Naming the regions prevents user input on one

screen from being interpreted as input on a different screen.

When the voter chooses to proceed from the vote selection phase to the vote confir-

mation phase, the
����	��
 ��
� �� �

module will receive a ballot from the
������ ���� �� �

mod-

ule. The
����	��
 ��
� �� �

module will then set its wire to the�� " �� �� ����� high. When the

�� " �� �� ����� detects this wire going high, it will empty all its input and output bus buffers, reset its

counter for messages from the
������ ���� �� �

module, and then only handle input and output for the

����	��
 ��
� �� �
module (ignoring any messages from

������ ���� �� �
). If the

����	��
 ��
� �� �

module determines that the user wishes to return to the
������ ���� �� �

module and edit her votes, the

����	��
 ��
� �� �
module will set its wire to the

������ ���� �� �
module high. The

������ ���� �� �

module will then use its bus to
����	��
 ��
� �� �

to repeatedly acknowledge that this wire is

high. After receiving this acknowledgment, the
����	��
 ��
� �� �

module will reset itself, thereby

clearing all internal state and also lowering its wires to the �� " �� �� ����� and
������ ���� �� �

mod-

ules. Upon detecting that this wire returns low, the�� " �� �� ����� will clear all its input and out-

put buffers and return to handling the input and output for
������ ���� �� �

. The purpose for the

handshake between the
����	��
 ��
� �� �

module and the
������ ���� �� �

module is to prevent the

����	��
 ��
� �� �
module from resetting and then immediately triggering on the receipt of the

voter’s previous selection (without this handshake, the
������ ���� �� �

module would continuously

send the voter’s previous selections, regardless of whether
����	��
 ��
� �� �

reset itself).

5.3.4 Reducing the complexity of trusted components

We now discuss further aspects of our design that facilitatethe creation of implementa-

tions with minimal trusted code.



82

Resets. Each module (except for the����� �!" ��
) interacts with the����� �!" ��

via three

wires, the initial values of which are all low: aready wire controlled by the component andreset

andstart wires controlled by the����� �!" ��
. The purpose of these three wires is to coordinate

resets to avoid a situation where one component believes that it is handling the
-th voter while

another component believes that it is handling the�
 � �	-th voter.

The actual interaction between the wires is as follows. Whena component first boots, it

waits to complete any internal initialization steps and then sets theready wire high. The component

then blocks until itsstart wire goes high. After theready wires for all components connected to the

����� �! " ��
go high, the����� �! " ��

sets each component’sstart wire high, thereby allowing

all components to proceed with handling the first voting session.

Upon completion of a voting session, i.e., after receiving asignal from the
����	���

com-

ponent, the����� �! " ��
sets each component’sreset wire high. This step triggers each component

to reset. The����� �! " ��
keeps thereset wires high until all the componentready wires go low,

meaning that the components have stopped executing. The����� �!" ��
subsequently sets there-

set wire low, allowing the components to reboot. The above process with theready andstart wires

is then repeated.

Cast and cancel buttons. Our hardware architecture uses two physical buttons, a castbutton and

a cancel button. These buttons directly connect the user to an individual component, simplifying the

task of establishing a trusted path for cast and cancel requests. Our use of a hardware button (rather

than a user interface element displayed on the LCD) is intended to give voters a way to know that

their vote will be cast. If we used a virtual cast button, a malicious
������ ���� �� �

module could

draw a spoofed cast button on the LCD and swallow the user’s vote, making the voter think that
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they have cast their vote when in fact nothing was recorded and leaving the voter with no way to

detect this attack. In contrast, a physical cast button allows attentive voters to detect these attacks

(an alternative might be to use a physical “vote recorded” light in the
����	���

). Additionally, if we

used a virtual cast button, miscalibration of the touch screen could trigger accidental invocation of

the virtual cast button against the voter’s wishes. While calibration issues may still affect the ability

of a user to scroll through a multi-screen confirmation process, we anticipate that such a problem

will be easier to recover from than touch screen miscalibrations causing the DRE to incorrectly

store a vote. To ensure that a malicious
������ ���� �� �

module does not trick the user into pressing

the cast button prematurely, the
����	��
 ��
� �� �

module will only enable the cast button after it

detects that the user paged through all the vote confirmationscreens.

We want voters to be able to cancel the voting process at any time, regardless of whether

they are interacting with the
������ ���� �� �

or
����	��
 ��
� �� �

modules. Since the
������ ���� �� �

module is untrusted, one possibility would be to have the�� " �� �� ����� implement a virtual cancel

button or conditionally pass data to the
����	��
 ��
� �� �

module even when the
������ ���� �� �

module is active. Rather than introduce these complexities, we chose to have the
����	���

module

handle cancellation via a physical cancel button. The cancel button is enabled (and physically lit

by an internal light) until the
����	���

begins the process of storing a ballot and canceling an

authentication token.

5.4 Prototype implementation

To evaluate the feasibility of the architecture presented in Section 5.3, we built a proto-

type implementation. Our prototype uses off-the-shelf “gumstix connex 400xm” computers. These
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Figure 5.3: We show the front and back of a gumstix as well as anexpansion board through which
the GPIO and serial ports are soldered. The quarter gives an indication of the physical size of these
components.

computers measure 2cm by 8cm in size, cost $144 apiece, and contain an Intel XScale PXA255 pro-

cessor with a 400 MHz StrongARM core, 64 MB of RAM, and 16 MB of flash for program storage.

We enable hardware isolation by using a separate gumstix foreach component in our architecture.

We do not claim that the gumstix would be the best way to engineer an actual voting

system intended for use in the field. However, the gumstix have many advantages as a platform for

prototyping the architecture. In conjunction with an equally sized expansion board, the processors

support three external RS-232 serial ports, which transmitbidirectional data at 115200 kbps. We use

serial ports as our buses. Additionally, each gumstix supports many general purpose input/output

(GPIO) registers, which we use for our wires. Finally, the XScale processor supports an LCD and
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Figure 5.4: The mounting board for a single component. It contains three serial ports (along the
top), 4 GPIO pins and a ground pin (along the right side), as well as a gumstix processor board
mounted atop an expansion board.

touch screen interface.

The gumstix platform’s well-designed toolchain and software environment greatly sim-

plified building our prototype. The gumstix, and our prototype, use a minimal Linux distribution as

their operating system. Our components are written in Java and run on the Microdoc J9 Java VM;

its JIT provides a significant speed advantage over the more portable JamVM Java interpreter. Our

choice of Java is twofold: it is a type-safe language and so prevents a broad range of exploits; sec-
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ondly, several program verification tools are available forverifying invariants in Java code [15, 44].

C# is another natural language choice since it too is type-safe and the Spec# [7] tool could aid in

verification, but C# is not supported as well on Linux. We viewa rich stable of effective verification

tools to be just as important as type-safety in choosing the implementation language since software

tools can improve confidence in the voting software’s correctness. Both can eliminate large classes

of bugs.

5.4.1 Implementation primitives

Our architecture requires implementations of two separatecommunications primitives:

buses and wires. It is straightforward to implement buses using serial ports on the gumstix. To do

so, we expose connectors for the serial ports via an expansion board connected to the main pro-

cessor. varch/Figures 5.3 and 5.4 show an example of such an expansion board. We additionally

disable thegetty terminal running on the serial ports to allow conflict free use of all three serial

ports. The PXA255 processor has 84 GPIO pins, each controlled by registers; we implement wires

using these GPIOs. A few of the pins are exposed on our expansion board and allow two compo-

nents to be interconnected via their exposed GPIO pins. EachGPIO pin can be set in a number of

modes. The processor can set the pin “high” so that the pin hasa 3.3 volt difference between the

reference ground; otherwise, it is low and has a 0 voltage difference between ground. Alternatively,

a processor can poll the pin’s state. To enforce the unidirectional communication property, particu-

larly when a single wire is connected to more than two GPIOs, we could use a diode, which allows

current to flow in only one direction3. We currently rely on software to enforce that once a GPIO

is set high, it cannot ever be set low without first restartingthe process; this is a property one could
�

Even this may not be enough, since an actual diode does not behave as the idealized diode we rely upon.
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Figure 5.5: A picture of our prototype implementation. There is one board for each component in
the system. The magnetic swipe card (along the left) is used for authentication, while the cast button
is in the upper left component.

enforce in hardware via a latch, though our current prototype does not do so yet.

In addition to the GPIOs, the PXA255 exposes an NRESET pin. Applying a 3.3v signal

to the NRESET pin causes the processor to immediately halt execution; when the signal is removed,

the processor begins in a hard boot sequence. The gumstix areable to reboot in under 10 seconds

without any optimizations, making the NRESET pin nearly ideal to clear a component’s state during

a reset. Unfortunately, the specifics of the reboot sequencecauses slight problems for our usage.

While the NRESET wire is held high, the GPIO pins are also high. In the case where one component

reboots before another (or where selective components are reboot), setting the GPIOs high will
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inadvertently propagate a signal along the wire to the othercomponents. Ideally, the pins would be

low during reset. We surmise that designing a chip for our ideal reset behavior would not be difficult

given sufficient hardware expertise. Since the microprocessors in our platform do not exhibit our

ideal behavior, in our prototype we have a separate daemon connected to an ordinary GPIO wire

that stops the Java process running the component code when the reset pin goes high and then resets

all wire state to low. The daemon starts a new component process when the signal to its reset pin is

removed. This is just a way of emulating, in software, the NRESET semantics we prefer. Of course,

a production-quality implementation would enforce these semantics in trusted hardware.

We use a Kanecal KaneSwipe GIT-100 magnetic card reader for authorizing voters to use

the machine. A voter would receive a card with authentication information on it from poll workers

upon signing in. The voter cannot forge the authentication information (since it contains a public

key signature), but can use it to vote once on a designated DRE. The reader has an RS-232 interface,

so we are able to use it in conjunction with the serial port on the gumstix.

Finally, our implementation of the
����	���

component uses a compact flash card to store

cast ballot images and invalid magcard identifiers. Election officials can remove the flash card and

transport it to county headquarters after the close of polls. A deployed DRE might use stronger

privacy-protection mechanisms, such as a history-independent, tamper-evident, and subliminal-free

data structure [55]. For redundancy, we expect a deployed DRE to also store multiple copies of

the votes on several storage devices. A full implementationof the
������ ���� �� �

component would

likely also use some kind of removable storage device to store the ballot definition file. In our

prototype, we hard-code a sample ballot definition file into the
������ ���� �� �

component. This

suffices for our purposes in gauging the feasibility of othertechniques.
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Figure 5.6: The image shows a screenshot of the

� � � � � � � � � � � � � component displaying referenda from the November 2005 election in
Berkeley, CA. We flipped a coin to choose the response shown onthis screen.
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Our prototype consists of five component boards wired together in accordance with Fig-

ure 5.2. We implement all of the functionality except for thecancel button. See Figure 5.5 for a

picture showing the five components and all of their interconnections. Communication uses physi-

cal buses and wires. The I/O multiplexer, after each update operation, sends an image over a virtual

bus connected (connected via the USB network) to the PC for I/O. It sends the compressed image it

would ordinarily blit to the framebuffer to the PC so that thePC can blit it to its display. The gum-

stix only recently supported LCD displays, and we view our PCdisplay as an interim solution. The

additional software complexity for using the LCD is minimalas it only requires blitting an image

to memory.

Figure 5.6 shows our voting software running on the gumstix.We used ballot data from

the November 2005 election in Alameda County, California.

5.5 Evaluation

5.5.1 Verifying the desired properties

Property 1. Recall that to achieve “memorylessness” we must be able to show the DRE is always

reset after a voter has finished using the machine, and the DREonly opens a given file read-only or

write-only, but not both. To show that the DRE is reset after storing a vote, we examine a snippet of

the source code fromVoteCore.java , the source code for the
����	���

module in Figure 5.7. In

line 7, after storing the ballot into the ballot box, the
����	���

module continuously raises the reset

wire high. Looking at the connection diagram from Figure 5.2, we note the reset wire terminates at

the����� �!" ��
and induces it to restart all components in the system. Further inspecting code not

reproduced in Figure 5.7 reveals the only reference to theballotbox is in the constructor and in



91

1 grabio.set();

2 ... UPDATE DISPLAY ...

3 castenable.set();

4 if (cast.isSet())

�

5 while (true)

�

6 toVoteCore.write(ballot);

7

�

8

�

Confirm.java

1 byte [] ballot =

2 fromVoteConf.read();

3 if (ballot != null)

�

4 ... INVALIDATE VOTER TOKEN ...

5 ballotbox.write (ballot);

6 while (true)

�

7 resetWire.set();

8
�

9
�

VoteCore.java

Figure 5.7: Code extracts from the

� � � � � � � � � � � � � � � and
� � � � � � � � modules, respectively. Examining these code snippets withthe con-

nection topology helps us gain assurance that the architecture achieves Properties 1 and 2.
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line 5, so writes to it are confined to line 5.

Finally, we need merely examine every file open call to make sure they are either read-

only or write only. In practice, we can guarantee this by ensuring writable files are append-only, or

for more sophisticated vote storage mechanisms as proposedby Molnar et al., that the storage layer

presents a write-only interface to the rest of the DRE.

Property 2. For the “consent-to-cast” property, we need to verify two things: 1) the ballot can only

enter the
����	���

through the
����	��
 ��
� �� �

module, and 2) the voter’s consent is required

before the ballot can leave the
����	��
 ��
� �� �

module.

Looking first atConfirm.java in Figure 5.7, the
����	��
 ��
� �� �

module first en-

sures it has control of the touch screen as it signals the�� " �� �� ����� with the “grabio” wire. It then

displays the ballot over the bus, and subsequently enables the cast button. Examining the hardware

will show the only way the wire can be enabled is through a specific GPIO, in fact the one controlled

by the “castenable” wire. No other component in the system can enable the cast button, since it is

not connected to any other module. Similarly, no other component in the system can send a ballot

to the
����	���

module: on line 6 ofConfirm.java , the
����	��
 ��
� �� �

sends the ballot on

a bus named “toVoteCore”, which is called the “fromVoteConf” bus in VoteCore.java . The

ballot is demarshalled on line 1. Physically examining the hardware configuration confirms these

connections, and shows the ballot data structure can only come from the
����	��
 ��
� �� �

module.

Finally, in the
����	���

module, we see the only use of the ballotbox is at line 5 where the ballot is

written to the box. There are only two references to the
�
 �������

in theVoteCore.java source

file (full file not shown here), one at the constructor site andthe one shown here. Thus we can be

confident that the only way for a ballot to be passed to the
�
 �������

is if a voter presses the cast
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Java C (JNI) Total

Communications 2314 677 2991
Display 416 52 468
Misc. (interfaces) 25 0 25
������ ���� �� �

377 0 377
����	��
 ��
� �� �

126 0 126
�� " �� �� ����� 77 0 77
����	���

846 54 900
����� �!" ��

121 0 121
Total 4302 783 5085

Table 5.1: Non-comment, non-whitespace lines of code.

button, indicating their consent. We must also verify that the images displayed to the voter reflect

the contents of the ballot.

5.5.2 Line counts

One of our main metrics of success is the size of the trusted computing base in our im-

plementation. Our code contains shared libraries (for communications, display, or interfaces) as

well as each of the main four modules in the TCB (
����	��
 ��
� �� �

, �� " �� �� �����, ����	���
,

and ����� �!" ��
). The

������ ���� �� �
module can be excluded from the TCB when considering

Properties 1 and 2. Also included in the TCB, but not our line count figures, are standard libraries,

operating system code, and JVM code.

In Table 5.1, we show the size of each trusted portion as a count of the number of source

lines of code, excluding comments and whitespace.

The communications libraries marshal and unmarshal data structures and abstract the se-

rial devices and GPIO pins. The display libraries render text into our user interface (used by the
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����	��
 ��
� �� �
component) and ultimately to the framebuffer.

5.6 Applications to VVPATs and cryptographic voting protocols

So far we’ve been considering our architecture in the context of a stand-alone paperless

DRE machine. However, jurisdictions such as California require DREs to be augmented with a

voter verified paper audit trail. In a VVPAT system, the voteris given a chance to inspect the paper

audit trail and approve or reject the printed VVPAT record. The paper record, which remains behind

glass to prevent tampering, is stored for later recounts or audits.

VVPAT-enabled DREs greatly improve integrity protection for non-visually impaired vot-

ers. However, a VVPAT does not solve all problems. Visually impaired voters who use the audio

interface have no way to visually verify the selections printed on the paper record, and thus receive

little benefit from a VVPAT. Also, a VVPAT is only an integritymechanism and does not help with

vote privacy. A paper audit trail cannot prevent a maliciousDRE from leaking one voter’s choices to

the next voter, to a poll worker, or to some other conspirator. Third, VVPAT systems require careful

procedural controls over the chain of custody of paper ballots. Finally, a VVPAT is a fall-back, and

even in machines that provide a VVPAT, one still would preferthe software to be as trustworthy as

possible.

For these reasons, we view VVPAT as addressing some, but not all problems. Our meth-

ods can be used to ameliorate some of the remaining limitations, by providing better integrity pro-

tection for visually impaired voters, better privacy protection for all voters, reducing the reliance

on procedures for handling paper, and reducing the costs of auditing the source code. Combining

our methods with a VVPAT would be straightforward: the
����	��
 ��
� �� �

module could be aug-
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mented with support for a printer, and could print the voter’s selections at the same time as they are

displayed on the confirmation screen. While our architecture might be most relevant to jurisdictions

that have decided, for whatever reason, to use paperless DREs, we expect that our methods could

offer some benefits to VVPAT-enabled DREs, too.

Others have proposed cryptographic voting protocols to enhance the security of DREs [19,

39, 58, 60]. We note that our methods could be easily combinedwith those cryptographic schemes.

5.7 Extensions and discussion

Other properties. In this chapter, we have extensively discussed verifying Properties 1 and 2;

Work done in conjunction with Molnar et al. addresses Property 3, and Chapter 6 describes a

software checker for Property 6. That leaves Property 4 (DREonly stores ballots the voter approves)

and Property 5 (Ballot contains nothing more than the voter’s choices).

Briefly, we sketch how the architecture presented in this chapter aids verification of both

these properties. For Property 4, it is easy to inspect, or write a software checker, that the ballot

is unmodified after the
����	��
 ��
� �� �

module. The same ballot that enters the module is the

one that is sent to the
�
 �������

. Given the (linear) dataflow path in the architecture, it is easy to

verify the ballot data is unmodified. Of course, this leaves verifying that the display routines in the

����	��
 ��
� �� �
accurately reflect the ballot data for confirmation.

Finally, for Property 5, we can use a check function to guarantee that the ballot is in a

canonical format. Given that Property 4 guarantees that theballot remains unmodified, a (boolean)

canonicalization function run during execution can leverage the fail-stop mode and halt on non-

canonical ballots. Chapter 6 addresses the benefits of the fail-stop model for verifying properties.
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Minimizing the underlying software platform. Our prototype runs under an embedded Linux

distribution that is custom designed for the gumstix platform. Despite its relatively minimal size

(4MB binary for kernel and all programs and data), it still presents a large TCB, most of which is

unnecessary for a special-purpose voting appliance. We expect that a serious deployment would

dispense with the OS and build a single-purpose embedded application running directly on the

hardware. For instance, we would not need virtual memory, memory protection, process scheduling,

filesystems, dual-mode operation, or most of the other features found in general-purpose operating

systems. It might suffice to have a simple bootloader and a thin device driver layer specialized to

just those devices that will be used during an election. Alternatively, it may be possible to use ideas

from nanokernels [23], microkernels [29, 69], and operating system specialization [68] to reduce

the operating system and accordingly the TCB size.

Deploying code. Even after guaranteeing the software is free of vulnerabilities, we must also

guarantee that the image running on the components is the correct image. This is not an easy

problem, but the research community has begun to address thechallenges. SWATT [80] is designed

to validate the code image on embedded platforms, though their model does not allow for CPUs

with virtual memory, for example. TCG and NGSCB use a secure hardware co-processor to achieve

the same ends, though deploying signed and untampered code to devices still requires much work.

Additionally, a human must then check that all components are running the latest binary and must

ensure that the binaries are compatible with each other – so that a version 1.0
����	���

is not

running with a version 1.1�� " �� �� ����� module, for example.

This concern is orthogonal to ours, as even current voting machines must deal with ver-

sioning. It illustrates one more challenge in deploying a secure voting system.
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5.8 Conclusions

Our approach uses hardware to isolate components from each other and uses reboots to

guarantee voter privacy. In particular, we have shown how isolating the
������ ���� �� �

module,

where much of the hairiness of a voting system resides, into its own module can eliminate a great

deal of complex code from the TCB. Though isolation is not a novel idea, the way we use it to

improve the security of DREs is new. This work shows that it ispossible to improve existing DREs

without modifying the existing voter experience or burdening the voter with additional checks or

procedures.

The principles and techniques outlined here show that thereis a better way to design

voting systems.
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Chapter 6

Environment-freeness

In this chapter, we seek to develop software analysis techniques that guarantee that the in-

memory copy of the ballot can be properly recovered after serialization for later tallying. To do so,

we introduce the notion ofenvironment-freefunctions, where the function’s behavior depends only

and deterministically on the arguments to the function. Then, we show to use this concept to verify

the correct invertability of����!� operations such as serialization, compression, and encryption

through a mixture of static analysis and runtime checks. Thestrategy is to first verify that the

����!�
implementation is environment-free and then add a simple runtime check to ensure that

the encoded data can and will be correctly decoded in the future. We develop a static analysis

for verifying that Java code is environment-free. To demonstrate its feasibility, we implemented

our algorithm as an Eclipse plug-in and used it to analyze theserialization routines in our voting

architecture from Chapter 3 and also to verify that decryption is the inverse of encryption in a Java

cryptography implementation.

Parts of this work are drawn with permission from prior work [75].
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6.1 Introduction and motivation

Many computer programs perform serialization and deserialization, converting an in-

memory version of a data structure into a form suitable for storage or transmission and back again.

In this chapter, we develop novel methods for verifying the correctness of serialization and deserial-

ization code. In particular, we wish to verify that deserialization is the inverse of serialization, i.e.,

that serializing a data structure and then deserializing the result will give you back the same data

structure you started with.

Verifying the correctness of serialization and deserialization is a difficult task. Serial-

ization and deserialization typically involve walking a (potentially cyclic) object graph, and thus

inevitably implicate complex aliasing issues. Reasoning about aliasing is well known to be chal-

lenging. Also, the invariants needed to prove the correctness of serialization and deserialization

may not be immediately apparent from the code and may be messyand unilluminating when writ-

ten down explicitly. Therefore, standard formal methods appear to be ill-suited for this task.

More broadly, serialization is just one of a family of commondata transformation routines

that litter voting software. Two others in the family include encryption/decryption and compres-

sion/decompression.

We seek to verify the following property about a pair of algorithms, �����!� 
 ����!� 	:
namely, for all�,

����!� �����!� �� 		 should yield some output� � that is functionally equivalent

to �. We want this property to hold even if
����!�

is invoked at some later time on some other

machine, so we will also need to verify that
����!�

does not implicitly depend on any data (other

than its input) that might be different on some other machine. We call this the Inverse Property,

since the goal is to verify that
����!�

is a left inverse of����!�. In many contexts, it is a serious
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error if
����!�

fails to yield the original input.

We use one specific aspect of voting machine accuracy as a running example in this paper.

As the voter makes selections, the voting machine accumulates these selections into a data structure

in RAM. When the voter casts her ballot, the machine must serialize (�
���!�

) this data structure to

disk. During the tallying stage, the disk will be read, and the choices will need to be deserialized

(
����!�

) into the voter’s original data structure in order to compute the tally. We wish to verify that

the vote data structure that is serialized and recorded to disk when the voter casts her ballot can later

be reconstructed exactly as it was when the voter cast her ballot. A failure to reconstruct the original

data structure would be a serious problem, because it would mean that a voter’s choices could not

be recovered accurately, disenfranchising the voter.

6.2 Static analysis to enable dynamic checking

Statically analyzing the correctness of a pair of algorithms to verify that the second is

alwaysthe inverse of the first is beyond our expertise. It is easier to supportfail-stopoperation, in

which errors are detected at runtime but before any harmful consequences have taken place. The

current transaction leading to the error is then cancelled (or possibly retried, if the error is likely to

be transitory).

Returning to our example, a voting machine endowed with thismechanism would verify

the Inverse Property for each voter’s ballot before announcing to that voter that their vote was

successfully cast. If the check fails, the voter would be notified and advised to use another voting

machine. Without the check, the voter would never know that their ballot had been improperly

serialized (and hence stored); depending upon the nature ofthe deserialization error, the problem
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may or may not be caught at tally time when their vote is counted.

Note that checking the Inverse Property requires knowledgeabout a hypothetical future;

to confirm a voter’s vote we must be confident that any future attempt to deserialize their ballot

will be successful. Ensuring this requires us to be able to predict the future behavior of the
����!�

method. The easiest way to make such a method predictable is to require it to “always do the same

thing” and to check its behavior once, with a check like the following:

� �� ����!� �� 	

���� �� � �� ����!� �� 	

For instance, in the voting machine example, we would translate the pseudo-code above into a

concrete Java implementation as follows:

byte[] bytes = ballot.serialize();
assert(ballot.equals(

Ballot.deserialize(bytes)));

The runtime assertion check is intended to ensure that the serializedbytes will properly

deserialize into theballot . By checking that the deserialization is correct at the timeof seri-

alization, we’d like to then infer that deserialization will be correct at somelater time, when the

deserialize() function (or more generally the
����!�

function) will be run. However, this in-

ference is only valid if we make several assumptions about the behavior of thedeserialize()

andequals() methods.

1. The result of thedeserialize() function must be a deterministic function of its argu-

ments, namelybytes . Its output must not depend upon any other values, such as thevalues

of global variables, the time of day, or the contents of the filesystem. Thedeserialize()
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function must yield the same results when it is later run on the same input, even if it is run on

another machine at a later time.

2. Thedeserialize() function must not be able to modify global state; i.e. it can only

modify objects reachable from its arguments1.

3. Theequals() method must check all relevant properties of theballot object and does

not have any side-effects. We will take it as the specification of what it means for twoballot

objects to be functionally equivalent.

4. Thedeserialize() function that will be executed later (including any methodsor static

declarations it makes use of) must be the same one used in the runtime check.

If we can statically verify that these four requirements aremet, then we will be entitled to conclude

that the serialized data will later be deserialized correctly.

Note that we have explicitly not restricted the serialization function in any way. For ex-

ample, we don’t require the�
���!�

function to be deterministic. In general,�
���!�

might depend

on a source of randomness or non-determinism in generating its output. This is particularly im-

portant for encryption functions. As long as the
����!�

function deterministically reconstructs the

original data, it does not matter how it operates in any way. For example, we don’t require the

serialize() function to be deterministic. In the general case,�
���!�

should be able to depend

on a source of non-determinism in generating its output. This is particularly important for encryp-

tion functions. As long as the
����!�

function deterministically reconstructs its input, it does not

matter how the����!� function works.
�

If the deserialize() function is passed a new deep copy of any arguments that it maymutate, theassert()
statement does not change the behavior of the program if it succeeds. In our case, making a deep copy of abyte[] is
trivial.
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In summary, our strategy is as follows. First, we transform the code by introducing a

run-time assertion check after every call to����!�. For arguments that are mutated by the
����!�

function, we pass it deep copies instead of the originals. Second, we manually confirm that the

third and fourth requirements are met. Finally, we use static analysis to verify that that the first two

requirements are met. This strategy suffices to ensure that the program satisfies fail-stop correct-

ness: if the transformed program does not abort, then the Inverse Property will be satisfied on that

execution.

This paper addresses the first two of the above requirements;we develop a static analysis

to make sure that the
����!�

function computes its output deterministically based onlyon its input

and does not cause disruptive side effects. Our static analysis is designed to place as few restrictions

on the rest of the code as possible.

6.3 Environment-free and compile-time constants

6.3.1 Overview

One possible method to enable the fail-stop approach outlined in Section 6.2 is to require

the
����!�

function bepure. A pure function is required to be free of side-effects; executing such

a function and discarding the result should be a no-op. Depending on whose definition one uses, a

pure function may or may not be allowed to read the values of potentially mutable global state; JML

seems to allow it [73] as it does not violate the no-op-equivalence requirement.

Pureness, at least in the JML sense, is thus both overly restrictive and not restrictive

enough for our purposes. We do not require the
����!�

function be side-effect free in general, but

we do restrict its side effects to objects reachable from itsarguments. In-place array manipulations
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are common in decryption algorithms, and we wish to be able tosupport this pattern. Making a

deep copy of arguments before calling the checker suffices toensure that the check won’t modify

them.

Allowing pure functions to read static state is problematic, as purity is only adequate

to ensure that two executions of
����!�

on equivalent inputs yield the same result when global

variables are the same. Equivalence of global states is not an easy property to check.

Instead, we propose eliminating the ability for the
����!�

function to read from global

constants that may vary. We rely on a new concept, calledenvironment-freeness, to describe the

property that the
����!�

function should exhibit.

6.3.2 Environment-free functions

A function is environment-free if it satisfies the followingtwo restrictions:

1. It may not cause any externally-visible mutation except to modify objects reachable from its

arguments. This includes modifications of global state and state external to the program, e.g.

disk or network.

2. Any two calls to that function with equal arguments are guaranteed to return (or throw) equal

results. This sense of equality is defined below. For instance methods in Java, the implied

this parameter is considered an argument.

For the purposes of this definition, equality between two Java objects is defined as equiv-

alence of the graphs of objects reachable from the two objects. Equality over these graphs includes

the values of all primitive fields as well as the structure of pointers in the graph (including aliasing

of objects reachable from compile-time constants). There is a special exception for the stack traces
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stored inThrowable objects, as will be explained in Section 6.4.4. This reflectsthe strongest

notion of equality that is observable by an environment-free method, since the addresses of objects

are not visible to such methods, as discussed in Section 6.5.3. It is also the relationship preserved

by default by Java serialization.

Note that this definition allows an environment-free function to modify objects that are

reachable from its arguments. Changing these arguments maycause different versions of the same

Java object to be unequal given the definition of equality above.

6.3.3 Compile-time constants

A compile-time constantis either a lexical constant that appears in the source code or a

global variable that is guaranteed to have the same value at all times. The value of a compile-time

constant must be a deterministic function of the program source code and must be the same on every

execution of the program.

This notion is useful in our static analysis for verifying that a function is environment-

free. For a function to be a strictly deterministic functionof its arguments, it cannot depend on

any other values that may vary. It would suffice to exclude access to all global (static) fields, but

we need not be that strict. It is safe to access a static field provided that it is guaranteed to have a

deterministic, constant value. If we can be certain that every time the field is accessed it always has

the same value, it is possible to guarantee that the environment-free function will return the same

value when given the same input even if called at different times. Therefore, our static analysis

algorithm imposes the requirement that any global variablethat is accessed by an environment-free

function must be a compile-time constant.
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6.3.4 How these are verified

At a high level, we can verify that a function is environment-free by confirming that it

does not read any external state, apart from what is reachable via its arguments or via compile-

time constants. An environment-free function may call other functions, but we require those other

functions to be environment-free, too. Permitting an environment-free functionf() to call a non–

environment-free function could potentially allow a source of non-determinism to affectf()’s return

value, breaking the guarantee of determinism.

We verify that a global variable is a compile-time constant by checking that three condi-

tions are met. Firstly, its value must be set before any environment-free method that might access it

is invoked; and secondly, its value must not be changed for the life of the program. These conditions

are verified using an extended notion of the checks that the Java compiler uses to enforce thefinal

attribute of fields. Finally, the global variable must be initialized to a deterministic value; i.e., its

initialization expression must be a deterministic function of the program source code. The restric-

tions on the initializer are similar to those on environment-free fields. The initializer is only allowed

to rely on other (already initialized) compile-time constants and may only call environment-free

methods.

6.4 Specifics and algorithm

Here we describe the mechanisms we use to verify these properties of Java 1.4 source

code.
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6.4.1 Annotations

In our system, the programmer annotates each environment-free method’s declaration

with an annotation@envfree to indicate that it (and all methods it transitively calls) are alleged

to be environment-free. The annotation serves as a directive to the static checker to validate the

correctness of this assertion. Therefore, to verify that a
����!�

method is environment-free, all a

programmer need do is mark it with an@envfree annotation and run our static checker.

In practice, we have found it convenient to re-factor our code slightly by introducing a

static method that returns a boolean indicating whether its first argument deserializes into the

second. In the example of Section 6.2, we would introduce thefollowing function:

/** Returns whether the deserialized first
* parameter "equals()" the second parameter.
* @envfree */

public static boolean check(byte[] bytes,
Ballot b) {

return b.equals(Ballot.deserialize(bytes));
}

The function would be invoked from an assertion, like this:

assert(check(bytes, ballot));

Introducing thecheck() function allows us to reduce the number of annotation sites and clearly

indicates what check is being done. The annotation on the check method will force the checker

to validate that both theequals() method anddeserialize() method are environment-free

without extra annotations on either method. We can thus limit the programmer’s burden.

We also allow a static field to be explicitly tagged with an annotation@ctc to indicate

they are compile-time constants. However, this annotationis not strictly necessary, since all fields

required to be compile-time constants will automatically be discovered. This facility may be helpful
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for a programmer who wishes to verify that a static field is a compile-time constant independently

of its use by an environment-free method.

6.4.2 Finding methods and variables to check

The checker analyzes the source to create a list of all “root methods” annotated with the

@envfree annotation. It then finds the transitive closure of all methods called from these root

methods; all methods that arepotentially reachable from an annotated environment-free method

must also be environment-free. The checker considers any method referenced in an environment-

free method as a method that could be called and hence should be checked to see whether it too is

environment-free. Methods in any subclasses that overridethe environment-free method are also

added to the list to be checked, since they too must be environment free. Added to this list are

constructors that are invoked with thenew operator within environment-free methods. These too

must be environment-free since a non–environment-free constructor could introduce a source of

non-determinism into what should be a deterministic environment-free function. All of these transi-

tively reachable methods are treated as though they had beenmarked with an (implicit)@envfree

annotation.

Finally, any global (static ) variable that is annotated@ctc or referenced within an

environment-free method must be a compile-time constant. Its declaration site, with a reference to

its initializer, is queued into a list. Every element in the queue will be checked to confirm that it is

indeed a compile-time constant.

We next describe the checker’s steps to check whether the list of environment-free meth-

ods and compile-time constants satisfy their requirements.
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6.4.3 Compile time constants

As outlined in Section 6.3.4, compile-time constants are required to meet three require-

ments. We ensure the first, that its value be set before it is read by any environment-free method,

by requiring it to be initialized where it is declared. The second concerns mutability: A compile-

time constant field must be declared asfinal , so that the object the field points to cannot change.

In addition, the field must be of a type that is immutable as explained below, to ensure that the

constant object cannot be modified after it is initialized. The third and final requirement concerns

determinism of initialization and is discussed in Section 6.4.3.

Immutability

A compile-time constant must have the same value over the lifetime of the program’s

execution. Joe-E, an object-capability subset of the Java language, provides useful definitions and

implementations for immutability. For compile-time constants, we follow Joe-E’s lead and require

that the compile-time constant’s type must implement anImmutable interface [53]. The interface

does not have any members, but serves as a marker to the checker indicating that the class (and all

its subclasses) must be transitively immutable (i.e. it must not be possible to mutate the object or

any other object reachable by following its fields).

Joe-E contains a more general set of requirements for immutability of an object than are

necessary for the definition of compile-time constants2. Our checker for this application verifies

the following simplified set of properties that suffice to ensure immutability.

� All of the instance fields in an immutable type must must be declared final . This ensures
�

Specifically, it allows more flexibility in the use of nested classes and superclasses that are not Immutable. For
details, see the Joe-E specification [53].
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that the references assigned at the type’s construction will not change at some later time.

� The static type of all instance fields within of an immutable type must also implement the

Immutable interface. The requirement that all instance fields must be final is not sufficient

to guarantee immutability. If an immutable typeT has an instance field that has a mutable

member, thenT is no longer immutable, due to the transitive definition of immutability. To

eliminate such cases, all objects reachable from an object of typeT also be of immutable type.

� We require all that the superclass of an immutable typeT also implement theImmutable

interface (with the exception ofjava.lang.Object , which has no fields). This ensures

that fields inT’s superclass will also be Immutable, which is necessary as they are a part ofT.

We restrict implementation of the Immutable interface to top-level classes and static inner classes.

Non-static inner classes are more complicated as they are granted access to fields of their enclosing

classes. It would not be difficult to support such structures, but we did not see much need for this

particular programmatic pattern. Static inner classes arepermitted without restriction since they are

not constructed with the implicit pointer to their enclosing class. We also forbid local or anonymous

classes from implementing the Immutable interface; these are more complicated as they can also

inherit access to local variables in scope. While one can also create criteria for Immutable local

and anonymous classes, we similarly did not see a need to support it. Our use of immutability is

to support compile-time constants, which does not require classes to be defined within a method’s

scope.
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Library types Primitive types

java.lang.Boolean boolean
java.lang.Byte byte
java.lang.Char char
java.lang.Double double
java.lang.Float float
java.lang.Integer int
java.lang.Long long
java.lang.Short short
java.lang.String

Table 6.1: List of types that are on the Immutable whitelist.We analyzed these library and built-in
types to guarantee they honor the Immutable properties.

Primitives and whitelists

Without amending our previous rules for immutability, an immutable type could never

contain primitive data types. But a final field containing a primitive type satisfies our requirements

for immutability: its value cannot change once initialized. Hence, we endow the checker to ac-

cept all of Java’s primitive types (Table 6.1) to be immutable, as if they implement the Immutable

interface. This allows an immutable type to contain afinal int field, for example.

Additionally, we have manually analyzed the semantics of the corresponding Object type

for each primitive to ensure that they too satisfy the immutability properties (See Table 6.1). We

should note that not all the classes in the whitelist would pass the Immutability checker (for example,

an Integer’s value field is notfinal ), but they exhibit the necessary immutability properties.We

also addjava.lang.String to our immutable whitelist; we believe that it also satisfiesthe

immutability criteria.
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Arrays

Arrays have many uses as compile-time constants, particularly as lookup tables for de-

cryption functions. However, supporting them in Java requires extra work since the entries of a Java

array can be modified at any time. For an array variable to be a compile-time constant requires that

the variable reference can’t change, the constituent element references can’t change, and each item

should be immutable. Enforcing and checking the first and last conditions is relatively simple: the

array must be declared final and its base type must implement theImmutable interface. However,

this does not prevent the array from being modified; an element or can be updated with a different

value.

To solve this, we must make sure the array’s elements are not changed after initialization

time. This can happen when the array or its element is used as an l-value in an assignment expres-

sion. If this occurs after initialization, this indicates an element of the array is being overwritten.

The checker looks for compile-time constant arrays used inside l-values flags and them as errors.

In Java, it is possible to alias an array or a subarray to a different variable. If such aliases

were made of the array, a naı̈ve checker would miss mutationsof the array by way of the alias. This

risk is prevented by requiring that all occurrences of the array variable aside from its declaration

occur within expressions that index the array to its full depth. We view passing partial index values

explicitly as an acceptable alternative to using a partially indexed array. The other use of partially

indexing arrays is when reading the length field of a subarray. This represents a legitimate case

where the array is not fully indexed; given the frequency of this coding paradigm, we make a special

case exception to allow partial indexing of an array only when the length field is being accessed.

Thus, referring to a compile-time constant array as a whole or partially indexing a multidimensional
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compile-time constant array without accessing its length field is flagged as an error by our checker.

This analysis requires a “closed-world” assumption, i.e. that the full source code of the program is

present in order for this reasoning to be sound. If there wereunchecked code present in the system,

it could bypass these restrictions and modify the array.

Initializers

Not only must a compile-time constant be Immutable, but it must also be initialized to the

same value every time. This means that its initializer expression should be a deterministic function,

i.e. it must be environment-free. In the course of making thecompile-time constant checks, the

checker generates a queue of all variable initializers for compile-time constants. These will later be

checked just by the environment-free checker, and which treats them as methods with no arguments.

Since all compile-time constants must be final, a compile-time constant that doesn’t have a variable

initializer must be initialized in a static initializer block. These too must be environment-free, and

thus are added to the list of environment-free methods as they are encountered.

6.4.4 Environment-free methods

As discussed in Section 6.3.2, an environment-free method may only call a method if it is

environment-free. Additionally, an environment-free method must not access global variables that

are not compile-time constants.

Constructors

Constructors are treated like any other method, and any constructor that is invoked due

to a new object instantiation from within an environment-free method must itself be considered
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environment-free. Thus, any methods that the constructor invokes must be checked for environment-

freeness. This includes chained constructors or any superclass constructors that may be invoked

implicitly.

Overridden methods

A class can only override an environment-free method with anenvironment-free method.

If this were not the case, invoking the method on the base class could actually invoke the overridden

method when the runtime type differs from the static type of the object. If at static analysis time,

the method is deemed to be environment-free, we must ensure that the runtime method is also

environment-free. Effectively, the environment-free attribute is a part of the method’s signature that

must be inherited with any overridden methods. The checker verifies this property. In the general

case, this requires the whole program to be present. (Alternately, we could require environment-

free methods to be final, but we already require a closed worldfor our treatment of compile-time

constant arrays.)

Whitelist

Library methods called by an environment-free method require special care. In general,

the checker does not have the source code to such methods so itcannot assess whether they are

environment-free or not. The conservative action in this case would be to flag all calls to a library

from an environment-free method as errors.

However, excluding all library functions is not practical given the size and utility of the

Java library. Forbidding environment-free functions fromusing the large subset of the library that

is environment-free unfairly constrains the programmer and represents a serious usability burden.
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Whitelisted method and constructor signatures

byte[] java.lang.String.getBytes()
java.lang.String(byte[])
java.lang.String(char[])
boolean java.lang.String.equals(java.lang.Object)
void java.lang.System.arraycopy(java.lang.Object, int , java.lang.Object, int, int)
boolean java.util.Arrays.equals(byte[], byte[])
java.util.ArrayList()
java.lang.Object[] java.util.ArrayList.toArray(java. lang.Object[])
java.lang.Object java.util.ArrayList.get(int)
boolean java.util.ArrayList.add(java.lang.Object)
int java.util.ArrayList.size()
java.lang.IllegalArgumentException(java.lang.String )

Table 6.2: List of methods that are on the environment-free whitelist. We analyzed these library methods to guarantee they honor the
environment-free properties.
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We get around these limitations by allowing the programmer to specify a list of allowable library

methods and constructors. The programmer specifies this as alist of method signatures, as in

Table 6.2. Of course, it is critical that the programmer verify that the methods specified in the

whitelist are in fact environment-free; doing otherwise would compromise the analysis. Table 6.2

represents the whitelist table we used for the applicationswe discuss in Sections 6.5.1 and 6.5.2.

For method invocations to a library function, the checker consults the whitelist to see if

the function is environment-free.

Exceptions

As Table 6.5.2 shows, we have whitelisted theIllegalArgumentException con-

structor. As is a common Java coding practice, functions that receive unexpected or abnormal

arguments often create and then throw this exception to the caller. The code we analyzed makes use

of this pattern.

This raises the question of how to treat environment-free functions that may throw excep-

tions. The most natural approach is to treat such exceptionsas another form of return value. Under

this view, if an environment-free method is passed input that causes an exception to be thrown,

the exception must be the same under all invocations. However, java.lang.Throwable , the

root of all exceptions, contains a stack trace. This stack trace will naturally vary depending upon

the caller’s location in the method-call stack of the execution. Under a strict view of environment-

freeness, this should not be allowed, since the return value(the exception) depends upon something

other than the method’s arguments. Ultimately, the source of this problem arises whenever an ex-

ception is constructed, even if it is not thrown. It is thecreationof an exception is not environment-

free, as the stack trace is filled in byThrowable ’s constructor in a manner that depends on the
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stack rather than its arguments. In addition to throwing thenon-deterministic exception, there is

a second risk: an environment-free method could potentially examine an exception’s stack trace

and return a value that depends on the trace. This can be addressed simply by ensuring that the

getStackTrace() andprintStackTrace() methods (and any methods that call them) are

not on the environment-free whitelist. The non-determinism is then hidden from the environment-

free function.

We see four possible approaches for dealing with this sourceof non-determinism:

1. We could disallow environment-free functions from throwing exceptions. On an error, such

a function could return an error code, for example. This would hinder error handling and

represents a change in style. The biggest problem with this approach, however, is the ubiq-

uity of exceptions in Java. Many library calls (which might otherwise be environment-free)

can throw exceptions, particularly runtime exceptions which need not be declared. Various

constructs of the language itself such as null-pointer dereferences, array index violations, and

arithmetic can throw exceptions. Ensuring that Java code isexception-free is difficult and

overly restrictive.

2. An alternative would be to only throw pre-existing exceptions stored in compile-time con-

stants. For each type of exception that we wish to throw, we could initialize a compile-time

constant with an exception of that type. An environment-free function that encounters an ex-

ceptional condition can throw this constant and does not need to instantiate a new exception.

Since the stack trace is filled in during the exception’s creation, the stack trace will not vary

based on the environment-free function’s call stack. Unfortunately, this approach is at least

as problematic as the first one. We still need to enumerate allpossible exceptions that could
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be thrown by a function. Additionally, compile-time constant initializer expressions are sup-

posed to be environment-free, but Exception creation is not, even when called from a static

initializer. The stack trace depends upon class load order,which could vary depending upon

the behavior of non–environment-free code.3

3. A third option would be to wrap calls to environment-free entry-point functions so that all

Throwable s are caught and something else is returned. The easiest way to do this would

be to return a null reference, as null is a valid value for any object type. This would keep

the library’s control flow and exception handling the same atthe cost of losing debugging

information. While this option is feasible, the loss of information and need to modify the

program make this unattractive.

4. One could “define away” the problem by allowing the return value of an environment-free

function to depend on its method-call stack, i.e. by treating these method calls as an implicit

argument to the method. One must be careful not to relax too far, however, or environment-

freeness ceases to mean much. If the function can have arbitrary dependencies on the stack,

we can no longer derive the properties we want. Its dependency on the stack must be limited

so that it allows for the use of exceptions but does not allow for harmful nondeterminism.

We chose a variant of the last option. We allow the return value of an environment-

free function to depend on its execution stackonly in the stack trace of any throwables it returns

or throws. This is the semantics that results from allowing the construction of exceptions (and

encountering exceptions resulting from method calls and language operations) but disallowing any

querying of the stack traces contained within such exceptions. Adherence to this rule relies only on
�

The stack trace includes the context of the field access or method call that referenced the class being statically
initialized and thus caused it to be loaded.
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ensuring that the whitelisted methods don’t allow access tothe stack traces of throwables; we have

verified that this is the case.

6.4.5 Implementation

We implement our checker as an Eclipse 3.2.1 [1] plugin to check Java 1.4 source code.

The checker is 1199 lines of code. We rely on Eclipse’s visitor functionality to perform our anal-

ysis. The visitation functionality allows the checker to rely on Eclipse for parsing, name and type

resolution, and walking over the typed AST. Our checks were simple enough that we did not need a

data-flow engine; analysis simply consists of several visitation passes over the AST of a program.

Figure 6.1 shows an image of the plugin running under Eclipseon an AES implementa-

tion. In Section 6.5.1, we discuss the results of the analysis.

6.5 Results and Discussion

We tested our checker on two applications. The tests were meant to show that the checker

can find real bugs in real code as well as to verify useful properties about interesting programs. In

this section, we discuss the results of running our checker as well as additional issues regarding

non-determinism.

6.5.1 AES block cipher

We analyze an AES block cipher implementation to ensure thatthe cipher will be able

to decrypt the ciphertext to the original plaintext at some later time. We analyze a third-party

AES implementation [10] and check that its decryption method is environment-free. This property
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Figure 6.1: Screenshot of the environment-free checker detecting errors in AES code. The constants array tableslog and alog are
generated at class load time. This represents a modificationto a compile-time constant array; we eliminate the static code block, and instead
use variable initializers. After these modifications, the checker did not find any errors.
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guarantees, for example, that if the cipher is used to encrypt data, it is guaranteed to be recoverable

using the decrypt function and the key. We checked its 876 lines of Java source code. We added a

check function, including one annotation:

/** @envfree */
static boolean check (byte[] plaintext,

byte[] encr, byte[] key) {
AES aes = new AES();
aes.setKey (key);
return Arrays.equals (aes.decrypt(encr),

plaintext);
}

For the above check to guarantee decryption will be the same at some later time, the

check() function must be environment-free, which is indicated withthe annotation. The checker

detected three errors, as depicted in the screenshot in Figure 6.1. The errors stemmed from the

decryption function relying on two static final arrays:int[] log and int[] alog . These

are logarithm and anti-logarithm tables computed at class load time in a static initializer block.

The environment-free checker flagged the initialization process as erroneous. To fix the errors, we

replaced the code with precomputed array initializers. After this change, the checker did not report

any errors. An alternative fix would be to inspect the code andnote the writes were only used for

initialization and to further verify that the initializer did not make any use of the static tables before

their array values were initialized.

6.5.2 Serialization of voting data structures

As detailed in Section 6.1, we began thinking about proving security properties of election

systems after analyzing two commercial voting systems. Further inspecting our own prototype vot-

ing system [74], we realized that manually proving serialization is not easy. Unintended bugs (or in
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a larger software engineering effort, possibly malicious code) can easily interfere with deserializing

a particular ballot–when using long write-ins, for example. For our voting system, we wanted to

rule out problems for the critical step of recovering ballots after they’ve been stored to disk. The

voting machine code we analyzed was over 4400 lines of Java.

We wrote five check functions very similar to the ones in Section 6.4.1 and 6.5.1, each

with one annotation, and inserted calls to the check functions after serialization. The data structures

being serialized include theballot , as well as four message structures that are serialized and

passed via serial cable to different components of the voting machine that are physically separated

for isolation. It is critical that each of the serialized structures be deserialized into an equivalent

copy. The inserted dynamic checks guarantee this.

The checker did find one class of errors which required us to slightly restructure the code.

Two of the messages being passed between components included a monotonically increasing serial

number to filter out duplicates. The last received serial number was stored as a static field inside

the message class. Inside the deserialization class, the message’s serial number is compared with

the static value of the most recently received serial number; if the serial number was already re-

ceived, the deserialization method would return null. The environment-free checker discovered that

deserialization made use of a global field, and hence deserialization is not guaranteed to produce

the same result in all instances. We view this as a success in our checker, as it found an error our

manual inspection missed. To fix this, we separated the deserialization functionality from duplicate

message suppression, and the checker no longer found any errors in the code.
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6.5.3 Non-determinism

An environment-free function should not have access to “true” non-determinism, as it

could cause it to produce different output at different times. Restricting code to ensure determinism

is tricky, as it is easy to miss possible sources of nondeterminism. While our checker prevents access

to sources of nondeterminism that are explicit in the program, Java provides implicit nondetermin-

ism in other ways. Handling these in a general way is out of scope for our simple environment-free

checker; we leave this as future work. However, we have implemented conservative checks that

could be implemented in a more precise fashion since they suffice for our application.

The first source of implicit nondeterminism provided to a Java program is the layout of

objects in memory. An object’s memory location is exposed via the defaulthashCode() and

toString() functions defined injava.lang.Object . Two separate instances of an Object

will occupy different memory addresses even if all their fields are the same, making the two objects

otherwise indistinguishable. Because a method that useshashCode() or toString() can tell

the difference between invocations, it is not possible for any method that returns a newly constructed

object to be truly deterministic. Since these methods are not on the whitelist, however, acheck()

method cannot call these methods explicitly to affect its return value. Our checker flags implicit

calls totoString() from within an environment-free method as errors.

The virtual machine can throw a JavaError nondeterministically at runtime, such as

anOutOfMemoryError . A devious function could intentionally exhaust memory by allocating

large objects within a loop; when the JVM throws the memory error, it could use the loop index as a

non-deterministic value in acatch or finally block. A general solution to this problem would

involve engineering some minimal restrictions on the ability of environment-free methods to recover
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from errors. The applications we looked at do not have anycatch or finally blocks within the

environment-free code, and so do not pose a risk. Our currentchecker is overly conservative and

bans allcatch or finally blocks within environment-free code.

We view as out of scope detecting runtime resource exhaustion attacks that cause different

return values; for example, a
����!�

function might return the correct result, or it might cause

an OutOfMemoryError ; further work will be needed to detect varying behavior in the face of

resource pressure.

6.6 Conclusion

Environment-freeness is a useful property in proving properties about invertible functions.

In this paper, we have defined environment-freeness for Javamethods. We have described a simple

algorithm for checking this property of Java programs and have discussed some of the issues that

arise. We have implemented an environment-free checker andused it to permit runtime verification

of the Inverse Property for an encryption implementation. Auser of the encryption program can be

confident that any encrypted data will later be recoverable given the associated key.

We have also applied the checker to ballot and wire serialization in our prototype voting

system; we can now be confident that serialized data will be recoverable when it is later needed.

This allows us to rule out a class of denial-of-service attacks on a voting machine, proving that a

voter’s ballot will not be lost due to buggy or malicious serialization code. We are encouraged by the

added assurance provided by this check with a minimal annotation burden and believe that it bodes

well for the potential for other practical program analysesto ensure useful properties of software

systems.
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Chapter 7

Related work

The ideas in this dissertation are built upon existing work in the security field. We apply

known principles and original ideas to a new and socially important problem domain.

In contrast to prior efforts to secure general purpose operating systems, however, the

voting application’s limited scope helps tremendously. The experiences gained in designing secure

operating systems apply to the voting case, but many of the problems can be simplified since we can

deploy special purpose solutions. Finally, the progress oftype-safe languages and better verification

tools can only help in gaining confidence in our proposed architecture. In this chapter, we detail the

relationships with existing work.

7.1 Voting

Peter Neumann was one of the earliest to write about both the security and non-security

goals of electronic voting systems [62]. It is remarkably prescient in cautioning against a number

of flaws in real DRE voting systems, such as vulnerabilities in using fixed passwords that later af-
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flicted Diebold voting machines [18, 42, 72]. In a landmark study, Kohno et al. obtained Diebold

source code for one of their voting machines and found many ofthe aforementioned basic secu-

rity flaws. Their work, as well as the others detailing votingmachine flaws, impelling many in the

security community to seek alternatives. A review by by the California’s Voting Systems Technol-

ogy Assessment Advisory Board (VSTAAB) found a number of classic security bugs in Diebold

election software, though they noted the impacts of the bugscould be mitigated through procedural

controls [90]. This study, along with one by Feldman et al. [25], noted the importance of physical

security and the breakdown of all security guarantees in itsabsence. Another study commissioned

by the Florida State Division of Elections analyzed the source code of an ES&S voting machine

in response to 18000 undervotes in a Congressional race [94]. They found numerous bugs, but

could not attribute the bugs they discovered to the undervote; additionally, they commented on the

difficulty in proving the absence of security problems in that particular system.

Diebold, Hart Intercivic, Sequoia Voting Systems, and Election Systems and Software

each currently market DRE voting machines. Their systems feature an interface to input votes

(all but the HART use a touch-screen) and store the votes internally in an electronic form. These

machines have alternate interfaces to allow people with certain disabilities to vote and preserve their

confidentiality. A criticism of the machines, however, is that people must trust the software running

on the machines since the voter cannot be sure their vote was properly recorded. They have little

reason to trust the software, in contrast to our effort whereverification gives some assurance as to

the software’s proper design. Rebecca Mercuri has called for vendors to augment DRE machines

with a Voter Verified Paper Audit Trail (VVPAT) [50, 51]. In this DRE variant, the voter must

approve a paper copy of their selections that serves as the permanent record. The paper copy is
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typically held behind glass so the voter cannot tamper with it. The voter can verify that the paper

copy accurately reflects the voter’s selection, even if the software is malicious. In part because of

Mercuri’s efforts, jurisdictions are requiring VVPAT-enabled DRE machines. All four vendors have

such machines available for sale. VVPAT helps to guarantee election integrity, but does not protect a

voter’s confidentiality. VVPAT may in fact negatively affect confidentiality. The techniques we look

at, therefore, will be useful even in VVPAT DREs and in fact would provide a useful starting point

for such an architecture. They would additionally help guarantee the correctness of the electronic

copy.

Soon after the 2000 federal election, Caltech and MIT launched a project to investigate

voting technology. As part of their research, they proposedan architecture for voting that they call

FROGS [11]. The voter chooses their selections on an untrusted terminal, which then stores the

provisional ballot onto an electronic memory device calleda frog. The voter then takes the frog to

a trusted device to verify the contents of the frog, and if they are acceptable, to cast the frog into

a final ballot. The trusted device displays the frog’s contents. The user can then reject the process

to start over or cast the ballot, which causes the trusted device to 1) “freeze” the frog and prevent

further changes; 2) send a copy of the data to a number of independent vote storage units; and 3)

physically keep the frozen frog for later audits. The FROG architecture inspired some of our efforts

to isolate the vote selection process, where much of the complexity lies and not require it to be part

of the TCB. We also add the goal of developing an architecturedesigned explicitly for verification.

The SAVE voting system (Secure Architecture for Voting Electronically) is another Cal-

tech/MIT voting proposal [79]. They propose an architecture with four components with well-

defined interfaces: a user interface component, a cryptographic signature generator, a registration
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verifier, and a tallier. Then, they propose implementing each component except the user interface

using� version programming. Each version would be implemented by adifferent vendor, so that

corrupting the system would require corrupting each separate version. Finally, they propose us-

ing �-separate digital cameras that would take pictures of the final confirmation screen to act as a

check on the user interface component. Their prototype is implemented in Java, with the compo-

nents communicating via XML over sockets.�-version programming is compelling, but it increases

development and testing costs; additionally, a bug in any ofthe versions could cause a privacy vi-

olation. The separate versions are most useful in guarding against integrity errors. Nevertheless,

some of their techniques may be applicable to our setting.

The Spanish company scytl produced a whitepaper describingtheir proposal for securing

DREs that they call Pnyx.DRE [2]. Their proposal, like the FROGS proposal, seeks to remove

the vote selection module from the trusted computing base ofthe voting system. They propose

attaching a separate device to the DRE that combines a display with a processor and two external

buttons: “Confirm” and “Cancel”. The separate device is connected to the DRE using a USB or

serial cable. After the voter makes their selections on the DRE, the device displays the choices

to the voter, who can either confirm or cancel the selection. If the voter accepts the selection, the

device encrypts the vote and adds integrity protection. Theencrypted and protected ballot is then

sent back to the DRE for storage. The device may optionally emit a receipt containing a random

number that is part of the encrypted vote. The receipt doesn’t reveal the voter’s selection in any way.

This proposal, like FROGS and our proposal, tries to engender greater trust in the election system by

minimizing the TCB. However, it doesn’t help with the privacy goals of our system, since the DRE

can still leak votes; it does, however, help to guarantee integrity of the votes. A study considering
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the machines for integration with Diebold DREs noted that the prototype, while well designed, did

not completely implement the advertised specification [83].

The Dutch water board recently used a system called RijnlandInternet Election System

(RIES). The system allows voters to vote over the Internet. Before the election starts, election

officials generate a key� 
 for each voter; for each voter
, the officials create and record a string

� � � �election id	 ��� � � �candidate 1	 �� � � � ��� � � �candidate� 	. The officials use an out of band paper

channel, such as the postal system, to deliver the voter specific key. The officials then destroy the

voter specific key. During the election period, the voter visits the election website, enters their key

� 
 from the mail, and then makes their selection. The voter’s browser then computes and sends

� � � �election id	 ��� � � �candidate index	. The voter can verify their proper selection was recorded

by visiting the website; the election officials tally the votes by looking up the voter’s selection in

the list of candidates specific to the voter. The system, however, suffers from the list of flaws that

Jefferson et al. noted that any Internet voting scheme suffers: a reliance on the DNS systems, lack

of privacy, vulnerability to denial of service attacks, andsusceptibility to worms surreptitiously

changing a voter’s selection and even subsequent verification [35, 34]. Hence, this approach may

bring convenience but seems to sacrifices too much in the way of security for use in government

elections.

In Chapter 3, we analyzed two existing cryptographic votingschemes [60, 19, 39]. Moran

and Naor have produced follow on work that is based on Neff’s general approach [56]. It provides

integrity protection and preserves privacy even from computationally unbounded adversaries that

have access to the bulletin board. They rely on a special property of Pedersen commitments, and

then generalize their results to general commitment schemes. As with Neff’s scheme, the use of a
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bulletin board invites privacy vulnerabilities.

There are other cryptographic voting protocols, but they unfortunately are not nearly as

complete as Neff’s or Chaum’s: they remain protocols and arenot yet systems. For example, Josh

Benaloh presents an outline of two cryptographic approaches, one similar to the FROGS system [8].

However, as we showed in Chapter 3, there is a large gap between protocol and a system, and that

gap can often impact security. A second lesson is that the cryptographic voting protocols cannot treat

humans as perfect actors, as is typical in traditional security protocols: a person will make mistakes

and may not follow their end of the protocol. Attackers can take advantage of this fallibility to erode

a voter’s privacy or steal their vote.

Ka-Ping Yee et al. designed a voting system using pre-rendered user interfaces to also

minimize the amount of trust in a voting system [95]. He uses adata structure similar to a de-

terministic finite state machine with the user’s input controlling the transitions between states of

pre-rendered ballot images. The pre-rendered ballot images eliminate UI toolkits and a large part

of the application and OS complexity from the voting machine. Yee’s prototype is written in fewer

than 300 lines of Python, making manual verification of the software a possibility.

Work in conjunction with Molnar et al. described algorithmic and hardware techniques

to store votes on a programmable read-only memory device [55]. Their storage mechanism was

meant to preserve anonymity through a history independenceproperty and by eliminating subliminal

channels in the storage format, while retaining the abilityto detect tampering with the storage media

after polls have closed. Follow on work has eliminated the need for special hardware by using

cryptographic techniques [9].
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7.2 Information Flow

One of the techniques we leverage is managing the flow of confidential information within

the application: if a component cannot see confidential information it cannot leak it. This principle

of guarding information flow based on principals has been more generally studied in the context

of multilevel security (MLS) [77]. Multilevel security systems manage data sources with different

secrecy labels (e.g. unclassified, secret, top secret) and ensure that the programs that interact with

these data sources also honor the secrecy labels.

The LOCK program from SRI tried for 17 years to build a MLS system. They originally

intended to use a separate processor called the SIDEARM as a reference monitor [76]. The LOCK

program had its roots in the PSOS (Provably Secure OperatingSystem) project [24, 63]. They faced

problems with their hardware based reference monitor sinceit added cost and time to completion.

Additionally, the LOCK designers intended to write formal specifications and ensure their correct-

ness with the GYPSY proof checker. An important realizationof their effort was that GYPSY was

not sophisticated enough and ultimately did not help in detecting bugs. This cautionary tale about

the difficulty in formal verification steered our efforts towards architectures to simplify verification

instead of work on formal tools. The exercise was not a waste,however, since they found that the

time spent to consider the formalisms and prepare the specifications led the designers themselves to

catch bugs they believe they would have otherwise missed. There are important differences, how-

ever; they were trying to build a general purpose system, while we are designing a specific one.

Additionally, formal methods have advanced greatly in the intervening years, and as we show, can

be used to achieve successes.

The Starlight Interactive Link is a hardware device that allows a workstation trusted with
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secret data to safely interact with an unclassified network [4]. As in the MLS scenario, a chief

concern is secret data leaking onto the untrusted network. The Starlight Interactive Link acts as a

data diode. Their data diode serve a similar purpose to the buses we introduce in Chapter 5. The

enable a system to be partitioned but allow limited communication topologies enforced by hardware.

Users typically install the Interactive Link between the trusted workstation and the keyboard and

mouse. The Interactive Link routes the I/O either to the trusted workstation or to a remote untrusted

application server connected to the untrusted network. Additionally, the Interactive Link can display

the untrusted application on the secure workstation by simulating parts of the X protocol to enforce

the one way flow of information from low to high. Subsequent work builds on the Interactive

Link and extends the technique of data diodes in software to develop MLS CORBA for distributed

applications [38].

Jones and Bowersox develop a one-way serial bus to prevent backwards data-flow and

mitigate the presence of covert channels [37]. It is designed for easy verification: the entire data

diode fits on a small PCB and is comprised of fewer than 20 discrete components. We could imagine

using their verifiable one-way serial bus in our architecture and provides a real world example that it

is possible to build the communication primitives necessary to enable communication in a verifiable

topology. The intent is that it should be simple to verify thecorrectness of the specification and fur-

ther that the physical data diode matches the specification.The idea of simple verification parallels

our effort. Jones and Bowersox postulate the data diode is most useful to publish incremental results

from the tallying computer to public reporting software that may have an Internet connection.
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7.3 Isolation

Another key technique we leverage is the principle of isolation; it is well understood

that restricting different parts of a system to communicatethrough well-defined standard interfaces

may increase security. A vulnerability in one component canonly affect another component if an

adversary can subvert the first and then exploit the interface between components. Recognizing this

fact, the systems community has studied and implemented many different isolation mechanisms.

We make use of this idea in this work.

High assurance applications take a similar view to the importance of verifying that sys-

tems achieve specific safety, reliability, and security properties. High assurance applications are

frequently found in transportation, medical, or communications contexts. They use a wide vari-

ety of techniques. We we adopt on some of these techniques in our work, such as minimizing

TCB sizes and decomposing the application into cleanly specified components. The challenge,

in our case, is to elucidate just how to take these high level concepts and apply them to the vot-

ing specific context, since secure components may not be composeable into a secure system [49].

Additionally, there are important differences in the use ofcomponents and isolation in traditional

high-assurance applications and voting. Deep space applications use multiple components for re-

liability and fault tolerance [96], while telephony communications use redundant components for

software upgrades [96]. In their MLS-PCA avionics architecture, Northrop Grumman is proposing

an architecture suitable to the Department of Defense’s Joint Vision 2020 [91]. MLS-PCA is an

architecture for future avionics systems supporting tens to hundreds of thousands of separate pro-

cessors. Their use of isolation is manifold: mission flexibility, requirement of supporting multi-level

security for interoperating with non-profit organizations, and a reduction in the amount of trusted
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software over traditional federated architectures. Of these reasons, the last, is most related to our

setting in that isolation helps in minimizing the size and number of trusted components.

Operating systems originally were designed to provide saferesource sharing, and in some

cases, isolation among different processes. Unfortunately, many people have noted they do not

provide sufficient isolation: the TCB is large and complex, and bugs allow one process to subvert

another. Microkernels such as Mach or L4 try to place each module in separate protection domains,

but have not ultimately caught on, in part due to the performance overhead [47, 69]. A more recent

lightweight approach is to run device drivers in their own protection domain [86, 87]. Swift et al.

note that drivers are a significant source of bugs, and they believe that driver isolation can help

improve reliability and reduce the time between rebooting the operating system.

There is also a trend to using virtual machine monitors or similar techniques to pro-

vide isolation since bugs in operating systems and side channels do not provide enough separa-

tion. Disco, Denali, and Xen are virtual machine monitors1 that can be used to provide isola-

tion [6, 14, 92, 93]. This approach was first suggested by Rushby where he suggested that asecurity

kernelshould provide the same isolation that an application sees if it was hosted on separate sys-

tems [71]. Rushby points to the VM/370 as a virtual machine monitor that begins to provide the

isolation level demanded by a security kernel. With the dropin hardware prices, it becomes feasi-

ble in this dissertation to allocate a separate microprocessor to each component. Rushby used the

security kernel as a mechanism to help securely multiplex hardware, while I use separate hardware.

Provos et al. noticed that in many privileged applications,two separate protection do-

mains, representing high and low, can be used to help isolatevulnerabilities in the low domain from
�

Xen is actually a paravirtualizing virtual machine monitorsince it exports an instruction set that is slightly different
than found in the underlying hardware implementation.
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letting the attacker achieve the high component’s privileges [67]. Their response was to privilege

separate OpenSSH, so as to minimize the trusted code; they showed it was feasible to do so with a

minimal performance penalty. This approach required hand-modified code. Brumley et al. automate

the separation task using static analysis and source to source translation tools [12].

Many of these systems differ from our intended isolation uses in that they are meant

for the general purpose systems and hence general purpose applications. Our use is a specialized

application: we can therefore create customized solutionsthat may not be feasible in the general

case. We can design and use hardware tailored to the voting application that are not useful for

general purpose applications.

7.4 Verification

Hoare first broached the idea that analysis tools may be able to prove properties about

programs given a few starting axioms [30]. His work posited that it may be possible to write proofs

for the correct functioning of programs. With many advancesin the field, it is now possible to prove

specialized properties of an application given the source code.

Verification tools were able to generate proofs for the MLS properties in the KSOS-6

operating system [84]. KSOS-6 has 10,000 lines of source and3300 lines of a formal specification

language called SPECIAL; their MLS verification tool detected 33 security flaws. However, 29 of

the flaws were detected manually. The considerable effort spent in generating the specification and

working with the verification tools points to the immaturityof the tools. Another report candidly

remarks that “formal methods are useful only when the developer can pose the right questions” and

it may not be possible to generate complete proofs of correctness in large, general purpose operating
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systems [78].

A more recent success story verifies the containment mechanism in the EROS operating

system [82]. EROS is a capability based operating system, and they were able to verify the OS’s

containmentmechanism, whereby the operating system creates a restricted environment with a

limited set of capabilities. They demonstrate that the restricted environment can only access the

resources granted by its capability set and no others.

Joe-E is a subset of Java that enforces the capability discipline [53]. We drew inspiration

for the environment-free checker from their work; they provide a useful framework for immutability

that we use as the basis for the environment-free checker’s compile time constants.

It is now possible to soundly detect all format string vulnerabilities in C code [81] and find

all user-kernel bugs in the Linux kernel [36]. Both techniques rely on type inference, a technique

for developers to add a few annotations to the type system andthen perform analyses to detect

inconsistencies in the enriched type system, which are possible bugs in the application software.

These techniques show the promise of being able to prove realsecurity properties about real code.

Spec# [7] and JML [15, 44] are language extensions that allowthe programmer to specify

pre-conditions and post-conditions on methods as well as invariants for classes for the C# and Java

language respectively. They followed Bertrand Meyer’s work where he suggested that classes and

methods should have a contract specified through annotations [54]. Using these extra annotations,

program verifiers check that the code is consistent with the specification. These tools provide a first

step in proving systems correct.

Additionally, it should be mentioned that safe languages, such as Java or C#, eliminate

a large class of vulnerabilities since the virtual machine in which they run enforces the type-safety
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of the code it executes. We take advantage of these features to ease the verification task since the

language itself does not allow for programs with certain vulnerabilities to be considered valid.

7.5 State management

The Recovery Oriented Computing (ROC) project advocates a unique view to state man-

agement [65]. The project seeks to increase reliability andavailability of software services; as

a part of this, they suggest that components in a software application should be designed for re-

boot [16, 17]. Each component should be able to be restarted at any time, and in fact they call for

prophylactic reboots to reset state in volatile member variables, based in part by work by Huang

et al. [31]. In order for a component to be rebootable, it needs to store all persistent state in a sepa-

rate module and not hold any pointers across component boundaries. Our work also uses rebootable

components, but for a different purpose: security. A voter who knows that a component reboots

after leaving the voting booth can be better assured that their sensitive information cannot leak to

the next voter if there is no way for sensitive information toleave the ballot box; secondly, a voter

who knows that the voting machine reboots before they arriveto use it can be better assured that the

previous voter’s actions will not affect their voting session.



138

Chapter 8

Conclusion

In this dissertation, we have explored a property based approach to improving voting

security. Under this view, one must be cognizant of how endowing a voting system with one property

impacts the system’s goals. It is important, also, to consider the voting system as a whole, including

the technology as well as the humans that interact with the technology: the technology does not

exist in a vacuum.

Our solutions apply to a range of voting platforms and address different properties. Re-

booting can be used as an effective approach to stem privacy violations across voter sessions for a

variety of different voting technologies. Likewise, our componentised voting architecture applies to

DRE based systems to more easily prove a few voting properties. Our software analysis techniques

can prove deserialization and decryption are correct in a fail-stop model. These analyses are useful

for all voting platforms, and can even apply in non-voting contexts.

People should be able to trust their voting technology has sufficient security guarantees.

The fully verified voting machine is not yet in our grasp. But this should not stop us from attempting
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to design and build voting systems that meet increasingly more security properties. This dissertation

begins that path towards the verified voting machine.
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