Verifying Security Properties in Electronic Voting Machin es

by

Naveen K. Sastry

B.S. (Cornell University) 2000

A dissertation submitted in partial satisfaction of the
requirements for the degree of
Doctor of Philosophy
in
Computer Science

in the

GRADUATE DIVISION
of the
UNIVERSITY OF CALIFORNIA, BERKELEY

Committee in charge:
Professor David Wagner, Chair
Professor Eric Brewer
Professor Pamela Samuelson

Spring 2007

The dissertation of Naveen K. Sastry is approved:

Chair Date

Date

Date

University of California, Berkeley

Spring 2007

Verifying Security Properties in Electronic Voting Machin es

Copyright 2007

by

Naveen K. Sastry

Abstract

Verifying Security Properties in Electronic Voting Mackm

by

Naveen K. Sastry

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor David Wagner, Chair

\oting is the bridge between the governed and government |d$t few years have brought a
renewed focus onto the technology used in the voting proamedsa hunt for voting machines that
engender confidence. Computerized voting systems bringoied usability and cost benefits but
also the baggage of buggy and vulnerable software. Whetirszrd, current voting systems are
riddled with security holes, and it difficult to prove evemsie security properties about them. A
voting system that can be proven correct would alleviateyncancerns.
This dissertation argues that a property based approatie isest start towards a fully

verified voting system. First, we look at specific technigteseduce privacy vulnerabilities in a
range of voting technologies. We implement our technigaesgrototype voting system. The com-
ponentised design of the voting system makes it amenablasity e/alidating security properties.

Finally, we describe software analysis techniques thatagtee that ballots will only be stored if

they can later be accurately reconstructed for countingg arfalysis uses static analysis to enable

dynamic checks in a fail-stop model.
These successes provide strong evidence that it is po$sitesign voting systems with
verifiable security properties, and the belief that in theurfe, voting technologies will be free of

security problems.

Professor David Wagner
Dissertation Committee Chair

Contents

List of Figures iv
List of Tables %
1 Introduction 1
1.1 The voting problem: motivation, 1
1.1.1 Approach e 3
1.2 Contributions and summary ofresults 6
1.21 Properties e e e e 6
1.2.2 Cryptographic voting protocols and privacy implieas 6
1.2.3 Privacy throughreboots 8
1.2.4 Anarchitecturetoverifyvoting 8
1.2.5 Dynamically verifying properties 9
2 \oting goals & properties 11
21 Votingoverview e e 13
2.2 NVotinggoals e 14
2.3 Specific properties e 18
3 Cryptographic voting protocols 22
3.1 Introduction e 22
3.2 Preliminaries 25
3.21 Threatmodels. e 6 2
3.3 Twovoting protocols e 28
3.3.1 Neff'sscheme 28
3.3.2 Chaum'svisual cryptoscheme 35
3.4 Subliminalchannels e 41
3.4.1 Randomness e e 42

3.4.2 Mitigating random subliminal channels 44

3.4.3 Multiple visual and semantic representations 46

3.4.4 DISCUSSION e 48
3.5 Denial of service attacks and electionrecovery 48

3.5.1 Denial of service (DoS) attacks, 48
3.5.2 Mitigation strategies and electionrecovery 50
3.6 Implementing secure cryptographic voting protocols 52

3.6.1 Underspecifications 52
3.6.2 Openresearchproblems 54
3.7 Conclusion 55
Privacy 56
4.1 Voting SESSIONS 56
4.2 Avenues for informationflows o oL oo 57
42.1 DRE e 57
4.2.2 Cryptographic voting protocol 60
4.2.3 Ballotmarkingdevice e 60
424 Opticalscanreader 61
4.3 Reboots e 2
4.3.1 Applicability 63
Designing voting machines for verification 65
5.1 Introduction e 66
5.2 Goalsandassumptions 68
5.3 Architecture 71
5.3.1 Architecture motivations Lo 71
5.3.2 Detailed module descriptions 75
5.3.3 Hardware-enforced separation, 78
5.3.4 Reducing the complexity of trusted components 81
5.4 Prototype implementation. e 83
5.4.1 Implementation primitives 86
55 Evaluation 90
5.5.1 \Verifying the desired properties 90
5,52 Linecounts
5.6 Applications to VVPATs and cryptographic voting pratésc 94
5.7 Extensions and discussion e 95
5.8 Conclusions e 97
Environment-freeness 98
6.1 Introduction and motivation. Lo 99
6.2 Static analysis to enable dynamic checking. 100
6.3 Environment-free and compile-time constants 103
6.3.1 OVEIVIEW e 103
6.3.2 Environment-free functions 104
6.3.3 Compile-timeconstants 105
6.3.4 Howtheseareverified, 106
6.4 Specificsandalgorithm e 106
6.4.1 Annotations e 071

6.4.2 Finding methods and variablestocheck 108

6.4.3 Compiletimeconstants0 109

6.4.4 Environment-freemethods 113

6.4.5 Implementation 119

6.5 Resultsand DiSCUSSION« v i e e e e 119
6.5.1 AESblockcipher 191

6.5.2 Serialization of voting data structures 121

6.5.3 Non-determinism e 123

6.6 ConcClusion e e e 124

7 Related work 125
7.1 VOUNG 28
7.2 InformationFlow e 131
7.3 Isolation e 133
7.4 Verification e e 135
7.5 State management e e e 137

8 Conclusion 138

Bibliography 140

List of Figures

2.1

3.1
3.2
3.3
3.4
3.5
3.6
3.7

5.1
5.2
5.3
5.4
5.5
5.6
5.7

6.1

OverviewofusingaDRE.

Detailed receipt for Neff'sscheme.
Verifiable choice in Neffsscheme.

Opened verifiable choice in Neff's scheme.

Receipt generation in Neff'sscheme.

Transparency representation in Chaum’s scheme.

Visual cryptography overview.
Summary of Chaum’s protocol.

Diagram of voting architecture proposal. .

Our architecture, showing the hardware commumcaﬂmmts
Gumstix picture. e e e
Mounting board for voting component.
Photograph of implementation prototype.
Screenshot OfoteSelection component.
Code extracts frofdoteConfirmation andVoteCore modules.

Screenshot of environment-free checker finding erréE® implementation. . . .

120

List of Tables

3.1
4.1
5.1

6.1
6.2

Summary of weaknesses we found in Neff’s and Chaum’'sgatthemes. 23
Avenues for privacy flows.o 58
Non-comment, non-whitespace linesofcode. 93
Immutable types whitelist. o 111
Environment-free method whitelist., 115

vi

Acknowledgments

| am deeply grateful for David Wagner's insightful input iraéting this dissertation. His influence
permeates each section and | am fortunate to have such @ eahusor. He patiently taught me
the basics and listened to my asinine and ill-informed idé$es removed obstacles and served as
a great model to follow, always humble and kind. | learnedordy research from him, but also
ethics, honesty, and character.

I have long joked that | would show up in my colleagues’ dikramwledgments for slow-
ing down their progress. Fortunately, | can safely say thatcolleagues were kinder to me and
became my friends, and made work fun. They refined my ideasnamved my research quality.
Umesh Shankar taught me many of the paper-writing basicsarobmy first papers and continued
to hone my ideas. Chris Karlof has been a frequent co-autbanding board, and constant friend.
Along with Chris, Adrian Mettler and Yoshi Kohno each werei@al co-authors on papers that
formed the basis of this work. Manu Sridharan was not only m-gmddy, but also a helpful re-
source for all my PL questions. Finally, | will fondly remgde about my days in 567, as | discussed
Economics, women, and more with Rob Johnson and Karl Chen.

| want to thank my parents, sister, and family for their laysupport. Their sacrifices
gave me the opportunity, tools, and especially the confielémt¢ackle graduate school.

And finally, my tremendous wife, Seshu, deserves my eterraltgde. She endured
practice presentations and editing, while soothing mytfations in completing the dissertation.

Her gentle encouragements and patient understanding wemialdo finishing on time.

Chapter 1

Introduction

1.1 The voting problem: motivation

The 2000 Presidential election brought attention to theirti@mce of accurately recording
and tabulating ballots, and a hunt for new technologies tdhieunearthed problems. Election
officials faced considerable difficulty deciphering votesslections. Direct Recording Electronic
(DRE) voting machines were seen as one solution and are npleyeel in many counties. These
computerized machines offer advantages over traditi@vak) paper, or punch card voting systems.
They eliminate classes of ballot marking errors using safogic to rule out voting for multiple
candidates where only one is allowed, for example. Sincersohteract with a computer screen,
the DRE machines can adopt the interface that best suitetusrof a voter. For example, they can
switch to large, high-contrast fonts for voters with rediesual acuity. Additionally, tabulating
the results is quicker than with other systems since eacthimaeffectively maintains a running
sum.

However, the advantages that current DRE systems offer ticonee without risk. DRES

are built upon general purpose computers, and are desigitedtandard software development
techniques. Standard software development techniques lgfad to code that is buggy and suffers
from latent vulnerabilities. Voting software is no diffete Kohno et al. recently performed a secu-
rity audit and showed the software on these machines is nbtlesigned and riddled with severe

security bugs [42]. This study is not unique in its conclasioas others have found innumerable
security problems in commercial voting code [18, 25, 72,91),

Currently deployed DREs use a single monolithic applicatigitten in an unsafe lan-
guage, such as C. Unless great care is taken, softwaremintte can suffer from buffer overruns,
improper type coercions, and programmer errors that leatetmory safety violations. In addition,
the software is just too complex to be sure all security bagsle eliminated even with a careful
audit. This naturally begs the question: can we do better?

One option is for counties to deploy non-DRE based votingrietogy, of which there are
several options, such as optical scan readers. But giveprévalence and advantages of DREs, it
is necessary to address their shortcomings. In this digg®rt we focus on DREs. Thus far, voting
and security experts have come to two potentially viableediss to sidestep the issue of buggy
voting software in DREs. Both approaches are designed tcdebting machine errors and still
yield the proper election tally.

In the first, DREs are augmented with printers to produce pegrds of the voter’'s
choices. Before leaving the voting booth, the voter chebksprinted record accurately represents
their choices [50]. This voter verified paper audit trail (WAT) can serve as an official recourse in
case the electronic record is suspect.

Alternatively, C. Andrew Neff and David Chaum have each camewith innovative

solutions that rely on cryptography [19, 60, 61]. After wgtion a traditional DRE, their systems
engage in a cryptographic protocol with the voter. During pinotocol, the DRE prints a specially
formated receipt. The receipt does not reveal any infolwnatibout the voter’s choices, but it
does allow the voter to take the receipt home and verify thatie hasn’t been changed after they
voted and that their vote will be counted. This propertylezhlniversal verifiability, is unique to
cryptographic voting protocols.

Both solutions offer advantages over existing DRES, howiemviis dissertation we show
that those two solutions are not sufficient since there assek of privacy violations left unad-
dressed. We also propose new techniques that begin to adtie#s shortcomings in DRE based

voting machines.

1.1.1 Approach

The solutions we pursue are aimed at one central goal: $ymg/ian auditor’s task in
verifying the correctness of security properties in votingchines. This is distinct from another,
perhaps more obvious goal: eliminating security bugs frating machines. While the latter goal
is more appropriate for many software applications, it is sudficient for the voting context. As
Dan Wallach has said, “The purpose of an election is not toendr@a winner, it's to convince the
loser they lost” [85]. Consequently, it is not enough to @hate all security bugs: we must develop
ways for interested third parties to verify for themseegt the voting machine is free of security
bugs.

Making it easier to verify the absence of security bugs isi@aarly relevant given that
voting machines currently receive little oversight. Coesitely on a handful dhdependent Testing

Authorities (ITAs) to ensure that a vendor’'s voting machine compliehwitting standards and

meets nominal security requirements. In one study, we fduhdritical security vulnerabilities in
Diebold voting code [90], while CIBER, an ITA given the samamdate to evaluate the same code,
produced a vastly different report and only found three ggcuulnerabilities [21]. This contrast
highlights the main motivation for this work: to help audgand citizens verify that their voting
system is secure.

In verifying a voting system, an auditor or concerned citineust analyze a voting system
against a set of measurable criteria. For example, one sutehian may be that a voting system
always gives the voter a chance to review their ballot antecbany mistakes they discover before
casting. We call these measurable critgtaperties The Voluntary Voting System Guidelines
produced by the United States Election Assistance Comanissione such list of these properties.
These properties are created to reflect societal goals,sp@mad laws with respect to voting. Since
goals can often be vague, it is important to have a precisaitiefi of what is being verified.
Properties are meant to embody this greater specificity aasorability. Hence, high-level societal
goals are translated into low-level technical requirememote the explicit difference between a
societal goal and a measurable and precise security pyopert

Typically, there are a number of established techniqueitifyva system satisfies a set
of properties. One technique often used is manual inspedidhe system’s code, design, and
procedures. This labor intensive process aims to eitheemodisprove a specific property through
reasoning. Doing so adequately requires reading and uadeisg the relevant parts of the system
undergoing inspection. In a well designed system, it is iptesgo limit the scope of the system
under consideration and study a smaller portion of it.

Another technique, callestatic analysisinvolves using computer programs to analyze

source code to validate security properties and is builhupwealth of prior work. Static analysis

tools attempt to automate the process of manual human itepeBepending upon the sophistica-
tion of the static analysis tool used and the difficulty of fhheperty being analyzed, static analysis
can require additional help from the programmer. For examplparticular analysis may require
the programmer to add annotations to the source code, oibpyossrewrite the code and thereby

make it easier for the static analysis tool.

Static analysis and manual inspection each offer the bexfefétecting security problems
while the system is being designed and are able to catchigeetnors before the voting system
is deployed in the field. Naturally, there is a tremendousaathge to finding problems before
any voter ever touches the voting machine; but for certanpgnties, it may be simpler to employ
a dynamic analysiswhereby behavior that contradicts the property is detieetkile the voting
machine is run, either during testing or in the course of dna@lection. If the voting machine
exhibits behavior that contradicts a security requiremtr@ DRE software can flag an error and
prevent the voter from continuing. Dynamic analysis reggiichanges to the program code so it
actively checks its own behavior. The programmer can ehacttianges directly , or possibly with
the assistance of a software tool.

This dissertation draws on all three techniques to proveal s@t of properties, allowing

us to gain confidence in certain aspects of a voting machbetisvior.

1.2 Contributions and summary of results

1.2.1 Properties

In Chapter 2 we outline high-level security goals for votgygtems. These security goals
are informed by convention, law, and social policy. As degsmd, though, the security goals must
be translated into more testable, conciaigpertiesfor voting systems. This chapter discusses six
properties that we focus on during the course of this digger. We produce a voting system
implementation in which we successfully verify three of gie properties and refer to additional
work that details how to achieve similar success with thetfoproperty.

A fully verified voting machine would require verifying sigicantly more than a handful
of properties. However, building and verifying all thoseperties in a voting machine is currently
too daunting for us to consider. Recognizing that we shoakpkthis as an end goal, we must start
by verifying a few key properties. Current voting machines aot designed with verification in
mind. Consequently, there is much value in a voting machinhere it is possible to verify even a

few properties. This is a positive first step.

1.2.2 Cryptographic voting protocols and privacy implicatons

Cryptographic voting protocols provide voters with a nomechanism to verify their
vote is properly recorded and counted. They are meant to @ugBREs and provide voters with
an end-to-end guarantee of the proper tabulation of thég&. @roponents of cryptographic voting
protocols cite the end-to-end verifiability property as ase@n for requiring less scrutiny of the
software on these DREs. They argue that a vigilant voter evdatect the effects of tampering by

buggy software or malicious poll workers. This would lessle® necessity to trust the software

since the voter provides an end-to-end check of their baliategrity.

When using a cryptographic voting protocol, the voter tgpictakes home a receipt. For
privacy protection, the receipt is specially designed toreweal any of the voter's choices. These
protocols usually expect the users to check their receifht am online version after voting; this
check ensures the proper recording and counting of thed: Vidiey can detect tampering or buggy
voting machines via mathematical proofs of correctness.

Cryptographic voting protocols offer the promise of vetifeavoting without the need to
trust the integrity of any software in the system. Howeueese cryptographic protocols are only
one part of a larger system composed of voting machinesyaadtimplementations, and election
procedures, and we must analyze their security by conaglé¢hie system in its entirety. In Chap-
ter 3, we analyze the security properties of two differegptwgraphic protocols, one proposed by
Andrew Neff and another by David Chaum. We discovered sépetantial weaknesses in these
voting protocols which only became apparent when consitarehe context of an entire voting
system. These weaknesses include: subliminal channdig iericrypted ballots and denial of ser-
vice attacks. These attacks could compromise electiogrityeerode voter privacy, and enable vote
coercion. Whether the attacks succeed or not will dependwarilese ambiguities are resolved in a
full implementation of a voting system, but we expect thatedl designed implementation and de-
ployment may be able to mitigate or even eliminate the impatiese weaknesses. However, these
protocols must be analyzed in the context of a complete Spaion of the system and surrounding
procedures before they are deployed in any large scalecpeillction.

So, while the protocols offer the promise of skipping vedifion, their current implemen-

tations do not offer the same guarantees that the thedretmalts would indicate. This gap in the

realized systems means that as currently conceived, itlinestessary to verify security properties

about the software implementation.

1.2.3 Privacy through reboots

The privacy problems present in cryptographic voting ote are prevalent in other
voting technologies as well. In Chapter 4, we cover priva@bfems for a range of voting tech-
nologies. We introduce a simple idea to cut down on privaakde rebooting after each voter. We
outline the solution and then describe the conditions rsarggo implement reboots to help allevi-
ate privacy concerns. This technique, when combined wétrioéions on how a program accesses
its persistent storage, allows one to show that informaftiom one voter’s session cannot leak to
another voter’s session.

Employing this reboot technique to guarantee privacy nexta limited to voting ap-
plications. Itis also of independent interest, and is likagbplicable in other computation domains
where users share the same hardware one after another jpemdint sessions. For example, users
may demand privacy guarantees from the ATM machines oritreiesks they use since they pro-

vide each machine with their financial details in conductimgjr transactions.

1.2.4 An architecture to verify voting

Realizing that we need new techniques to prove that speeifierigy properties hold in
voting machines, we explore a particular architecture ifipatty designed to make verification
easier. In Chapter 5, we use specific properties about vatifithe shelf hardware, isolation, and
architectural decisions to allow easy verification of twitical security properties.

We develop the architecture in a series of design exercisesndoy two specific prop-

erties that we introduce in Chapter 2. We expand upon theagyiveboot idea from Chapter 4 in
a real system and implement it. The final design facilitateswmal verification of these security
properties, which we also discuss. Finally, we present thimg system’s design and discuss our

experience building a prototype implementation in Java@nd

1.2.5 Dynamically verifying properties

Some properties are best verified using software analysShépter 6, we look at proving
the correctness of serialization—the process of storiagrttmemory representation of a data struc-
ture, such as a ballot, to a permanent store such as a disktinfywomputerized voting requires
that serialization, and its mate deserialization, worletbgr reliably and predictably.

We propose to use a dynamic check to guarantee proper rgoaivitre ballot from stor-
age. Before the ballot is to be stored to disk, the DRE cheassthe tallier (used to count the
votes) will be able to be reconstruct the serialized bathotproper counting at the end of the day.
If an error is found, the voting machine alerts the voter aedten officials of the error and re-
fuses to proceed. Since the tallier is to be run later undwmpially different conditions, the check
must guarantee that deserialization will always yield #draa results, even in a potentially different
execution environment. For a deserialize function to abwagld the same result, its return value
must only depend on its arguments and any constants compitethe code. It may not depend on
non-deterministic inputs. We call such functicgrsvironment-freeWe develop a static analysis to
check the environment-free property in Java code. Proviagleserialize function is environment-
free allows enables the DRE to check at run-time that theltggd ballot will always be able to
properly to be deserialized. We describe the results of thig@ment free static checker and the

results of using it to prove the correctness of serializatio

10

The environment-freechecker is potentially useful to check other functions tlodlow
the serialization/deserialization pattern. More broasgérialization is just one of a family of com-
mon data transformation routines that litter programs. Balers in the family include encryp-
tion/decryption and compression/decompression. In @najptwe show the checker also can be
used to prove that decryption is the inverse of encryptiorafobAES implementation. We believe,

therefore, that the environment-free checker is usefiudidetthe voting context.

11

Chapter 2

Voting goals & properties

In this chapter, we start with an overview of the voting pssceThis will serve as useful
background for the remaining chapters.

We then present a number of different security goals fongoglystems. Goals reflect so-
cietal desires based on laws and convention. They makerstats about the entire voting process,
can often be subjective and stateable without many techaétails. Goals guide system designers
when they are forced to make engineering tradeoffs. Thefligbals should not be seen as a static
list; for example, the secret ballot, providing privacy amércion resistance, was only adopted in
the 1880s in the United States. The list of voting goals e®lwith the advent of new technology.
We consider six currently accepted goals, and one that mag bee horizon. Achieving these goals
requires not only impeccable technology, but also stringencedures, including voter education,
machine maintenance, pollworker training, and disputeluaéien. We concern ourselves with the
behavior of the entire system, not just the voting technplog

But goals are not sufficient; it is still difficult to measurga@ting system against a goal: a

Design ballot

Voter sign in at polling
station

> o
Voter authentication
PI'."Sta" e Voter interaction Finalize ballots Sum up votes
rint zero-tape Vote storage
PRE-VOTING ACTIVE VOTING POST-VOTING CANVASSING
Figure 2.1: Major steps in the voting process when using DREs

goal is broad and encompasses many facets. We must be varabteut whaspecificproperties we
aim to achieve in our system. A property is a more measurabjgirement than a goal and is meant
to be specific and objective; determining whether a votirgiesy satisfies a property should not be
ambiguous. An example property is that, when the voter isimgatheir selection for a particular
race, the voting system must present all candidates in aatamaccordance with election laws. A
voting machine that always exhibits the property could motditionally omit certain candidates, or

present certain candidates in a smaller font. Upon reati@gdource code, it should be possible to

determine whether this property holds.

We focus on six properties that the rest of the dissertatdmresses. The list is by no

means exhaustive, but is chosen to reflect important piepettat are first and important building

blocks for any voting machine.

13

2.1 \oting overview

Pre-election setup. The full election process incorporates many activitiesonelywhat a voter
typically experiences in the voting booth. Although the &xarocesses differ depending on the
specific voting technology in question, Figure 2.1 ovendelwe common steps for DRE-based
voting. In the pre-election stage, election officials prephallot definition files describing the
parameters of the election. Ballot definition files can be/\eamplex [52], containing not only a
list of races and information about how many selections arvoan make for each race, but also
containing copies of the ballots in multiple languages,i@urchcks for visually impaired voters
(possibly also in multiple languages). Additionally, thedlbt presented to the voter may vary based
on the precinct as well as the voter's party affiliation. Etat officials generally use external
software to help them generate the ballot definition filesteAtreating the ballot definition files,
an election worker will load those files onto the DRE votingcimaes. Before polls open, election
officials generally print a “zero tape,” which shows that mea@ast a ballot prior to the start of the

election.

Active voting. When voter Alice wishes to vote, she must first interact widtion officials to
prove that she is eligible to vote. The election officialstigéze her some token or mechanism to
allow her to authenticate herself to the DRE as an authoriatsf. Once the DRE verifies the token,
the DRE displays the ballot information appropriate forcali e.g., the ballot might be in Alice’s
native language or, for primaries, be tailored to Alice'stpaffiliation. After Alice selects the
candidates she wishes to vote for, the DRE displays a “coafiom screen” summarizing Alice’s

selections. Alice can then either accept the list and casb&léot, or reject it and return to editing

14

her selections. Once she approves her ballot, the DRE dfueesotes onto durable storage and

invalidates her token so that she cannot vote again.

Finalization & post-voting. When the polls are closed, the DRE ensures that no furtheswain
be cast and then prints a “summary tape,” containing an wnalftially of the number of votes for
each candidate. Poll workers then transport the removabtage medium containing cast ballot
images, along with the zero tape, summary tape, and otherialat to a central facility for tallying.
During the canvass, election officials accumulate votdg@ad cross-check the consistency of all

these records.

Additional steps. In addition to the main steps above, election officials capleynvarious au-

diting and testing procedures to check for malicious bedra¥ior example, some jurisdictions use
parallel testing, which involves sequestering a few mashirentering a known set of votes, and
checking whether the final tally matches the expected taligo, one could envision repeating
the vote-tallying process with a third-party tallying aipption, although we are unaware of any
instance where this particular measure has been used iticpraé/hile these additional steps can

help detect problems, they are by no means sulfficient.

2.2 \oting goals

In this section, we enumerate a number of broad goals fongatystems.

Goal 1. One voter/one vote:The cast ballots should exactly represent the votes casidiynhate

voters. Malicious parties should not be able to add, dupéicar delete ballots.

15

This goal emphasizes that each legitimate voter should &e&etly one vote toward each race. It
should be impossible for the voters themselves, desigiigne voting technology, election officials,
or other people to subvert this goal. Procedures and votitigypcan greatly impact whether this
particular goal is successfully achieved. For examples itriperative that the polling station be
staffed with adequate supplies of voting materials (wheithee voting machines or blank ballots).
Insufficient allocation or resources impinges on this gpafr technology design can also adversely
affect the goal, either by increasing the amount of resaureeded, or through errors that can
surreptitiously allow people to add or drop ballots at wilt also requires the poll workers to

determine who is a legitimate voter.

Goal 2. Cast-as-intended: A voter should be able to reliably and easily cast the baleait they

intend to cast.

Cast-as-intended gets to the heart of voting — in esseneeydter must be able to reliably and
consistently express their desired opinion for a particelaction. Meeting this goal requires over-
coming many challenges. Broadly, 1) the voting machine mprestent all choices for their particular

ballot in a non-biased manner. As subtle changes in layodéroor presentation can influence the
voter to favor one choice over another, the voting machinstmpresent all choices in as equitable
manner as possible; 2) the voter must be able to expresgigsies among the choices. The voting
machine should not make it more difficult to chose one candidaer another; 3) the completed
ballot must be stored without changes and kept for tallyingeu all conditions. It is also impera-

tive that the voter must be able to express their selectiasgyeand efficiently and should strive to

reduce inadvertent errors.

There are a host of issues underlying each of the three abimikemges. As just one

16

example, a voter who is unfamiliar with computers must h&edame opportunities to express
their votes as a computer-literate person. On electrortioy@echnology, this can be challenging.

Designing user interfaces and ballot layouts that are uiguobs to first-time users is challenging.

Goal 3. Counted-as-cast: The final tally should be an accurate count of the ballots tiaate been

cast.

The counted-as-cast goal assures the accuracy of the filgalAghieving this goal requires that
ballots are not modified or lost, and will properly be recamstied in a form that reflects the original
cast ballot form. The challenge is assuring this despiter poocedures, lost or broken voting

machines, and ambiguities in determining the voter’s inten

Goal 4. Verifiability: It should be possible for participants in the voting procesgrove that
the voting system obeys certain properties. For examplenwéferring to goals 2 and 3 (cast-as-
intended and counted-as-cast), the voter should be ablei@go themselves that their ballot own
ballot was cast-as-intended, and all voters should be ablervve to themselves (and others) that

all of the ballots are properly counted-as-cast.

Verifiability is a property that allows voting participants easily prove the correct operation of
some portion of the voting process. When discussing veilifiglit is critical to consider who is
verifying the particular property under consideration. &hhe voter is performing the verification,
it is imperative to consider the usability of the verificatiprocess. A property cannot reasonably
called verifiable by the voter if it requires the voter to azal source code. It would take the
average voter far too long to learn the required skills. Hamvet would be appropriate to call such
a property verifiable by software experts since they pogbessequired skills.

In this dissertation, we seek to enable software expertsrify\a set of security properties.

17

Chapter 3 analyzes two cryptographic voting protocols giravide verifiably cast-as-
intended and verifiably counted-as-cast to the voteesifiably cast-as-intendetheans each voter
should be able to verify her ballot accurately represengsviite she cast. Often, this includes
looking at a website after votingVerifiably counted-as-cagheans everyone should be able to
verify that the final tally is an accurate count of the ballotsitained on the website, for example.
The difficult in achieving verifiability is doing so while algpreserving a voter’s privacy. Typically,
solutions that strive for verifiability of cast-as-intedand counted-as-cast include at least some

cryptographic techniques.

Goal 5. Privacy: Ballots and all events during the voting process should beaie secret.

A voter should be able to trust that their ballot and all iattions with the voting machine will
remain hidden. In cases where the ballot is published, itilshoot be possible to link the ballot
with the voter. The first part of the goal would even precluadirect privacy leaks, whereby the
voting machine changes its behavior in response to votéshiwe already been cast. Preserving
privacy requires effort from the voting machine designexrsvall as the poll workers, since lapses

by either can result in privacy leaks.

Goal 6. Coercion resistance: A voter should not be able to prove how she voted to a thirdypart

not present in the voting booth.

Coercion resistance is related to privacy. A voter shouldbecable to collude with an outsider in
order to prove how they voted. Put another way, a voter shootce able to subvert their own
privacy. There is a typical caveat with this goal: coerciesistance is not offered when the voter

brings another person (or the electronic equivalent: ard#eg device) into the polling booth with

18

them. In this case, the voter's companion can directly otesell of the voter’s interactions with the

voting machine

2.3 Specific properties

As stated, properties are measurable aspects of a votitegrsgeals. One must be careful
in which properties are required. It is possible that désiga voting system to exhibit one security
property may help one goal to the detriment of another. Ase@wmnple, a property requiring
voting systems to provide voters with a printout of their@egn selections to take home may help
guarantee cast-as-intended, but at the cost of coerci@mtaese.

Resolving these tradeoffs requires guidance from polickersa They are in the best
position to guard and balance different stakeholderstésts. It is the job of computer scientists to
point out the tradeoffs.

We now present specific properties that this dissertatiork wdll address. These prop-
erties represent some aspect of one or more of the above gotlren't sufficient on their own to

guarantee any of these goals are met.

Property 1. None of a voter’'s interactions with the voting machine, udahg the final ballot, can

affect any subsequent voter’s sesstons

This property has implications for Goals 2 and 5. A DRE thdtiewes Property 1 will prevent
two large classes of attacks: one against election inyegnitl another against privacy. One way to

understand this property is to consider a particular vosiygtem design that exhibits the property.

'Note that some interactions may be unavoidable. For exarapl@lectronic ballot box that becomes “full” on a
voting machine should not allow subsequent voters to vdtés ifiteraction is a desired and unavoidable interactidre T
remedy here is to ensure that if the ballot box becomes hékeg will be no subsequent voters.

19

A DRE can be “memoryless,” so that after indelibly storing thallot, it erases all traces of the
voter’s actions from its RAM. This way, a DRE cannot use th&ers choices in making future
decisions.

A DRE that is memoryless cannot decide to change its behavibe afternoon on elec-
tion day if it sees the election trending unfavorably for @aadidate. Similarly, successful verifi-
cation of this property guarantees that a voter, possiblly thie help of the DRE or election insider,
cannot learn how a prior voter voted.

We discuss this property in Chapters 3 and 4.

Property 2. A ballot cannot be cast without the voter’s consent to cast it

Property 2 ensures the voter’s ballot is only cast with tkeimsent; a voting machine that always
exhibits this property will help achieve Goal 2 (Cast-aeimled). When a ballot is cast with the
voter’s consent and at the proper time, guarantees thabtkee lvas had the chance to see all races
and has had the option of editing their selections beforéngasAdditionally, when combined with
other security measures, this property helps guarantdealfeg box cannot be stuffed by the DRE.
If each cast operation requires a human'’s input, and the ClRBat automatically cast additional

ballots.

Property 3. The DRE cannot leak information through the on-disk formAalditionally, the ballot

box should be history-independent and tamper evident.

Part of Property 3 directly supports Goal 5 (Privacy). Reqggithe on-disk format to be history-
independent means that it should not leak the order thats/etted on the DRE. A DRE exhibiting
this property would reduce the burden on procedures to safdghe electronic ballot box. If the

ballot box were not history-independent, the ballot box Matontain the order in which voters

20

voted. It would then be easy for an adversary to correlateotder in which voters voted with
the order in which they entered the polling station and tlrgk ballots to people. This ultimately
compromises voter privacy.

This property can also further Goal 3 (Counted-as-casthelbn-disk format of the ballot
box does not reveal the vote order, it may be possible to glulaln exact copy of the ballot box.
This allows anyone to collate the ballot boxes from all DREs iprecinct and recreate the final
tally to double check the tabulation proces$he ballot box must be history-independent in order
to safely publish it.

We can use the techniques developed in conjunction with &adhal. in implementing

Property 3 [55].
Property 4. The DRE only stores ballots that have been approved by tlee vot

Property 4 refers to a few conditions. The DRE must not chadhgédvallot after the voter chooses
their candidates. Additionally, the voter must have a chancsee the contents of the ballot and
approve or reject it. The ballot structure may be passedigir@onfirmation screens and to serial-
ization mechanisms before it is ultimately stored; throadifthis, it must remain unmodified. This

is another aspect of Goal 2 (Cast-as-intended).

Property 5. There should be a canonical format for the ballot so thereniy @ne way to represent

the voter’s choices.

Violation of Property 5 could violate the voter’s privacyea if the voter approves the ballot. Sup-

pose the voter’s choice, “James Polk” were stored with araesfiace: “JamesPolk”. The voter

2However, there are some subtleties to publishing the badieés: if the votes are to be published, they must be done
in a manner that does not enable vote-selling. For exampiateabuyer may offer cash if a voter makes a selection for a
high-profile race and then fills in a particular string for atesin candidate in a different race. The vote-buyer willyon
pay if one ballot among the published ballots contains tieegsranged string and a vote for the candidate they ordered.

21

would not likely notice anything were amiss, but this coutshwey privacy leaking-information in

a subliminal channel, described in Chapter 3.

Property 6. The ballot counted in the tally stage should be the same astheemory copy ap-

proved by the voter at the voting machine.

This property, an aspect of Goal 3 (Counted-as-cast), gteea that the ballot recording software
can properly hand off the ballot to the tally machine. It regsithat the serialized version of the in-
memory ballot the voter fills out must be properly deseraliinto an equivalent in-memory copy
when needed by the tallying software.

We do not expect these to be an exhaustive list of the desissgalurity properties; rather,
they are properties that we believe are important and thatamezasily achieve with the contribu-

tions of this work.

22

Chapter 3

Cryptographic voting protocols

In this chapter, we look at two cryptographic voting protscd hey provide the voter the
opportunity to verify their own vote was cast-as-intended that all votes were counted-as-cast.
This is a major step forward in the capabilities of votingteyss.

However, in this chapter, we show it is imperative to viewatographic protocols as a part
of a complete voting system and consider the security iraptias of all surrounding procedures and
the implementations of the protocols. Doing so for theseégmals reveals privacy vulnerabilities
through subliminal channels (the ramifications of whichl Wwé mitigated through some strategies
suggested in Chapter 4), and opportunities for denial oiceattacks.

Parts of this work are drawn with permission from previoysiplished work [39].

3.1 Introduction

Trustworthy voting systems are crucial for the democraticpss. Recentlglirect record-

ing electronicvoting machines (DREs) have come under fire for failing to itleis standard. The

23

| Weakness Protocols | Threat Model | Affects |
Random subliminal channels Neff Malicious DRE colluding| Voter privacy &
w/ outsider coercion resistance
Semantic subliminal channe|sChaum Malicious DRE colluding| Voter privacy &
w/ outsider coercion resistance
Denial of service attacks Neff & Malicious DRE or Voter confidence &
Chaum tallying software election integrity

Table 3.1: Summary of weaknesses we found in Neff’'s and Clewmting schemes.

problem with paperless DREs is that the voting public hasaugvay to tell whether votes were
recorded or counted correctly, and many experts have artipadwithout other defenses, these
systems are not trustworthy [42, 57].

Andrew Neff and David Chaum have recently proposed revaatiy schemes for DRE-
based electronic voting [19, 60, 61]. The centerpiece dfdlsehemes consists of novel and sophis-
ticated cryptographic protocols that allow voters to wetiifeir votes are cast and counted correctly.
Voting companies Votegrity and VoteHere have implementedutn’s and Neff's schemes, respec-
tively. These schemes represent a significant advance oseiops DRE-based voting systems:
voters can verify that their votes have been accuratelyrdech and everyone can verify that the
tallying procedure is correct, preserving privacy and cimer resistance in the process. The ability
for anyone to verify that votes are counted correctly isipaldrly exciting, as no prior system has
offered this feature.

This chapter presents a first step towards a security aradfshese schemes. Our goal
is to determine whether these new DRE-based cryptograpfiicgvsystems are trustworthy for use
in public elections. We approach this question from a systperspective. Neff’s and Chaum’s
schemes consist of the composition of many different ciyatphic and security subsystems. Com-

posing security mechanisms is not simple, since it can keadlitle new vulnerabilities [28, 48, 64].

24

Consequently, it is not enough to simply analyze a protoc@ubbsystem in isolation, as some at-
tacks only become apparent when looking at an entire sydtetead, we perform a whole-system
security analysis.

In our analysis of these cryptographic schemes, we foundnesses in that subliminal
channels may be present in the encrypted ballots. Thesskattmuld potentially compromise
election integrity, erode voter privacy, and enable votercion. In addition, we found several
detectable but unrecoverable denial of service attacksndéethat these weaknesses only became
apparent when examining the system as a whole, underlihmgrportance of a security analysis
that looks at cryptographic protocols in their larger sysecontext.

The true severity of the weaknesses depends on how thesmestae finally imple-
mented. During our security analysis, one challenge we ddéal with was the lack of a complete
system to analyze. Although Neff and Chaum present fullgifigel cryptographic protocols, many
implementation details—such as human interfaces, systlesign, and election procedures—are
not available for analysis. Given the underspecificatibrs impossible to predict with any confi-
dence what the practical impact of these weaknesses maydmseQuently, we are not yet ready
to endorse these systems for widespread use in public arectiStill, we expect that it may be
possible to mitigate some of these risks with proceduradchnical defenses, and we present coun-
termeasures for some of the weaknesses we found and ideatifg areas where further research

is needed. Our results are summarized in Table 3.1.

25

3.2 Preliminaries

David Chaum and Andrew Neff have each proposed a cryptographing protocol for
use in DRE machines [13, 19, 60, 61, 89]. Although these paigodiffer in the details of their
operation, they are structurally similar. Both protocaisvithin the DRE voting steps in Figure 2.1.
However, they introduce a few extra actions, which we oathere.

In the pre-voting stage, a setelection trusteesvith competing interests are chosen such
that it is unlikely that all trustees will collude. The trass interact amongst themselves before the
election to choose parameters and produce key materialtusmeyhout the protocol. The trustees
should represent a broad set of interest groups and govatalegencies to guarantee sufficient
separation of privilege and discourage collusion amongrtistees.

Active voting begins when a voter visits a polling stationcst her vote on election
day, and ends when that ballot is cast. To cast her vote, tteg wderacts with a DRE machine
in a private voting booth to select her ballot choices. TheEDRen produces an electronic ballot
representing the voter’s choices and posts this to a publietim board. This public bulletin board
serves as the ballot box. At the same time, the DRE interaitkstie voter to provide aeceipt
Receipts are designed to resist vote buying and coerciahdamot allow the voter to prove to a
third party how she voted. Also, each voter’s ballot is asstha uniquéballot sequence number
(BSN). BSNs ease auditing and verification procedures,ouitiompromising voter privacy.

After all ballots have been posted to the bulletin boardyaasing stage begins. The elec-
tion trustees execute a publicly verifiable multistage nak where each trustee privately executes
a particular stage of the mix net [33, 61]. To maintain anoiynthe trustees strip each ballot of

its BSN before it enters the mix net. Each stage of the mix aletd as input a set of encrypted

26

ballots, partially decrypts or re-encrypts them (depegain the style of mix net), and randomly
permutes them. The final result of the mix net is a set of m@ainballots which can be publicly

counted but which cannot be linked to the encrypted ballots @oter identities. In cryptographic

voting protocols, the mix net is designed to be universadlyifiable: the trustee provides a proof
which any observer can use to confirm that the protocol has toflewed correctly. This means a
corrupt trustee cannot surreptitiously add, delete, er &iallots.

At various points during this process, voters and obsemweng engage in election verifi-
cation. After her ballot has been recorded on the publicchinlboard, the voter may use her receipt
to verify her vote was cast as intended and will be accuratglyesented in the election results.
Note that the receipt does not serve as an official recordeofdker’s selections; it is only intended
for convincing the voter that her ballot was cast correcjection observers (e.g., the League of
Women Voters) can verify certain properties about ballotshe public bulletin board, such as, that
all ballots are well-formed or that the mix net procedure wagormed correctly.

Both the Chaum and Neff protocols require DRES to contairigperinting devices for
providing receipts. The security requirements for thetpriare: 1) the voter can inspect its output,
and 2) neither the DRE nor the printer can erase, change, eswvate anything already printed
without the voter immediately detecting it. There are sonfier@nces in the tasks these devices

perform and additional security requirements they musttpvegch we will discuss later.

3.2.1 Threat models

We must consider a strong threat model for voting protocbisnational elections, bil-
lions of dollars are at stake, and even in local electionstroding the appropriation of municipal

funding in a large city can be sufficient motivation to conmpise significant portions of the election

27

system [41]. We consider threats from three separate saUDIRES, talliers, and outside coercive
parties. To make matters worse, malicious parties mightideltogether. For example, malicious
DREs might collude with outside coercers to buy votes.

Malicious DREs can take many forms [5]. A programmer at theufecturer could insert
Trojan code, or a night janitor at the polling station coulstall malicious code the night before the
election. We must assume malicious DREs behave arbitrafdyification of all the DRE software
in an election is hard, and one goal of Neff’s and Chaum’s s&sas to eliminate the need to verify
that the DRE software is free from Trojan horses.

We also must consider malicious parties in the tallying pss¢ such as a malicious bul-
letin board or malicious trustees. These parties wieldifsagmt power, and can cause large prob-
lems if they are malicious. For example, if the bulletin wbermalicious, it can erase all the ballots.
If all the software used by the trustees is malicious, it darbse the private portions of the trustees’
keys, making ballot decryption impossible.

To evaluate a voting system’s coercion resistance, we noustider outside coercive par-
ties colluding with malicious voters. We assume the coeigerot present in the voting booth.
Attacks where the coercer is physically present are outsidescope of voting protocols and can
only be countered with physical security mechanisms. @ityil attacks where a voter records her
actions in the poll booth (e.g., with a video or cell phone eea are also outside the scope of
voting protocols, and we do not consider them here.

Finally, we must consider honest but unreliable participakRor example, voters and poll
workers might not fully understand the voting technologwtilize its verification properties, and a

malicious party might be able to take advantage of this ignoce, apathy, or fallibility to affect the

28

outcome of the election.

3.3 Two voting protocols

In this section, we describe Neff’s and Chaum’s voting prots in detail.

3.3.1 Neff's scheme

Andrew Neff has proposed a publicly verifiable cryptograpboting protocol for use in
DREs [60, 61]. During election initialization, the trusseperform a distributed key generation
protocol to compute a master public key; decryption willyobé possible through the cooperation
of all trustees in a threshold decryption operation. Alker¢ is a security parametérA DRE can
surreptitiously cheat with a probability 6f ¢. Neff suggestd0 < ¢ < 15.

Neff's scheme is easily extensible to elections with midtipaces, but for the sake of
simplicity assume there is a single race with candidétes .., C,,. After a voter communicates
her choiceC; to the DRE, the DRE constructs an encrypted electronic tra@fwesenting her choice
and commits to it. Each ballot is assigned a unique BSN. Thervs then given the option of
interacting with the DRE further to obtain a receipt. In Fig3.1, we show an example of a receipt
taken from the VoteHere website. This receipt enables tker vo verify with high probability that
her vote is accurately represented in the tallying process.

After the voter communicates her intended chaiteo the DRE, it constructs eerifiable
choice (VC) for C;. A VC is essentially an encrypted electronic ballot repnéisg the voter's
choiceC; (see Figure 3.2). A VC is a x £ matrix of ballot mark pairs(BMPs), one row per

candidate (recall thatis a security parameter). Each BMP is a pair of El Gamal cigl&s. Each

29

UOTE VERIFICATION RECEIRT
BALLAT RAB7E3

——Begin Ballat Reaord—
OEEP /B eOr N Taak s T2 2XNEL L 2RITOUE

——-Enfl Ballat Record——

2rea WPAR M2 44

Jones 1LH
Swith RE3
Martinez 2

G2 Bond LEus

ey AATT L4l
'l] PaT
Mo Zop

———===-fpdin Sifnaturg-———-
nOTMAF UsiiF N Rh Y dsa e IR Y.

————End Bi#nature——r

PLEASE KEEF THiE RECEIFT TO
VERIFY YOUR BALLOT DMLINE.

Figure 3.1: This is an example of a detailed receipt for Neficheme, taken from the VoteHere
website http://www.votehere.com

30

1 2 3 l
¢\ [0 (10 (01 +++ [0
‘702 @@ e oo E
Cs [1][0] [o][1] [o][1] -+ [1][0O]

Cn[1][0] [1][0] [o[2 «-- [1[d

Figure 3.2: A verifiable choice (VC) in Neff’'s schem@,] represents an encryption of bit This
VC represents a choice of candidaie. Note the second row contains encryptiong@f0) and
(1,1), and the unchosen rows contain encryptiongioi) and(1,0).

ciphertext is an encryption of 0 or 1 under the trusteestjpublic key, Writter@ or for short.
Thus, each BMP is a p , an encryption ofb, be).

The format of the plaintexts in the BMPs differs between thw corresponding to the
chosen candidat€; (i.e., rows) and the other (“unchosen”) rows. Every BMP in rowhould take
the form[0][0] or[1][1]. In contrast, the BMPs in the unchosen rows should be of the]

or @ Any other configuration is an indication of a cheating or forattioning DRE. More

precisely, there is @ x £ matrix z so that thek-th BMP in unchosen row is , and

the k-th BMP in the choice row is.

Consider the idealized scenario where all DREs are honésttrilistees can tally the votes
by decrypting each ballot and looking for the one row coirgisof (0,0) and(1,1) plaintexts. If
decrypted rowi consists of(0,0) and(1,1) pairs, then the trustees count the ballot as a vote for
candidateC;.!

In the real world, we must consider cheating DREs. Up to tlisitpin the protocol,
the DRE has constructed a VC supposedly representing tees/ohoiceC;, but the voter has no

assurance this VC accurately represents her vote. How caletget a dishonest DRE?

'This is a simplified view of how the trustees tally votes in féescheme, but it captures the main idea.

31

Neff’s scheme prints the paiBSN, hasiV C)) on the receipt and then splits verification
into two parts: 1) at the polling booth, the DRE will provide mteractive proof of correct con-
struction of the VC to the voter; 2) later, the voter can coragdzer receipt to what is posted on
the bulletin board to verify that her ballot will be propedgunted. At a minimum, this interactive
protocol should convince the voter that révicorresponding to her intended selection) does indeed
contain a set of BMPs that will be interpreted during talfyias a vote foiC;, or in other words,
each BMP in her chosen row is of the fo @ Neff introduces a simple protocol for this: for
each such BMP, the DRE providepkedgebit p; then the voter randomly selects the left or right
position and asks the DRE to provide a proof that the cipRemethat position indeed decrypts to
p; and the DRE does so by revealing the randomness used int¢hggan. Here we are viewing
the ciphertex@ as a commitment té, and@ is openedby revealingb along with the random-
ness used during encryption. If this BMP has been correotinéd a@ @ the DRE can always
convince the voter by using the valbes a pledge; however, if the BMP contains eitl@ or
@, the voter has é probability of detecting this. By repeating the protocal &ach of the/
BMPs in rowi, the probability that a malformed row escapes detectioadsiced tq5)¢. The role
of the interactive protocol is to ensure that the receipkvélconvincing for the person who was in
the voting booth but useless to anyone else.

In practice, it is unrealistic to assume the average vot#wiable to parse the VC and
carry out this protocol unassisted within the polling stati Instead, Neff's scheme enables the
voter to execute it later with the assistance of a trustetiveoé program. The DRE first prints the
pledges on the receipt, and then receives and prints thesvotallenge. The challengg for the

row : is represented as a bit string where #th bit equal to 0 means open the left element of the

32

1 2 3 l
¢ (0@ @0 ©[F -+ [0
‘702 @ @ @@ e oo @
Cs W[o] [0]@ O[] -+ (20

Cn (D[0] @[] [0)(D ~-- [1]CO

Figure 3.3: An opened verifiable choice (OVC) in Neff's scleeis] represents an encryption of bit
b, and(® represents an opened encryption ofthiAn opened encryption df contains both and
the randomness used to encrypk in the VC.

k-th BMP and 1 means open the right element.

The DRE then constructs awpened verifiable choic@OVC) according to the voter's
challenge and submits it to the bulletin board. In Figure 88 show an example of an OVC
constructed from the VC in Figure 3.2. We represent an opemedyption of bitb in an half-
opened BMP b@. In the OVC, the opened BMPs in roivare opened according tg, so that
each half-opened BMP contains a pair of the f@ (if iy = 0) or@ (if c;p = 1). TO
ensure that the OVC does not reveal which candidate wasee)¢he BMPs in the unchosen rows
are also half-opened. In unchosen rivthe DRE selects afibit challengec; uniformly at random

and then opens this row accordingdo Thus, an OVC consists of anx ¢ matrix of half-opened

33

BMPs. Consequently, the usual invocation of the receighédron protocol is as follows:

1. Voter — DRE:)

2. DRE — Printer: BSN, hashV ()

3. DRE — Printer: commit(py,...,pn)
4. Voter —» DRE: Ci

5. DRE — Printer: Cly---,Cp

6. DRE — B. Board: OV(C

Here we defing; ;, = z;; andp;r = =1 ® c; (j # 7). While at the voting booth, the voter only
has to check that the challengeshe specified does indeed appear on the printed receipt irtthe
position (i.e., next to the name of her selected candidatafer, the voter can check that the OVC
printed in step 5 does appear on the bulletin board and nmatbleehash printed in step 2 (and that
the candidates’ names are printed in the correct order)iratdhe OVC contains valid openings of
all the values pledged to in step 3 in the locations indicatethe challenges printed in step 5. Note
that the VC can be reconstructed from the OVC, so there is ad teeprint the VC on the receipt
or to post it on the bulletin board.

To prevent vote buying and coercion, the voter is optionalligwed to specify challenges
for the unchosen rows between steps 2 and 3, overriding tHe<dfault random selection of
(j #). If this were omitted, a vote buyer could tell the voter irvauice to vote for candidai@;
and to use some fixed value for the challegeand the voter could later prove how she voted by
presenting a receipt with this prespecified value appeantei-th challenge.

After the election is closed, the trustees apply a univirsalrifiable mix net to the col-
lection of posted ballots. Neff has designed a mix net for Bhfal pairs [58, 61], and it is used

here.

34

1. Voter — DRE: 1

2. DRE — Printer: BSN, hasi{VC)

3. DRE — \Voter: basic or detailed?

4. \Voter— DRE: r, wherer € {basic detailed
5a. DRE — Printer: commit{p1,...,pn)

5b. Voter —» DRE: (o

5c. DRE — Printer: c¢1,..., ¢y

6. DRE — B. Board: OVC

Figure 3.4: Summary of receipt generation in Neff's schenitl tihe option of basic or detailed
receipts. StepSa, 5b, and5c¢ happen only ifr = detailed.

In VoteHere’s implementation of Neff’s scheme, voters areerg the option of taking
either adetailedor basicreceipt. The detailed receipt contains all the informatiescribed in this
section (Figure 3.1), but a basic receipt contains only ie ([BSN, hash¥ C')). This decision is
made separately for each race on a ballot, and for each raice tioter selects a detailed receipt she
must independently choose the choice and unchosen chedléogthat race.

A basic receipt affords a voter only limited verification aelpities. Since a basic receipt
foregoes the pledge/challenge stage of Neff’'s scheme ea gatnot verify her ballot was recorded
accurately. However, a basic receipt does have some valgmables the voter to verify that the
ballot the DRE committed to in the poll booth is the same o #ppears on the bulletin board.
Since the DRE must commit to the VC before it knows whethewntiter wants a detailed or basic
receipt, a DRE committing a VC that does not accurately ssrethe voter's selection is risking

detection if the voter chooses a detailed receipt. Thepépedtocol augmented with this additional

N

Pres:! Bo
Sen: Adamsu

Ve

N

Top IaM \Bottom layer

et o i
M e e
S e
R wmm m
e P e
i i~ i "
e e
e e e

35

Figure 3.5: Representation of the printed ballot and traresgries in Chaum’s scheme. The top two
images show the ballot as well as a zoomed in portion of theoweolayed transparencies portrayed
below.

choice is summarized in Figure 3.4.

3.3.2 Chaum’s visual crypto scheme

David Chaum uses a two-layer receipt based on transpareeitssior his verifiable voting
scheme [13, 19, 89]. A voter interacts with a DRE machine toegete a ballot imag® that
represents the voter's choices. The DRE then prints a ddewge on each transparency layer.
The ballot bitmaps are constructed so that overlaying theata bottom transparenci€g énd B)
reveals the voter’s original ballot image. On its own, hoareeach layer is indistinguishable from
a random dot image and therefore reveals nothing about tee€sohoices (see Figure 3.5).

The DRE prints cryptographic material on each layer so tmatrustees can recover the

original ballot image during the tabulation phase. The wetdects either the top or bottom layer,

36

Encoding for Transparencyl: By 0: g®
Encoding for Overlay I O ™

or iy

@, Truth Table| 0, 1=1 Mo, =N
00,0=0 Mo, ="
1@,1=0 o, Bj=N
16,0=1 o, ==

Figure 3.6: Visual cryptography overview. A printed pixel a single transparency has a value in
{0,1}, encoded as shown in the first row. We apply the visual xoraipes, by stacking two
transparencies so that light can shine through areas wiheibpixels are clear. The pixels in the
overlay take values fronfi0, 1}. The bottom table shows the truth table for the visual xoraioe
and its parallels to the binary xor operator.

and keeps it as her receipt. A copy of the retained layer iledam the bulletin board, and the other
layer is destroyed. The voter can later verify the integpityheir receipt by checking that it appears
on the bulletin board and that the cryptographic materialai formed.

Visual cryptography exploits the physical properties aehsparencies to allow humans
to compute the xor of two quantities without relying on usted software. Each transparency is
composed of a uniform grid gfixels Pixels are square and take valuegnl}. We print g® for
a 0-valued pixel and®yg for a 1-valued pixel. We refer to each of the four smaller sgsiavithin
a pixel assubpixels Overlaying two transparencies allows light to shine tigtoonly in locations
where both subpixels are clear, and the above encodingiexhis so that overlaying performs
a sort of xor operation. Pixels in the overlay take valueg(ini}. Pixels in the overlay have a
different appearance than those in the individual trarespar layer:0 appears agM or By, while
1 appears asji]. Using @, to represent the visual overlay operation, we see @h@at, 0 = 0,
0@, 1 =1, andin general it ® b = ¢ thena @&, b = ¢ (see Figure 3.6).

Chaum’s protocol satisfies three properties:

37

1. Visual Check: Given the desired ballot imad® the DRE must produce two transparencies
T and B so thatT' @, B = B. This property allows the voter to verify the correct forinat

of the two transparencies.

2. Recovery: Given a single transparendy or B and the trustee keys, it must be possible to

recover the original ballot imagB.

3. Integrity: T andB contain a commitment. There is a way to of®ior B and to verify the
opening so that for all other top and bottom pdifsand B’ such thatl” &, B’ ~ B andT”
(or B") does not decrypt t#3, then B’ (or T") is unopenable. In other words, for a pair of
transparencies that overlay to fo8n(or a close enough approximation for the voter to accept
it as), the DRE should only be able to generate a witness for apgeaaacy if the other

transparency decrypts

We will consider each pixel to have a tyge{| P|, [E]} in addition to its values {0, 1}.
The pixel's type will determine how we compute the value. el pixels on the transparency so
that no pixels of the same type are adjacent to each othenjrigra repeating grid of alternating

pixel types. Additionally, when the two transparencies sieecked, we require th@-pixels are

only atop-pixels and-pixels are only ato-pixels. The upper left corner of the top

. EPE . PEP
transparency looks likeg5E, and the upper left corner of the bottom transparency lodks EEE.

The—pixels in a layer come from a pseudorandom stream. Thestieaomposed of separate
streams, one from each trustee. Each of these trustee stiedrased on the trustee number and
the voter’'s BSN; the seed will be encrypted using each telssfgublic key requiring the trustee to
participate in the decryption process. The value ofpixel is set so that overlaying it with

the correspondin@-pixel in the other layer yields a ballot pixel. -pixel alone reveals no

38

information: it is the xor of —pixel and the ballot image.

Details on transparency formation

The pseudorandom stream for a given transparency is comhpwise pseudorandom
streams, each of which is seeded by a different value. Fbrafabe top and bottom transparencies,

there is one stream per trustee. Thdrustee’s seed for the top is
sti £ h(signy, (BSN), 1) (3.1)

where BSNrepresents the unique ballot sequence numbenedsio the voter and sig{(-) is a
signature using;, a key specific to the DRE, arid-) is a hash function. Thé" trustee’s seed for
the bottom is

sb; £ h(sign, (BSN), 1) (3.2)

The hash expansion functidii(-) is used to generate the trustee stream. Trustee streamsrace x

together to produce the pseudorandom stream for the top laye
n
PT 2P W (st;) (3.3)
=1
The corresponding bottom stream uses the bottom seeds:
n
PBEEP M(shi) (3.4)
=1

We can now define each pixel’s value. We view the ballot asemastrof pixelsB, and
B[i] denotes th&'™ pixel. A -pixel i on the top transparency is assigned the vadlig:]. The
-pixel i on the bottom transparency is defined to have vatdg:] @ B[i]. When viewing the

two transparencies in alignment, then, the voter sees tmakballot streant? because’Ti] &,

39

(PTT[i] @ B[i]) = PT[i] @ (PT[i] @ B[i]) = B[i]. When taken alone, neither transparency reveals
any information since each pixel is either pseudorandoralyegated or the xor of a pseudorandom
guantity and the original ballot.

After constructing the two layers, the DRE appends an oniamyption of the seeds so

the trustees can jointly recovétT or PB. The DRE adds

DB £ ey, (sbnllex, , (- -- llex, (sballex, (sb1))))

DT £ ey, (stnlle,_, (- - - |lex, (sta]lex, (st1)))) (3.5)

to each transparencyDT and DB are known as dollse, (:) is a public-key encryption function
that uses the™ trustee’s public keyk;.

The voter is then presented a choice to either choose thertbptimm transparency as
a receipt. After the voter chooses a receipt layer, the DRiemgbs signatures committing to the
voter’s and its choices. Without loss of generality, assuhgevoter keeps the top transparency
as a receipt. The DRE then prints sigiBSN) as an opening for the top layer (see the integrity
requirement of the previous section). This opening alldvesvibter to verify that the DRE properly
formedst; and that the DRE printed t-pixels on the chosen layer as it should. By recreating
the onion encryption, the voter can verify thafl" is properly formed. Finally, the DRE appends
a copy of the chosen layer to the bulletin board. We show a ssammmof Chaum’s protocol in
Figure 3.7.

When the voter performs these checks, a malicious DRE hgsadnl2 chance of evad-
ing detection. By extension, its chance of changing a sicanti number of ballots without being
caught is exponentially small. For instance, a DRE can dne&irming th-pixels incorrectly

so the voter will see what they expect in the overlay yet tHebwill decrypt to some other im-

40

1. Voter - DRE: candidate choices

2. DRE — Printer: transparency images

3. DRE — Printer: BSN, DB, DT

4. Voter — Printer: ¢ wherec € {top, bottom}
5. DRE — Printer: sign,_(BSN),

Signy, . (BSN, DT, DB, chosen transparengy

Figure 3.7: Summary of Chaum’s protocol.

age. However, the voter will detect cheating if her recaghs$parency contains incorrectly formed
—pixels. Therefore, a malicious DRE must commit to cheatingither the top or bottom trans-
parency (not both, or else it will surely be caught) and hdywevbter does not choose that layer as

a receipt.

Tabulation & verification

Chaum uses a Jakobsson et al. style mix net to decode th@dransy chosen by the
voter and recover their choices frafin the tallying phase [33]. The values of the pseudorandom
pixels do not contain any information, while the encryptéxe|s contain the ballot image xor-ed
with the pseudorandom pixels from the other transparenoye&ch ballot that a trustee in the mix
net receives, trusteen the mix net recovers its portion of the pseudorandom strdaet's assume
the voter chose a top transparency. In the case, trastééefirst decrypt the doll provided by the
DRE (Equation (3.5)) to obtaisb; and then xor'(sb;) into the—pixels in the encrypted ballot.

This trustee next permutes all of the modified ballots andgmshe collection to the next trustee.

41

When the ballots exit the mix net, t@—pixels still contain pseudorandom data, but the encrypted

pixels will contain the voter’s ballot pixels fror.

3.4 Subliminal channels

Subliminal channels, also known as covert communicatiaanohls, arise in electronic
ballots when there are multiple valid representations obtens choices. If the DRE can choose
which representation to submit to the bulletin board, thenahoice of the representation can serve
as a subliminal channel. Subliminal channels are partiguwerful because of the use of public
bulletin boards in voting protocols. A subliminal channelkallots on the bulletin board could
be read by anyone (if the decoding algorithm is public) owydmn} a select few (if the decoding
algorithm is secret).

A subliminal channel in an encrypted ballot carrying theevist choices and identifying
information about the voter threatens voter privacy andoksavote coercion. For example, as
Keller et al. note, a DRE could embed in each encrypted b#itime when the ballot was cast
and who the voter chose for president [40]. Then, a malicahserver present in the polling place
could record when each person voted and later correlatevittathe data stored in the subliminal
channel to recover each person’s vote. Alternatively, if aicious poll worker learns a voter’s
BSN, she can learn how a person voted since each encryptetliibaludes the BSN in plaintext.
Detecting such attacks can be quite difficult: without sfiedinowledge of how to decode the
subliminal channel, the encrypted ballots may look congbyetormal. The difficulty of detection,
combined with the enormous number of voters who could betteby such an attack, makes the

subliminal channel threat troubling.

42

The above scenarios illustrate how an adversary can aighintiearn how someone
voted. Coercion then becomes simple: the coercer reqiieagoter to reveal their BSN or the time
at which they voted, then later verifies whether there exigtsllot with that identifying information
and the desired votes.

The threat model we consider for subliminal channel attéeksnalicious DRE colluding
with an external party. For example, a malicious programaowedd introduce Trojan code into
DREs and then sell instructions on how to access the sutdimbrannel to a coercer.

Neither Neff’s nor Chaum’s protocol completely addresslimibal channels in ballots.
In this section, we present subliminal channel vulneragdiin these protocols and some possible
mitigation strategies.

One interesting observation is that subliminal channeé.saanew problem created by
these protocols. Subliminal channels only become a sepmdem because the bulletin board’s
contents are published for all to see. Since all the ball@spablic and anonymously accessible,
decoding the channel does not require any special accehe tmatlots. Subliminal channels are
not a significant problem with current non-cryptographic BBRbecause electronic ballots are not

public.

3.4.1 Randomness

Several cryptographic primitives in Neff’s scheme requaiedom values, and subliminal

channel vulnerabilities arise if a malicious DRE is freelioase these random valueFhese prim-

2Chaum’s scheme, as originally published, does not spedifgiwencryption primitives should be used to construct
the onion encryption in Equation 3.5 [19]. Subsequentha@h has related to us that he intended the encryption to use
a deterministic encryption scheme [20] precisely to avaithg random values and the associated subliminal channel
vulnerability. There is some risk in using this non-staddeonstruction since the widely accepted minimum notion of
security for public key encryption is IND-CPA, which regeéra source of randomness.

43

itives use randomness to achieve semantic security [2@ipagnotion of security for encryption
schemes which guarantees that it is infeasible for adviesstr infer even partial information about
the messages being encrypted (except maybe their lengdgh &hoice for the random number
allows a different valid ballot, which creates opportuestifor subliminal channels.

Subliminal channels are easy to build in protocols or erttyschemes that use random-
ness. If a cryptographic protocol requests the DRE to chaeaadom number and then publish it,
the DRE can encode| bits through judicious selection of Alternatively, given any randomized
encryption schemey(-, -), the DRE can hide a bitin an encryption of a message by computing
¢ = eg(m,r) repeatedly using a new random numbegach time until the least significant bit of
h(c) is b. More generally, a malicious DRE can use this techniquede hbits in ¢ with expected

O(2%) work. Thus, all randomized encryption schemes containimitl channels.

Random subliminal channel attack. Neff’s scheme uses randomness extensively. Each BMP
consists of a pair of EI Gamal ciphertexts, and the El Gamalgtions are randomized. In forming
the OVC, the DRE reveals half of the random valuessed in the encryptions (Figure 3.3).

For each BMP, one of the encryption pairs will be opened,alavg the random encryp-
tion parametew. This presents a subliminal channel opportuiithough the DRE must commit
to the ballot before the voter chooses which side of the BMBpken, a malicious DRE can still
embed|w| bits of data for each BMP by using the saméor both encryptions in the BMP. In this
way w is guaranteed to be revealed in the ballot.

This attack enables a high bandwidth subliminal channehahe/oter's encrypted ballot.

3Another way a malicious DRE could embed a subliminal chaimBleff’s scheme is if the voter doesn’t choose all
her unchoice challenges (i.e., the DRE is free to choose sdniem). However, Neff outlines a variant of his proposal
that solves this using two printers [60].

44

For example, in an election with 8 races and 5 candidatesager, there will bel0 - £ ballot mark
pairs, where Neff suggesfs> 10. A reasonable value di| is 1024 bits. The total channel, then,
can carry 128 bytes in each of the 400 BMPs, for a total of 51%@6s of information per ballot.

This is more than enough to leak the voter’s choices andifgieng information about the voter.

3.4.2 Mitigating random subliminal channels

Eschew randomness. One approach to prevent subliminal channels is to desigtoqots that
don't require randomness. Designing secure protocolsdiatot use randomness is tricky, since
S0 many proven cryptographic primitives rely on randomriessheir security. Proposals relying
on innovative uses of deterministic primitives, includi@gaum’s, deserve extra attention to ensure
that forgoing randomness does not introduce any securityevabilities. Ideally, they would be

accompanied by a proof of security.

Random tapes and their implementation. In a personal communication, Neff suggested that
DREs could be provided with pre-generated tapes contathiagandom bits to use for all of their
non-deterministic choices, instead of allowing them toag®their own randomness [59]. With a
random tape for each BSN, the ballot becomes a determirisiation of the voter’s choices and
the random tape for that BSN. As long as the BSN is assignezirealty before the voter selects
her candidates, the ballots will be uniquely representduis Will eliminate the threat of random
subliminal channels in encrypted ballots.

It is not enough for the intended computation to be detesti;iit must be verifiably so.
Thus, we need a way to verify that the DRE has used the bitsfigabon the random tape, not some

other bits. We present one possible approach to this probéemg zero-knowledge (ZK) proofs [27]

45

which allows everyone to verify that each DRE constructdbbtsausing the random numbers from
its tape. We imagine that there are several optimizatiotisiscapproach which improve efficiency.

Suppose before the election, the trustees generate asgrieso, ... of random values
for each BSNs, and post commitmentS(rs 1), C(rs.2), ... on a public bulletin board. The election
officials then load the random valugg;, s 2, . .. on the DRE which will use BSN.

During the election, for each randomized function evabraii(r, -), the DRE uses the
next random value in the series and furnishes a ZK proof ppitiused the next random value in
the series. For example, in Neff’s scheme, along with hNhich is an El Gamal encryption
e(r,b), the DRE includes a non-interactive zero knowledge prodémafwledge proving that 1) it
knows a valuer,; which is a valid opening of the commitme6t(r, ;) and 2)e(r;;,b) = @
Verifying that eachr, ; is used sequentially within a ballot enables any observeetiy that the
encryption is deterministic, so there can be no random sl channels i@ or its openingp).

However, there is a wrinkle to the above solution: under rsoBemes, constructing the
zero-knowledge proof itself requires randomness, whielatess its own opportunities of subliminal
channels. It may be possible to determinize the ZK proofgisisearch on unigue zero-knowledge
proofs (uniZK) [45, 46].

This approach may require further analysis to determinethnat is able to satisfy the

necessary security properties.

Trusted hardware. Ultilizing trusted hardware in DREs can also help eliminatelisninal chan-
nels. In this approach, the trusted hardware performs aflpeations that require random inputs
and signs the encrypted ballot it generates. The signataeles everyone to verify the ballot was

generated inside the trusted hardware. As long as trustxéfg the DRE’s trusted hardware is

46

running the correct software and the trusted hardware ¢emtpromised, DREs will not be able to

embed a random subliminal channel.

3.4.3 Multiple visual and semantic representations

A tabulator that accepts multiple equivalent visual or saeticarepresentations of the
voter’s choice creates another subliminal channel oppiytu For example, if the tabulator ac-
cepts both James Polk and Jam&olk (with an extra space) as the same person, then a DRE can

choose which version to print based on the subliminal chaving wants to embed.

Semantic subliminal channel attack. Chaum’s scheme is vulnerable to multiple visual represen-
tations. A malicious DRE can create alternate ballot imdgeshe same candidate that a voter
will be unlikely to detect. Recall that Chaum’s scheme eptsyan image of the ballot, and not an
ASCII version of the voter’s choices. The voter examines t@nsparencies together to ensure that
the resulting image accurately represents their vote. A DBEd choose to use different fonts to
embed subliminal channel information; the choice of fonthis subliminal channel. To embed a
higher bandwidth subliminal channel, the DRE could makeamimodifications to the pixels of the
ballot image that do not affect its legibility. Unless thetemis exceptionally fastidious, these mi-
nor deviations would escape scrutiny as the voter verifiesaheipt. After mixing, the subliminal
channel information would be present in the resulting péainhballots.

There is no computational cost for the DRE to embed a bit @rin&tion in the font. It
can use a simple policy, such as toggling a pixel at the topcbbaacter to encode a one, and a pixel
at the bottom to encode a zero. On a 10 race ballot, using spohcy just once per word could

embed 30 bits of information.

a7

There is a qualitative difference between the semantidrauidl channels and the random
subliminal channels. The information in the semantic cletswill only become apparent after the
mix net decrypts the ballot since the channel is embedddukiplaintext of the ballot. In contrast,
the random subliminal channels leak information when thietseare made available on the bulletin

board.

Mitigation. To prevent the semantic subliminal channel attack, eleaifficials must establish of-
ficial unambiguous formats for ballots, and must check dlbbsafor conformance to this approved
format. Any deviation indicates a ballot produced by a malis DRE. Such non-conforming bal-
lots should not be allowed to appear on the bulletin boartesposting even a single suspicious
ballot on the bulletin board could compromise the privacyalbfvoters who used that DRE. Un-
fortunately, the redaction of such deviant ballots meaas $hich ballots in will not be able to be
verified by the voter through normal channels.

An even more serious problem is that this policy violatesiaggions made by the mix
net. One would need to ensure the mix net security propestitshold when a subset of the
plaintexts are never released.

The order in which ballots appear will also need to be statided. Otherwise, a DRE
can choose a specific ordering of ballots on the public balledard as a low bandwidth subliminal
channel [42]. Fortunately, it is easy to sort or otherwiseocecalize the order of ballots before

posting them publicly.

48
3.4.4 Discussion

Subliminal channels pose troubling privacy and voter doercisks. In the presence of
such attacks, we are barely better off than if we had simpéygubthe plaintext ballots on the bulletin
board in unencrypted form for all to see. The primary diffex@is that subliminal channel data may
be readable only by the malicious parties. This situatierseproblematic, and we urge protocol

designers to design voting schemes that are provably aifchisér free of subliminal channels.

3.5 Denial of service attacks and election recovery

Although Neff's and Chaum’s schemes can detect many attaeksvering legitimate
election results in the face of these attacks may be difficltthis section, we present several
detectable but irrecoverable denial of service (DoS) k$tsmunched at different stages of the voting
and tallying process. We consider attacks launched by maficDREs and attacks launched by

malicious tallying software, and discuss different regguaechanisms to resist these attacks.

3.5.1 Denial of service (DoS) attacks

Launched by malicious DREs. Malicious DREs can launch several DoS attacks which create
detectable, but unrecoverable situations. We present lagses of attacks: ballot deletion and
ballot stuffing.

In a ballot deletion attack, a malicious DRE erases voteaots or submits random bits
in their place. Election officials and voters can detect #iiack after the close of polls, but there is
little they can do at that point. Since the electronic copyeg as the only record of the election, it

is impossible to recover the legitimate ballots voted on DfRE.

49

DREs can launch more subtle DoS attacks using ballot stuffegall that both Neff’s
and Chaum’s schemes use ballot sequence numbers (BSNsigteelynidentify ballots. BSNs
enable voters to find and verify their ballots on the publitdiin board, and by keeping track of
the set of valid BSNSs, election officials can track and audikaits.

In the BSN duplication attacka DRE submits multiple ballots with the same BSN. Elec-
tion officials will be able to detect this attack after thelbt reach the bulletin board, but recovery
is difficult. It is not clear how to count ballots with the salB8N. Suppose a DRE submits 100
valid ballots (i.e., from actual voters) and 100 additioballots, using the same BSN for all the
ballots. How do talliers distinguish the invalid ballotsrn the valid ones?

In theBSN stealing attacka malicious DRE “steals” BSNs from the set of BSNs it would
normally assign to legitimate voters’ ballots. For a paitac voter, the DRE might submit a vote
of its own choosing for the BSNit is supposed to use, and orvdler’s receipt print a different
(invalid) BSN. Since the voter will not find her ballot on thelletin board, this attack can be
detected, but recovery is tricky: how do election officialentify the injected ballots and remove
them from the tally?

Neff's and Chaum’s scheme enable voters and/or electiociafito detect these attacks,
but recovery is non-trivial because 1) the voters’ legitinballots are missing and 2) it is hard to

identify the invalid ballots injected by the DRE.

Launched by malicious tallying software. DoS attacks in the tallying phase can completely ruin
an election. For example, malicious tallying softwaresdalete the trustees’ keys, making decryp-
tion and tallying of the encrypted ballots forever impo&sitMalicious bulletin board software can

erase, insert, or delete ballots.

50

Selective DoS. An attacker could use DoS attacks to bias the outcome of dati@h. Rather than
ruining the election no matter its outcome, a more subtleesdry might decide whether to mount a
DoS attack or not based on who seems to be willing the racke lativersary’s preferred candidate
is winning, the adversary need do nothing. Otherwise, theradry might try to disrupt or ruin
the election, forcing a re-election and giving her prefércandidate a second chance to win the
election, or at least raising questions about the winnegrdate and reducing voters’ confidence in
the process.

There are many ways that selective DoS attacks might be mdunt

e If an outsider has a control channel to malicious DRESs, thsider could look at the polls

and communicate a DoS command to the DREs.

e An autonomous DRE could look at the pattern of votes cashduhie day, and fail (deleting
all votes cast so far at that DRE) if that pattern leans tow#nd undesired candidate. This

would disrupt votes cast only in precincts leaning agaimstattacker's preferred candidate.

o If trustees’ software is malicious, it could collude to sesvithe election will turn out, then
cause DosS if the result is undesirable. Note that if all #estare running the same tallying

software, this attack would require only a single corrugiearammer.

Selective DoS attacks are perhaps the most troubling kinda$8 attack, because they threaten

election integrity and because attackers may have a reatertotlaunch them.

3.5.2 Mitigation strategies and election recovery

Note that in all these attacks, non-malicious hardware ftwaoe failures could cause the

same problems. This may make it hard to distinguish purpbaghicks from unintentional failures.

51

The above attacks create irrecoverable situations becases’ legitimate ballots are
lost or corrupted, the bulletin board contains unidentiéabegitimate ballots submitted by mali-
cious DREs, or both. In this section, we evaluate two regowezchanisms for these DoS attacks:

revotingand avoter verified paper audit trail

Revoting. One recovery strategy is to allow cheated voters to revoegpeRding on the scope of
the attack or failure, this could range from allowing onlyrtmaular voters to revote to completely
scrapping the election and starting over. However, regdsrproblematic. Redoing the entire elec-
tion is the most costly countermeasure. Alternativelyctida officials could allow only those voters
who have detected cheating to revote. Unfortunately, ghissufficient. Less observant voters who
were cheated may not come forward, and it may be hard to fgearid remove illegitimate ballots

added by a malicious DRE. Revoting does not help with sele@oS.

Voter verified paper audit trail. A voter verified paper audit trail (VVPAT) system produces a
paper record verified by the voter before her electronicobidlcast [51]. This paper record is cast
into a ballot box. The paper trail is an official record of tletar’s vote but is primarily intended for
use in recounts and auditing.

It would not be hard to equip cryptographic voting systemthwi VVPAT. This would
provide a viable mechanism for recovering from DoS attatksddition to providing an indepen-
dent record of all votes cast, VVPAT enables recovery aebffit granularities. If election officials
conclude the entire electronic record is questionable) the entire VVPAT can be counted. Alter-
natively, if only a single precinct’s electronic record isspect, then this precinct's VVPAT record

can be counted in conjunction with the other precincts’ teteic records. This approach enables

52

officials to keep the universal verifiability of the uncorteg precincts while recovering the legiti-
mate record of the corrupted precinct.

A third benefit of VVPAT is that it provides an independent wayaudit that the cryp-
tography is correctly functioning. This would be one way &dhall voters, even those who do not
understand the mathematics of these cryptographic schemles confident that their vote will be

counted correctly.

3.6 Implementing secure cryptographic voting protocols

A secure implementation of Neff and Chaum’s protocol willl steed to resolve many
issues. In this section, we outline important areas thaf &led Chaum have not yet specified.
These parts of the system need to be fully designed, implerdeand specified before one can
perform a comprehensive security review. Also, we listeétmpen research problems which we feel

are important to the viability of these schemes.

3.6.1 Underspecifications

Bulletin board. Both protocols rely on a public bulletin board to provide ayimous, read only
access to the data. The data must be stored robustly, ovag@oftware and mechanical failures
as well as malicious attacks. Further, only authenticatatigs should be able to append messages
to the bulletin board. An additional requirement is to eedtiat the system delivers the same copy
of the bulletin board contents to each reader. If the bullbbard were able to discern a voter's
identity, say by IP address, it could make sure the voterydvgaw a mix transcript that included

a proof that their vote was counted. But, for the official sreiipt, the mix net and bulletin board

53

could collude to omit the voter’'s ballot. In this scenarioe tvoter would think her vote had been
counted but in reality it was not.

Neff and Chaum have not yet elaborated on a proposed bubbetind architecture or
the properties they require. We imagine that the principledistributed storage systems, such as
Farsite, CFS, or OceanStore [3, 22, 70], might be appliciattlee bulletin board setting. However,
without a further specification of exactly which architeetwould be used, we cannot evaluate the

system’s security.

BSN assignment. Neff's and Chaum’s schemes do not specify how to assign BS&Nsters’
ballots. BSNs could be assigned externally by a smartcéidlirer which authorizes a voter to use
a DRE, or be assigned by DREs, say by a monotonically inargasiunter prefixed by the DRE
machine D% Clever BSN assignment combined with careful auditing agd-& procedures could
help limit the scope of some of the DoS attacks in Sectionlibsince DRESs can always erase or

corrupt a voter’s electronic ballot after she casts it, vileratist consider recovery mechanisms.

Tallying software. Both Neff's and Chaum’s schemes treat the tallying softveer@ black box.
We surmise, that it, too, has stringent requirements onoiteect implementation. If all trustees
use tallying software from a single source, then this safwaight collude without the trustees’
knowledge and invalidate the system’s integrity guarant@&@oughn-version programming might
be able to counter this threat, it makes software developrey expensive and requires detailed
interface specifications to ensure that all versions of tdfevare will interoperate. We have not

seen any details on how to ensure that the tallying softwameat collude.

“David Chaum later conveyed to us that he intended his scheometa counter to assign BSNs [20].

54

3.6.2 Open research problems

Subliminal channels. Developing cryptographic protocols that address subkitéhannels would
help resist privacy and coercion attacks. Subliminal ck&nim the ballots subvert the confidential-
ity guarantees provided by encryption. We present someniggés in Section 3.4 to eliminate

subliminal channels in encrypted ballots, but we believe ithstill an area for future research.

Mix net security models. We would like to see a definition of security for mix nets tretom-
prehensive for the voting setting. Such a definition mustdianal enough to inspire confidence that
it is the correct model. For instance, Jakobsson illusdratgubtle privacy violation if the encryption
used in the mixes do not provide non-malleability [32], atltkos have shown similar results [66].
This illustrates the importance and non-triviality of fartating a correct security model for mix
nets. We believe the security of cryptographic voting systevould benefit from a thorough study

of the relationship between the mix net requirements ansktlod the rest of the system.

Humans as protocol participants. These voting protocols require voters to not just use a cryp-
tographic system, but also to participate in a cryptogrypnotocol. Cryptographic protocols are
fragile to deviations and mistakes in their implementatiand humans have been known to make
mistakes. A high level understanding of the protocol is niftigent; to minimize errors, voters
often need to understand how the protocol works. Alteretjwoting protocols must be designed
to be as resilient as possible to mistakes made by the aveodge Voter education could help,
but this raises an important human-computer interactioblpm: how do we educate voters about

these issues without discouraging them that these systenmisacomplicated to securely use?

55

3.7 Conclusion

We laud Neff’s and Chaum'’s ambitious goal: developing acoerfree, privacy preserv-
ing voter-verifiable election system. Their systems regmes significant security improvement
over current DRE-based paperless systems. Neff's and Chaamemes also strive to limit re-
liance on trusted software and hardware. Most notablyeteeBemes do not require voters to trust
DREs since voters can detect malicious behavior.

Neff's and Chaum’s schemes are fully specified at the crypjagc protocol level, but
they are underspecified from the systems and human intemdetiel. Due in part to this underspec-
ification, we have discovered a number of potential wealasegdich only became apparent when
considered in the context of an entire voting system. Wea&btpat a well designed implementation
and deployment may be able to mitigate or even eliminatentipact of these weaknesses.

We found solutions for some of these weaknesses, but weddstified new challenges
and open problems for electronic voting systems. Firstlirmial channels have the potential to
erode voter privacy and enable voter coercion. Any systexhubes a public bulletin board must
ensure that the ballots it posts have a unique represemt&icond, these voting protocols present
a new research challenge by placing human voters directhyman interactive cryptographic pro-
tocol. Protocol designers have previously assumed paatits are infallible computer agents, but
voting protocols must cope with human error and ignorance.

Despite these challenges, we are optimistic about thedytunspects of these voting

systems.

56

Chapter 4

Privacy

In this chapter, we study the privacy problem, identify sal’/ehallenges in assuming
the secrecy of the ballot, and then propose techniques tesgldhese issues. We start with a
generalized description of a voting session, and then ithestiow privacy can be violated in a
range of different voting technologies. Finally, we delsera general approach to prevent privacy
violations. We outline our novel solution in this chaptarddn Chapter 5, apply this generalized

solution to one particular voting implementation in furtioetail.

4.1 \oting sessions

A typical voting machine is used many times throughout the lamany voters. Cost,
space, and manageability constraints necessitate reusiimgg machines throughout the day since
we cannot afford to give each voter their own voting machihbis creates the real possibility of
voter information flowing from one voter to another througk toting machine.

We define aroting sessioms one voter’s interactions with the voting machine. Rewall

57

Section 2.1, all voting sessions are encompassed withiadtie voting phase. A voting session
starts with the voter’s first use of a particular voting maehand ends when they leave the voting
machine. Itis assumed that only one voter uses the machimgdeach session. After each voting

session, the machine returns to a start state and readif$atsthe next voter’'s session.

4.2 Avenues for information flows

In this section, we look at different voting technologiesl drighlight some of the ways
privacy violations might occur. Table 4.1 summarizes thgssaat private information might leak

out of the machine as well as the relative severity of thergitkleak.

42.1 DRE

A voting session with a DRE begins with the voter presentirgrtauthentication token
and ends after they make their selections, confirm the chomed leave the voting machine. A
DRE has many output devices: the voting screen, audio quapdtthe electronic ballot box. DREs
with VVPAT [51] contain also have a printer for the paper iipte Each of these output devices
presents a different avenue for data to leak.

With corrupt software, a DRE could reveal previous voteedéstions to the screen. Just
as in Section 3.4, the malicious DRE could reveal the balksting times for all ballots for a
specific candidate. Correlating this information with whaters leave the polling booth easily
reveals voters’ choices. A party could activate malicioadecto gain access to this confidential
data with a specific and unusual sequence of inputs. Assuwathedlch vote can be represented with

a four or five bits, or alternatively one ASCII character;wat ballot of 100 races, a single voter’s

Voting Technology Output Channel Flow capacity Notes
DRE Screen Large
VVPAT printed record Medium
Audio accessibility interface Small
\ote storage Large We can prevent leaks using [55]
Cryptographic voting protocols Receipt Medium
Screen Large
Audio accessibility interface Small
Bulletin board Large Can be read anonymously over the Iatern
\ote storage Large We can prevent leaks using [55]
Ballot marking device Screen Large
Marked ballot Large
Optical scan reader Confirmation screen Small
\ote storage Large We can prevent leaks using [55]

Table 4.1: Ways that prior vote information might escapenfavoting machine in different voting technologies.

8S

59

choices can fit in one line of text. This means that over 108rgdtull ballots can fit onto two pages
of text. It would be inconceivable to copy two full pages of @iBgibberish down by hand, but a
digital camera would be a convenient tool to download tha étam the DRE.

The audio output device, used to improve accessibility &ers with visual impairments,
can also be used to surreptitiously leak prior voters’ dAtmalicious DRE could simply read out
prior voter’s selections. However, this is a slow proceedt & infeasible to quickly leak all prior
voters’ data.

DREs store their ballots into an electronic ballot box. Tisigsually a removable memory
device that is used for summing the votes cast on the DRE.r2ipg upon the voting jurisdiction’s
procedures, the contents of the ballot box may be made publis represents a large potential
vehicle for information leakage. The ballot box 1) may camtxtraneous data that reveals voters’
selections in unused portions of the ballot box device; an&y encode hidden data using the order
the elements are on disk. These allow a malicious voting imadb leak casting time of all of the
votes. Using a standardized data format and the technigae=aped in conjunction with Molnar
et al [55], it is possible to eliminate privacy leaks from actonic ballot boxes.

Finally, some DREs are being equipped with VVPAT printerszeri though the voter
does not keep or even touch the paper record, it represerasitpat channel to convey private
information. The paper record displays the entire list obters selections. After reviewing the
printed voter record, the machine queries the voter andmitints an acceptance note on the record,
or a spoil note and allows the voter to edit their responseagiaéh review the printed ballot. Since
the printed record is retained by election officials and dauldergo later scrutiny, a malicious DRE

must attempt to disguise private data it is conveying. Ong feathe DRE to leak a prior voter’s

60

choices is by printing the selections to the printer. So dd¢marouse suspicion with extra votes in
the paper record, the DRE could then spoil the printed reconehicking a voter who changed their

mind.

4.2.2 Cryptographic voting protocol

Chapter 3 addresses cryptographic voting protocols angritiacy risks that they face.
The ones discussed there augment normal DREs, and so ititeritrisks, as well as new ones
through the bulletin boards. The receipt the voter takeh wieém could also contain private data
detailing prior voters’ selections. The amount of data igrimied by the receipt’s size, but a clever
encoding can leak a substantial amount of data. The systesasilded in that chapter are based on

DREs, so have similar privacy problems with the screen anel skorage mechanisms.

4.2.3 Ballot marking device

Ballot marking devices are similar to DREs in presentingrtibhoices, but instead of
storing an electronic ballot, they print a ballot readalid¢hiby machines and humans. The voter
reviews the printed ballot and upon accepting it takes it dptical scan reader that scans the
ballot and stores a paper copy, or discards the printedtlzaib enters new selections.

Since voters interact with ballot marking devices in a samiashion to DREs, it is natural
that ballot marking devices face similar privacy vulneliéibs. Just as a malicious DRE can use the
screen or audio interface to convey private informatiorngaoballot marking devices.

The printer portion of the ballot marking device can be usgdah even simpler attack.
The printer can be used to print a summary of all prior votéesisions. A suitable encoding, such

as the one from Section 4.2.1, can easily fit all voter data jpaige or two. To avoid suspicion, the

61

ballot marking device would also print a legitimate ballot €asting.

The data obtained from a ballot marking device is less ridittian the data from either
a DRE or a cryptographic protocol solutions. Since the batiarking device is used for ballot
preparation, but not casting, it can only possibly know \uHiallots have been prepared for casting.
Its knowledge of prepared ballots is a superset of the adast ballots. These attacks should
prove damaging to privacy, but it may not always be possiblenbw with absolute certainty how

someone voted.

4.2.4 Optical scan reader

Optical scan machines accept ballots created either witilatlmarking device or by a
person on a paper. Voters feed their ballots to the machih&hwscans it and checks for errors
(blank ballots and overvotes, for example). Finding anreitrdisplays a short message on its LCD
screen and rejects the ballot; or if the ballot is error fiescans the paper ballot and stores the
ballot in a locked ballot box.

Like DREs, optical scan machines contain a removable memevice that is counted
at the precinct. This represents a potentially large pyvam@nnel. But as in the DRE case, fixed
ballot formats and techniques from Molnar et al. can prepeintcy leaks [55].

The small LCD screen presents another output channel. Howthe likelihood of it
being exploited is small. Election officials must provideess control to the optical scan reader to
prevent voters from adding multiple ballots at once. UnHerdlection officials watch, an adversary
spending lots of time memorizing the LCD screen, takingysis, or writing copious notes, would

attract attention. For this reason, the optical scanneZB s not a major threat.

62

4.3 Reboots

One of the assumptions we started with, and a key enablerif@cy leaks, is the need
to multiplex voting hardware among multiple voters. Sugpasstead, that each voter uses a fresh
voting machine at the polling station. If the machines arenatworked, it becomes trivial to see
that a machine cannot leak data about prior voters, sincen#iedhine starts without any vote state,
and is only used by a single voter. This approach, thoughpideasible since it dramatically
increases the cost for hardware as well as the cost for magéue infrastructure.

Our approach seeks to blend the purity of individual votecihises with the cost and
maintenance benefits of shared DREs.

A traditional DRE, for example the Diebold AccuVote-TS, ssigned to run as a single
operating system process. The functions of the DRE—vatigahe voter, presenting choices,
confirming those choices, storing the ballot, and admisiste functions—are all a part of the same
address space.

Let us examine one particular strategy we can use to bettéy \Rroperty 1, which
requires that one voter’s selections must not influence dti@y experience observed by the next
voter. Suppose after every voter has voted, the voting madhiturned off and then restarted. This
is enough to ensure that the voting machine’s memory willaaoitain any information about the
prior voter’s selections when it starts up. Of course, thermoter’s selections must still be recorded
on permanent storage (e.g., on disk) for later counting,esalgo need some mechanism to prevent
the machine from reading the contents of that storage med{@ne conservative strategy would
be to simply require that any file the voting machine writestast always be opened in write-only

mode, and should never be opened for reading. More genenadlgan allow the voting machine

63

to read from some files, such as configuration files, as lonpgdaes not have the ability to write to
them. Thus the set of files on permanent storage are paeitiono two classes: a set of read-only
files (which cannot be modified by the voting machine), andt @berite-only files (which cannot
be read by the voting machine). To summarize, our strateggrftorcing Property 1 involves two

prongs:

1. Ensure that a reboot is always triggered after a voter tadssession.

2. Check every place a file can be opened to ensure that datar@evrite-only, and configura-

tion files are read-only.

There must still be a mechanism to prevent the voting madhime overwriting existing data, even
if it cannot read that data.

Rebooting also helps to ensure that all voters are treatadllgqg After rebooting, the
memory is reset to a known state. This observation was mad&gahgea et al., who relied on the
idea to eliminate bugs that creep up unpredictably [16, 17].

We emphasize this design strategy is not the only way towémit particular property.
Rather, it is one technique we can implement that reduceprtitdgem of enforcing Property 1 to
the problem of enforcing a checklist of easier-to-verifynditions that suffice to ensure Property 1

will always hold.

4.3.1 Applicability

While Candea et al. [16, 17] use prophylactic reboots tosiase availability, we believe
the strategy of rebooting for privacy is novel. It is alsodmity applicable to all of the different tech-

nologies mentioned, including DREs, DREs with cryptograploting protocols, ballot marking

64

devices, as well as optical scan readers. In each case, ibet rerases the memory between each
voter session, guaranteeing the voter starts with a knowlrclan memory state. After ensuring
the only session-writable storage is read only, it is sinipheerify prior voters’ private information
cannot be leaked at the voting machine.

In Chapter 5, we demonstrate the viability of the reboot aapih to a specific platform to

guarantee Property 1 in addition to other properties.

65

Chapter 5

Designing voting machines for

verification

In this chapter, we provide techniques to help vendors,gaddent testing agencies, and
others verify critical security properties in direct redioig electronic (DRE) voting machines. We
expand upon the privacy preserving techniques present€thapter 4 to address Property 1 and
also address Property 2 to guarantee a ballot is only caktthat voter's consent. With a little
additional work, the other properties are amenable to almigues. We rely on specific hardware
functionality, isolation, and architectural decisionsalow one to easily verify critical security
properties. We believe our techniques will help us verifyeotproperties as well though we have
not demonstrated this. Verification of these security prigeis one step towards a fully verified
voting machine.

Parts of this work are drawn with permission from previoysiplished work [74].

66

5.1 Introduction

In this chapter we seek to answer how can we reason abouteormeve, relevant se-
curity properties in voting machines. As we have seen, threyflof reports criticizing the trust-
worthiness of direct recording electronic (DRE) voting tmiaes, computer scientists have not been
able to allay voters’ concerns about this critical infrasture [42, 18, 72, 90]. The problems are
manifold: poor use of cryptography, buffer overflows, an@tieast one study, poorly commented
code.

The ultimate security goal would be a system where any vetignput any special train-
ing, could easily convince themselves about the correstoall relevant security properties. Our
goal is not so ambitious; we address convincing those wihattility to understand code the cor-
rectness of a few security properties. For clarity, we famugwo important security properties in
this chapter. These properties were originally describedhapter 2. Briefly, recall that Property 1
states that a voter’s interactions should not affect angemient voter’s sessions. Property 2 states
that a ballot should not be cast without the voter's conseatification of these properties, as well
as the others we described in Chapter 2, are a step towartdltherification of a voting machine.

Current DREs are not amenable to verification of these ggqumperties; for instance,
version 4.3.1 of the Diebold AccuVote-TS electronic votimgchine consists of 34 742%ines of
vendor-written C++ source code, all of which must be anayteensure Properties 1 and 2. One
problem with current DRE systems, in other words, is thattthsted computing base (TCB) is

simply too large. The larger problem, however, is the codwbi is notstructuredto verify security

'Kohno et al. count the total number of lines in their papei;[4@r a fair comparison with our work, we look at
source lines of code, which excludes comments and whitedpaim the final number. Hence, the numbers cited in their
paper differ from the figure we list.

67

properties.

In this chapter, we develop a new architecture that sigmifigaeduces the size of the
TCB for verification of these properties. Our goal is to makéing systems more amenable to
efficient verification, meaning that implementations carveefied to be free of malicious logic.
By appropriate architecture design, we reduce the amouobaé that would need to be verified
(e.g., using formal methods) or otherwise audited (e.ganrinformal line-by-line source code
review) before we can trust the software, thereby enhanaungability to gain confidence in the
software. We stress that our architecture assumes votkisevdiligent: we assume that each voter
will closely monitor their interaction with the voting maales and look for anomalous behavior,
checking (for example) that her chosen candidate appedng iconfirmation page.

We present techniques that we believe are applicable to DREslevelop a partial voting
system, but we emphasize that this work is not complete. Adlisgissed in Section 2.1, voting
systems comprise many different steps and proceduresvotireg, ballot preparation, audit trail
management, post-election, recounts, and an associdtefl ssfeguard procedures. Our system
only addresses the active voting phase. As such, weotlolaim that our system is a replacement
for an existing DRE or a DRE system with a paper audit traitesys See Section 5.6 for a discussion

of using paper trails with our architecture.

Technical elements of our approach. We highlight two of the key ideas behind our approach.
First, we focus on creating a trustworthy vote confirmatioocpss. Most machines today divide
the voting process into two phases: an initial vote selagbimcess, where the voter indicates who
they wish to vote for; and a vote confirmation process, whagesbter is shown a summary screen

listing their selections and given an opportunity to revéewd confirm these selections before casting

68

their ballot. The vote selection code is potentially the humsnplex part of the system, due to the
need for complex user interface logic. However, if the comition process is easy to verify, we
can verify many important security properties without gmgilg the vote selection process. Our
architecture splits the vote confirmation code into a séparadule whose integrity is protected
using hardware isolation techniques. This simple ideatlyreaduces the size of the TCB and
means that only the vote confirmation logic (but not the vetecion logic) needs to be examined
during a code review for many security properties, such apdtty 2.

Second, we use hardware resets to help ensure Property tgiasity outlined in Sec-
tion 4.3. In our architecture, most modules are designecttstételess; when two voters vote in
succession, their execution should be independent. Wearderésets to restore the state of these
components to a consistent initial value between voteirsjrting the risk of privacy breaches and
ensuring that all voters are treated equally by the machine.

Our architecture provides several benefits. It presernvesdling experience that voters
are used to with current DREs. It is compatible with acceéldisitbeatures, such as audio interfaces
for voters with visual impairments, though we stress thatlw@&ot implement such features in our
prototype. It can be easily combined with a voter-verifieggraaudit trail (VVPAT). Our prototype

implementation contains only 5085 lines of trusted code.

5.2 Goals and assumptions

Security goals. For clarity, in this chapter we focus on enabling efficientifigation of Proper-
ties 1 and 2 (see Chapter 2), though we hope to enable theesffiarification of other properties

as well. Property 1 reflects a privacy goal: an adversaryldhmat be able to learn any information

69

about how a voter voted besides what is revealed by the oliglection totals. Property 2 re-
flects an integrity goal: even in the presence of an adverdaRE should record the voter’s vote
exactly as the voter wishes. Further, an adversary shoultdenable to undetectably alter the vote
once it is stored. We wish to preserve these properties sigdie classes of adversaries discussed

below.

Wholesale and retail attacks. A wholesale attack is one that, when mounted, has the patenti
of affecting a broad number of deployed DREs. A classic exampght be a software engineer
at a major DRE manufacturer inserting malicious logic ines bompany’s DRE software. Prior
work has provided evidence that this it is a concern for réadtons [5]. Such an attack could
have nationwide impact and could compromise the integritertire elections, if not detected.
Protecting against such wholesale attacks is one of ourgpyirgoals. In contrast, a retail attack
is one restricted to a small number of DREs or a particulalingplocation. A classic retail attack
might be a poll worker stuffing ballots in a paper elections@lectively spoiling ballots for specific

candidates.

Classes of adversaries. We desire a voting system that:

e Protects againstholesaleattacks by election officials, vendors, and other insiders.

o Protects againsetail attacks by insiders when the attaaks notinvolve compromising the
physical security of the DRE or the polling place (e.qg., bydifong the hardware or software

in the DRE or tampering with its surrounding environment).

e Protects against attacks by outsiders, e.g., voters, wieattackslo notinvolve compro-

mising physical security.

70

We explicitly do not consider the following possible goals:

e Protect againstetail attacks by election insiders and vendors when the attdokevolve

compromising physical security.

e Protect against attacks by outsiders, e.g., voters, wheatthcksdo involve compromising

physical security.

On the adversaries that we explicitly do not consider. We explicitly exclude the last two ad-
versaries above because we believe that adversaries whaatatre the physical security of the
DRE will always be able to subvert the operation of that DR& nmatter how it is designed or
implemented. Also, we are less concerned about physicatkattby outsiders because they are
typically retail attacks they require modifying each individual voting machine dmeone, which
is not practical to do on a large scale. For example, to atagtacy, a poll worker could mount a
camera in the voting booth or, more challenging but stillawable, an outsider could use Tem-
pest technologies to infer a voter’s vote from electromégnemissions [43, 88]. To attack the
integrity of the voting process, a poll worker with enougbaerces could replace an entire DRE
with a DRE of her own. Since this attack is possible, we alsmakotry to protect against a poll
worker that might selectively replace internal componémia DRE. We assume election officials
have deployed adequate physical security to defend aghist attacks.

We assume that operating procedures are adequate to pugarihorized modifications
to the voting machine’s hardware or software. Consequetitéy problem we consider is how to
ensure that the original design and implementation arersedifhile patches and upgrades to the

voting system firmware and software may occasionally be sserg, we do not consider how to

71

securely distribute software, firmware, and patches, nowedaonsider version control between

components.

Attentive voters. We assume that voters are attentive. We require voters ttka¢hat the votes
shown on the confirmation screen do indeed accurately reflectintentions; otherwise, we will
not be able to make any guarantees about whether the vo#dids is cast as intended. Despite our
reliance on this assumption, we realize it may not hold fopebple. Voters are fallible and not all
will properly verify their choices. To put it another way,raystem offers voters thepportunityto
verify their vote. If voters do not take advantage of this agpnity, we cannot help them. We do
not assume that all voters will avail themselves of this opity, but we try to ensure that those

who do, are protected.

5.3 Architecture

We focus this chapter on our design and implementation ofabtve voting” phase of
the election process (cf. Figure 2.1). We choose to focubierstep because we believe it to be one
of the most crucial and challenging part of the electionungg interaction with voters and the
ability to ensure the integrity and privacy of their votese Yémark that we attempt to reduce the
trust in the canvassing phase by designing a DRE whose orgpaoitd is both privacy-preserving

(anonymized) and integrity-protected.

5.3.1 Architecture motivations

To see how specific design changes to traditional votingitatiares can help verify

properties, we will go through a series of design exercitasirsg from current DRE architectures

72

VoteSelection |-«

LCD and ;
< Touch Screen ><—> IOMultiplexor

\ 4

VoteConfirmation

VoteCore Token
Reader

\ 4

.

ResetModule

Figure 5.1: Our architecture, at an abstract level. For tbpgrties we consider, théoteSelection
module need not be trusted, so it is colored red.

and finishing at our design. The exercises will be motivatethying to design a system that clearly

exhibits Properties 1 and 2.

Resetting for independence. Chapter 4 highlights our approach to achieving privacy inRED

Recall, to satisfy the conditions of the approach, two cools must be met:

1. Ensure that a reboot is always triggered after a voter #railssession.

2. Check every place a file can be opened to ensure that datafdevrite-only, and configura-

tion files are read-only.

For our architecture, we introduce a separate componergevbale job is to manage the
reset process. THeallotBox triggers theResetModule after a ballot is stored. The reset module then
reboots a large portion of the DRE and manages the startwegso\We use a separate component

so that it is simple to audit the correctness of ResetModule.

73

Isolation of confirmation process. In considering Property 2, which requires the voter’s cahse
to cast in order for the ballot to be stored, we will again sew modifying the DRE’s architecture
in specific ways can help verify correctness of this property

The consent property in consideration requires auditoxotdidently reason about the
casting procedures. An auditor (perhaps using progranysigaiools) may have an easier time
reasoning about the casting process if it is isolated fraardist of the voting process. In our archi-
tecture, we take this approach in combining the casting anfirmation process, while isolating it
from the vote selection functionality of the DRE. With a datelesign, we only need to consider
this sub-portion to verify Property 2.

From our DRE design in the previous section, we introduceva c@mponent, called
the VoteConfirmation module. With this change, the voter first interacts witW@eSelection
module that presents the ballot choices. After making tbeliections, control flow passes to the
VoteConfirmation module that performs a limited role: presenting the votprier selections and
then waiting for the voter to either 1) choose to modify thesfections, or 2) choose to cast their
ballot. Since the/oteConfirmation module has limited functionality, it only needs limited poypt
for GUI code; as we show in Section 5.5.1 we can more easillyaa#s correctness since its scope
is limited. If the voter decides to modify the ballot, contreturns to thé/oteSelection module.

Note the voter interacts with two separate components:tiiedfoteSelection component
and thenVoteConfirmation. There are two ways to mediate the voter’s interactions wieghtwo
components: 1) endow each component with its own I/O systahsereen; 2) use one I/O system
and a trusted I/O “multiplexor” to manage which componemt aacess the screen at a time. The

latter approach has a number of favorable features. Pethaprost important is that it preserves

74

the voter's experience as provided by existing DRE systefngoting machine with two screens
requires voters to change their voting patterns, and canduate the opportunity for confusion or
even security vulnerabilities. Another advantage is castecond screen adds cost and complexity.
One downside is that we must now verify properties about@éultiplexor. For example, it must
route the input and output to the proper module at the apjateptimes.

In the the final piece of our architecture, we introducéogeCore component. After the
voter interacts with th&/oteSelection system and then théoteConfirmation module to approve
their selection, th&/oteCore component stores the ballot on indelible storage iB#BotBox and
then cancels the voter’s authentication token. Then, asaseritbed above, it initiates a reset with
the ResetModule to clear the state of all modules.

Let us return to our original property: how can we verify thaballot can only be cast

with the voter’s approval? With our architecture, it suffide verify that:

1. A ballot can only enter th€oteCore through thevoteConfirmation module.

2. TheVoteCore gives the voter the opportunity to review the exact contehtle ballot.

3. A ballot can only be cast if the voter unambiguously sigriaeéir intent to cast.

To prove the last condition, we add hardware to simplify aditau’'s understanding of the system,
as well as to avoid calibration issues with the touch scretnface. A physical cast button, enabled
only by the confirmation module, acts as a gate to stop thethaditween th&/oteSelection and
VoteCore modules. The software in théoteConfirmation module does not send the ballot to the
VoteCore until the CastButton is depressed; and, since it is enabled only intheConfirmation
module, it is easy to gain assurance that the ballot canncastewithout the voter’'s consent. Sec-

tion 5.5.1 will show how we achieve this property based orcthae and architecture.

75

There is a danger if we must adjust the system’s architectumaeet each particular
security property: a design meeting all security propsrtigay be too complex. However, we
designed the architecture with the other security propeftiom Chapter 2 in mind. Isolating the
confirmation process is a key insight that can simplify weni§ other properties. The confirmation
process is at the heart of many properties, and a smallyeaslerstood confirmation process helps
not just in verifying Property 2. For other properties, wiy i@n software verification, as described

in Chapter 6.

5.3.2 Detailed module descriptions

Voter authentication. After a voter signs in at a polling station, an election offiavould give
that voter a voting token. In our implementation, we use ame#g stripe card, but the token
could also be a smartcard or a piece of paper with a printedrisecode. Each voting token is
valid for only one voting machine. To begin voting, the vateserts the token into the designated
voting machine. Th&/oteCore module reads the contents of the token and verifies that kento
is designated to work on this machine (via a serial numbeclghés intended for this particular
election, has not been used with this machine before, angnied using some public-key signature
scheme. If the verification is successful, teteCore module communicates the contents of the

voting token to th&/oteSelection module.

Vote selection. The VoteSelection module parses the ballot definition file and interacts with th
voter, allowing the voter to select candidates and vote tereada. The voting token indicates
which ballot to use, e.g., a Spanish ballot if the voter'sveaanguage is Spanish or a Democratic

ballot if the voter is a Democrat voting in a primary. TketeSelection module is intended to

76

follow the rules outlined in the ballot definition file, e.gllowing the voter to choose up to three
candidates or to rank the candidates in order of prefereédteourse, thé/oteSelection module is
untrusted and may contain malicious logic, so there is nosguee that it operates as intended. The

VoteSelection module interacts with the voter via th@Multiplexor.

Vote confirmation. After the voter is comfortable with her votes, teteSelection module sends

a description of the voter’s preferences to theeConfirmation module. TheVoteConfirmation
module interacts with the voter via th@Multiplexor, displaying a summary screen indicating the
current selections and prompting the voter to approve ectéis ballot. If the voter approves, the
VoteConfirmation module sends the ballot imagto the VoteCore module so it can be recorded.
The VoteConfirmation module is constructed so that the data that\theeConfirmation module

sends to th&/oteCore module is exactly the data that it received from YreSelection module.

Storing votes and canceling voter authentication tokens. After receiving a description of the
votes from théVoteConfirmation module, thé/oteCore atomically stores the votes and cancels the
voter authentication token. Votes are stored on a duraidriz-independent, tamper-evident, and
subliminal-free vote storage mechanism [55]. By “atonlicalve mean that once th¥oteCore
component begins storing the votes and canceling the aighgon token, it will not be reset
until after those actions complete. After those actions$ lmaimplete, thé/oteCore will trigger a
reset by sending a message to ReetModule. Looking ahead, the only other occasion for the
ResetModule to trigger a reset is when requested WyteCore in response to a user wishing to

cancel her voting session.

2A ballot imageis merely a list of who this voter has voted for. It need not baetual image or picture.

1

Cleaning up between sessions.Upon receiving a signal from théoteCore, theResetModule will
reset all the other components. After those componentsefvain the reset, they will inform the
ResetModule. After all components are awake, tResetModule tells all the components to start,
thereby initiating the next voting session and allowing tiext voter to vote. We also allow the
VoteCore module to trigger a reset via tliesetModule if the voter decides to cancel their voting
process; when a voter triggers a reset in this way, the w#rthentication token is not canceled
and the voter can use that token to vote again on that machénatar time. Although th&oteCore
has access to external media to store votes and canceleshacdltion tokens, all other state in this

component is reset.

Enforcing a trusted path between the voter and theVoteConfirmation module. Although the
above discussion only mentions tH@Multiplexor in passing, thdOMultiplexor plays a central
role in the security of our design. Directly connecting th€ and touch screen to both the
VoteSelection module and th&/oteConfirmation module would be unsafe: it would allow a ma-
licious VoteSelection module to retain control of the LCD and touch screen forevet display

a spoofed confirmation screen, fooling the voter into tmgkshe is interacting with the trusted
VoteConfirmation module when she is actually interacting with malicious cotigelOMultiplexor
mediates access to the LCD and touch screen to prevent staaksat It enforces the invari-
ant that only one module may have control over the LCD andhaareen at a time: either
VoteConfirmation or VoteSelection may have control, but not both. MoreovinteConfirmation is
given precedence: if it requests control, it is given exgkrigccess andoteSelection is locked out.
Thus, our system can establish a trusted path between theintgrface and the€oteConfirmation

module.

78

5.3.3 Hardware-enforced separation

Our architecture requires components to be protected fewrh ether, so that a malicious
VoteSelection component cannot tamper with or observe the state or codéhef components.
One possibility would be to use some form of software isofgtsuch as putting each component
in a separate process (relying on the OS for isolation), epaate virtual machine (relying on the
VMM), or in a separate Java applet (relying on the JVM).

Instead, we use hardware isolation as a simple method fagach strong isolation. We
execute each module on its own microprocessor (with its ot CRAM, and I/O interfaces).
This relies on physical isolation in an intuitive way: if twoicroprocessors are not connected
by any communication channel, then they cannot directlgcaféach other. Verification of the
interconnection topology of the components in our architecconsequently reduces to verifying
the physical separation of the hardware and verifying tter@onnects between them. Historically,
the security community has focused primarily on softwaodsison because hardware isolation was
viewed as prohibitively expensive [71]. However, we ardug the price of a microprocessor has
fallen dramatically enough that today hardware isolat®reasily affordable, and we believe the
reduction in complexity easily justifies the extra cost.

With this approach to isolation, the communication eleradrgtween modules acquire
special importance, because they determine the way thatile®dre able to interact. We carefully
structured our design to simplify the connection topologyraich as possible. Figure 5.2 summa-
rizes the interconnectivity topology, and we describe seh\ey aspects of our design below.

We remark that when multiple hardware components are usedstwould ensure that the

same versions of code run on each component.

79

[
€--—

|
. VoteSelection
vy

Nk
LCD and . A
Touch Screen IOMultiplexor ' ‘

A!

>

Y

VoteCore

Token
Reader

Y

- - ->: ResetModule

Wire Ready wire Bus
------------ > L =
Reset signal Start wire Connection to 10 device
........ > 2T

Figure 5.2: Our architecture, showing the hardware comoation elements.

Buses and wires. Our hardware-based architecture employs two types of canwation chan-

nels: buses and wires. Buses provide high-speed unidiredtior bidirectional communication

between multiple components. Wires are a simple signalement with one bit of state; they can

be either high or low, and typically are used to indicate tesence or absence of some event. Wires

are unidirectional: one component (the sender) will set/ilee of a wire but never read it, and the

other component (the receiver) will read the value of theevbut never set it. Wires are initially

low, and can be set, but not cleared; once a wire goes highmains high until its controlling

component is reset. We assume that wires are reliable baslaue potentially unreliable.

To deal with dropped or garbled messages without introdutmo much complexity, we

80

use an extremely simple communication protocol. Our palt@& connectionless and does not
contain any in-band signaling (e.g., SYN or ACK packets).&Vla component in our architecture
wishes to transmit a message, it will repeatedly send thasage over the bus until it is reset or
it receives an out-of-band signal to stop transmitting. $@eder appends a hash of the message
to the message. The receiver accepts the first message walidéhash, and then acknowledges
receipt with an out-of-band signal. This acknowledgmerghihbe conveyed by changing a wire’s
value from low to high, and the sender can poll this wire tantdfg when to stop transmitting.

Components that need replay protection can add a sequend®ento their messages.

Using buses and wires. We now describe how to instantiate the communication pathsur
high-level design from Section 5.3.2 with buses and wirascéheVoteCore module reads a valid
token, it repeatedly sends the data on the tokeYioi@Selection until it receives a message from
VoteConfirmation. After storing the vote and canceling the authenticatidceno theVoteCore
module triggers a reset by setting its wire to ReetModule high.

To communicate with the voter, théoteSelection component creates a bitmap of an
image, packages that image into a message , and repeated$tbat message to tH@Multiplexor.
Since theVoteSelection module may send many images, it includes in each messagaiarnseq
number; this sequence number does not change if the imagendbehange. Also included in the
message is a list of virtual buttons, each described by adijobnique button name and the x- and
y-coordinates of the region. Th@Multiplexor will continuously read from its input source (initially
the VoteSelection module) and draw to the LCD every bitmap that it receives wittew sequence
number. ThdOMultiplexor also interprets inputs from the touch screen, determinesthven the

inputs correspond to a virtual button and, if so, repeatediyes the name of the region to the

81

VoteSelection module until it has new voter input. Naming the regions pnéweiser input on one
screen from being interpreted as input on a different screen

When the voter chooses to proceed from the vote selectioeeptmthe vote confir-
mation phase, th&oteConfirmation module will receive a ballot from th&oteSelection mod-
ule. TheVoteConfirmation module will then set its wire to th&OMultiplexor high. When the
IOMultiplexor detects this wire going high, it will empty all its input andtput bus buffers, reset its
counter for messages from thleteSelection module, and then only handle input and output for the
VoteConfirmation module (ignoring any messages frofateSelection). If the VoteConfirmation
module determines that the user wishes to return t&/theSelection module and edit her votes, the
VoteConfirmation module will set its wire to thé&/oteSelection module high. Thé/oteSelection
module will then use its bus t¥WoteConfirmation to repeatedly acknowledge that this wire is
high. After receiving this acknowledgment, teteConfirmation module will reset itself, thereby
clearing all internal state and also lowering its wires ®ItDMultiplexor andVoteSelection mod-
ules. Upon detecting that this wire returns low, tRMultiplexor will clear all its input and out-
put buffers and return to handling the input and output\oteSelection. The purpose for the
handshake between thMateConfirmation module and th&/oteSelection module is to prevent the
VoteConfirmation module from resetting and then immediately triggering oa téceipt of the
voter’s previous selection (without this handshake, Whe&Selection module would continuously

send the voter’s previous selections, regardless of wh¥iteConfirmation reset itself).

5.3.4 Reducing the complexity of trusted components

We now discuss further aspects of our design that facilitagecreation of implementa-

tions with minimal trusted code.

82

Resets. Each module (except for thResetModule) interacts with theResetModule via three
wires, the initial values of which are all low:raady wire controlled by the component aneset
andstart wires controlled by th&ResetModule. The purpose of these three wires is to coordinate
resets to avoid a situation where one component believésttisahandling thei-th voter while
another component believes that it is handling (th¢ 1)-th voter.

The actual interaction between the wires is as follows. Wdnenmponent first boots, it
waits to complete any internal initialization steps anditkets theeady wire high. The component
then blocks until itstart wire goes high. After theeady wires for all components connected to the
ResetModule go high, theResetModule sets each componentart wire high, thereby allowing
all components to proceed with handling the first voting isess

Upon completion of a voting session, i.e., after receivisigaal from the/oteCore com-
ponent, theResetModule sets each componentsset wire high. This step triggers each component
to reset. Th&kesetModule keeps theeset wires high until all the componemeady wires go low,
meaning that the components have stopped executingRddeeModule subsequently sets the-
set wire low, allowing the components to reboot. The above psedth theready andstart wires

is then repeated.

Cast and cancel buttons. Our hardware architecture uses two physical buttons, ecdtsin and

a cancel button. These buttons directly connect the useritcdavidual component, simplifying the
task of establishing a trusted path for cast and cancel sggju@ur use of a hardware button (rather
than a user interface element displayed on the LCD) is irerid give voters a way to know that
their vote will be cast. If we used a virtual cast button, aioials VoteSelection module could

draw a spoofed cast button on the LCD and swallow the uset&s, voaking the voter think that

83

they have cast their vote when in fact nothing was recordedeaving the voter with no way to
detect this attack. In contrast, a physical cast buttorwallattentive voters to detect these attacks
(an alternative might be to use a physical “vote recordegtitlin theVoteCore). Additionally, if we
used a virtual cast button, miscalibration of the touchetreould trigger accidental invocation of
the virtual cast button against the voter’'s wishes. Whilécation issues may still affect the ability
of a user to scroll through a multi-screen confirmation pssceve anticipate that such a problem
will be easier to recover from than touch screen miscalitinat causing the DRE to incorrectly
store a vote. To ensure that a malicidltgeSelection module does not trick the user into pressing
the cast button prematurely, tMeteConfirmation module will only enable the cast button after it
detects that the user paged through all the vote confirmaticeens.

We want voters to be able to cancel the voting process at argy tegardless of whether
they are interacting with th&oteSelection or VoteConfirmation modules. Since th€oteSelection
module is untrusted, one possibility would be to havel@®# ultiplexor implement a virtual cancel
button or conditionally pass data to tMeteConfirmation module even when th¥oteSelection
module is active. Rather than introduce these complexitieschose to have théoteCore module
handle cancellation via a physical cancel button. The damdéon is enabled (and physically lit
by an internal light) until theVoteCore begins the process of storing a ballot and canceling an

authentication token.

5.4 Prototype implementation

To evaluate the feasibility of the architecture presente8ection 5.3, we built a proto-

type implementation. Our prototype uses off-the-shelffigtix connex 400xm” computers. These

84

Figure 5.3: We show the front and back of a gumstix as well aaxgansion board through which
the GPIO and serial ports are soldered. The quarter givesdization of the physical size of these
components.

computers measure 2cm by 8cm in size, cost $144 apiece, ataircan Intel XScale PXA255 pro-
cessor with a 400 MHz StrongARM core, 64 MB of RAM, and 16 MB afth for program storage.
We enable hardware isolation by using a separate gumsteaitit component in our architecture.
We do not claim that the gumstix would be the best way to emgia@ actual voting
system intended for use in the field. However, the gumstixe lmgny advantages as a platform for
prototyping the architecture. In conjunction with an etjuaized expansion board, the processors
support three external RS-232 serial ports, which trankigitectional data at 115200 kbps. We use
serial ports as our buses. Additionally, each gumstix stppuany general purpose input/output

(GPIO) registers, which we use for our wires. Finally, thecA® processor supports an LCD and

85

Figure 5.4: The mounting board for a single component. Itaios three serial ports (along the
top), 4 GPIO pins and a ground pin (along the right side), al agea gumstix processor board
mounted atop an expansion board.

touch screen interface.

The gumstix platform’s well-designed toolchain and sofevanvironment greatly sim-
plified building our prototype. The gumstix, and our profmyuse a minimal Linux distribution as
their operating system. Our components are written in Jadaran on the Microdoc J9 Java VM,;
its JIT provides a significant speed advantage over the nmtatge JamVM Java interpreter. Our

choice of Java is twofold: it is a type-safe language and segnts a broad range of exploits; sec-

86

ondly, several program verification tools are availablevinifying invariants in Java code [15, 44].
C# is another natural language choice since it too is tyfe-aad the Spec# [7] tool could aid in
verification, but C# is not supported as well on Linux. We viewich stable of effective verification
tools to be just as important as type-safety in choosingrtipementation language since software
tools can improve confidence in the voting software’s cdmess. Both can eliminate large classes

of bugs.

5.4.1 Implementation primitives

Our architecture requires implementations of two sepacatemunications primitives:
buses and wires. It is straightforward to implement busé@syuserial ports on the gumstix. To do
so, we expose connectors for the serial ports via an expamsiard connected to the main pro-
cessor. varch/Figures 5.3 and 5.4 show an example of suckpamson board. We additionally
disable thegetty terminal running on the serial ports to allow conflict free wé all three serial
ports. The PXA255 processor has 84 GPIO pins, each cortrojyleegisters; we implement wires
using these GPIOs. A few of the pins are exposed on our exgrabsiard and allow two compo-
nents to be interconnected via their exposed GPIO pins. E&ID pin can be set in a number of
modes. The processor can set the pin “high” so that the pirat&8 volt difference between the
reference ground; otherwise, itis low and has a 0 voltaderéifice between ground. Alternatively,
a processor can poll the pin’s state. To enforce the unititimeal communication property, particu-
larly when a single wire is connected to more than two GPIQscowuld use a diode, which allows
current to flow in only one directiod. We currently rely on software to enforce that once a GPIO

is set high, it cannot ever be set low without first restartimg process; this is a property one could

3Even this may not be enough, since an actual diode does navéels the idealized diode we rely upon.

87

Figure 5.5: A picture of our prototype implementation. Tehex one board for each component in
the system. The magnetic swipe card (along the left) is usealithentication, while the cast button
is in the upper left component.

enforce in hardware via a latch, though our current pro®igypes not do so yet.

In addition to the GPIOs, the PXA255 exposes an NRESET pirplyipg a 3.3v signal
to the NRESET pin causes the processor to immediately hedigion; when the signal is removed,
the processor begins in a hard boot sequence. The gumstabkr¢o reboot in under 10 seconds
without any optimizations, making the NRESET pin nearlaide clear a component’s state during
a reset. Unfortunately, the specifics of the reboot sequeaases slight problems for our usage.
While the NRESET wire is held high, the GPIO pins are also highhe case where one component

reboots before another (or where selective componentseamot), setting the GPIOs high will

88

inadvertently propagate a signal along the wire to the atberponents. Ideally, the pins would be
low during reset. We surmise that designing a chip for oualideset behavior would not be difficult
given sufficient hardware expertise. Since the micropmessin our platform do not exhibit our
ideal behavior, in our prototype we have a separate daenmmmected to an ordinary GPIO wire
that stops the Java process running the component code hdegset pin goes high and then resets
all wire state to low. The daemon starts a new component psos@en the signal to its reset pin is
removed. This is just a way of emulating, in software, the I$IEE semantics we prefer. Of course,
a production-quality implementation would enforce thesmantics in trusted hardware.

We use a Kanecal KaneSwipe GIT-100 magnetic card readeufibodzing voters to use
the machine. A voter would receive a card with authenticatidormation on it from poll workers
upon signing in. The voter cannot forge the authenticatidarmation (since it contains a public
key signature), but can use it to vote once on a designated DiREreader has an RS-232 interface,
S0 we are able to use it in conjunction with the serial porthengumstix.

Finally, our implementation of théoteCore component uses a compact flash card to store
cast ballot images and invalid magcard identifiers. Electifficials can remove the flash card and
transport it to county headquarters after the close of palsleployed DRE might use stronger
privacy-protection mechanisms, such as a history-indégen tamper-evident, and subliminal-free
data structure [55]. For redundancy, we expect a deployel Ralso store multiple copies of
the votes on several storage devices. A full implementadidhe VoteSelection component would
likely also use some kind of removable storage device tcedfioe ballot definition file. In our
prototype, we hard-code a sample ballot definition file irite WoteSelection component. This

suffices for our purposes in gauging the feasibility of otieehniques.

5 PERIOD FOR FERMAMEMT
0oL TEACHE E
THE PROCE
ICATED

MEXT PARGE

Figure 5.6: The image shows a screenshot of\th&Selection component displaying referenda from the November 200%ietedn
Berkeley, CA. We flipped a coin to choose the response showhi®screen.

68

90

Our prototype consists of five component boards wired t@gathaccordance with Fig-
ure 5.2. We implement all of the functionality except for ttencel button. See Figure 5.5 for a
picture showing the five components and all of their intenemions. Communication uses physi-
cal buses and wires. The I/O multiplexer, after each updag¢eadion, sends an image over a virtual
bus connected (connected via the USB network) to the PCG@oriisends the compressed image it
would ordinarily blit to the framebuffer to the PC so that #€ can blit it to its display. The gum-
stix only recently supported LCD displays, and we view ourdiplay as an interim solution. The
additional software complexity for using the LCD is mininaa it only requires blitting an image
to memory.

Figure 5.6 shows our voting software running on the gumatie. used ballot data from

the November 2005 election in Alameda County, California.

5.5 Evaluation

5.5.1 Verifying the desired properties

Property 1. Recall that to achieve “memorylessness” we must be ableow #ie DRE is always
reset after a voter has finished using the machine, and theddBtpens a given file read-only or
write-only, but not both. To show that the DRE is reset afterisg a vote, we examine a snippet of
the source code frovMoteCore.java ,the source code for théoteCore module in Figure 5.7. In
line 7, after storing the ballot into the ballot box, tieteCore module continuously raises the reset
wire high. Looking at the connection diagram from Figure, 5v2 note the reset wire terminates at
theResetModule and induces it to restart all components in the system. Euitispecting code not

reproduced in Figure 5.7 reveals the only reference th#lietbox is in the constructor and in

grabio.set();

UPDATE DISPLAY ...
castenable.set();
if (cast.isSet()) {

while (true) {

toVoteCore.write(ballot);

Confirm.java

byte [] ballot =
fromVoteConf.read();

if (ballot '= null) {

INVALIDATE VOTER TOKEN ...

ballotbox.write (ballot);
while (true) {

resetWire.set();

VoteCore.java

Figure 5.7. Code extracts from théteConfirmation andVoteCore modules, respectively. Examining these code snippets tivétcon-
nection topology helps us gain assurance that the aralnieeathieves Properties 1 and 2.

T6

92

line 5, so writes to it are confined to line 5.

Finally, we need merely examine every file open call to make #hey are either read-
only or write only. In practice, we can guarantee this by enguwritable files are append-only, or
for more sophisticated vote storage mechanisms as propyddainar et al., that the storage layer

presents a write-only interface to the rest of the DRE.

Property 2. For the “consent-to-cast” property, we need to verify twiagls: 1) the ballot can only
enter theVoteCore through theVoteConfirmation module, and 2) the voter’s consent is required
before the ballot can leave thMateConfirmation module.

Looking first atConfirm.java in Figure 5.7, theVoteConfirmation module first en-
sures it has control of the touch screen as it signal$Qhultiplexor with the “grabio” wire. It then
displays the ballot over the bus, and subsequently endidesatst button. Examining the hardware
will show the only way the wire can be enabled is through ai§p&sPI10, in fact the one controlled
by the “castenable” wire. No other component in the systemereble the cast button, since it is
not connected to any other module. Similarly, no other camepbin the system can send a ballot
to theVoteCore module: on line 6 oConfirm.java , theVoteConfirmation sends the ballot on
a bus named “toVoteCore”, which is called the “fromVoteCobdis in VoteCore.java . The
ballot is demarshalled on line 1. Physically examining thediware configuration confirms these
connections, and shows the ballot data structure can onigdmom theVoteConfirmation module.
Finally, in theVoteCore module, we see the only use of the ballotbox is at line 5 wherdallot is
written to the box. There are only two references toBh#otBox in theVoteCore.java source
file (full file not shown here), one at the constructor site #melone shown here. Thus we can be

confident that the only way for a ballot to be passed toBhkotBox is if a voter presses the cast

93

\ Java C(INI) Total |

Communications 2314 677 2991
Display 416 52 468
Misc. (interfaces) 25 0 25
VoteSelection 377 0 377
VoteConfirmation 126 0 126
IOMultiplexor 77 0 77
VoteCore 846 54 900
ResetModule 121 0 121
Total 4302 783 5085

Table 5.1: Non-comment, non-whitespace lines of code.

button, indicating their consent. We must also verify tinet images displayed to the voter reflect

the contents of the ballot.

5.5.2 Line counts

One of our main metrics of success is the size of the trustetpbating base in our im-
plementation. Our code contains shared libraries (for camaoations, display, or interfaces) as
well as each of the main four modules in the TOB{eConfirmation, IOMultiplexor, VoteCore,
and ResetModule). The VoteSelection module can be excluded from the TCB when considering
Properties 1 and 2. Also included in the TCB, but not our linert figures, are standard libraries,
operating system code, and JVM code.

In Table 5.1, we show the size of each trusted portion as at@uhe number of source
lines of code, excluding comments and whitespace.

The communications libraries marshal and unmarshal datetgtes and abstract the se-

rial devices and GPIO pins. The display libraries rendet ii@o our user interface (used by the

94

VoteConfirmation component) and ultimately to the framebuffer.

5.6 Applications to VVPATSs and cryptographic voting protocols

So far we've been considering our architecture in the cdrdgéa stand-alone paperless
DRE machine. However, jurisdictions such as CaliforniauneyDRESs to be augmented with a
voter verified paper audit trail. In a VVPAT system, the vagegiven a chance to inspect the paper
audit trail and approve or reject the printed VVPAT recortiepaper record, which remains behind
glass to prevent tampering, is stored for later recountsidit&

VVPAT-enabled DREs greatly improve integrity protecti@n fion-visually impaired vot-
ers. However, a VVPAT does not solve all problems. Visuaitpaired voters who use the audio
interface have no way to visually verify the selections fathon the paper record, and thus receive
little benefit from a VVPAT. Also, a VVPAT is only an integritmechanism and does not help with
vote privacy. A paper audit trail cannot prevent a maliciDiE from leaking one voter’s choices to
the next voter, to a poll worker, or to some other conspirakbird, VVPAT systems require careful
procedural controls over the chain of custody of paper tmllBinally, a VVPAT is a fall-back, and
even in machines that provide a VVPAT, one still would préFer software to be as trustworthy as
possible.

For these reasons, we view VVPAT as addressing some, butlpooblems. Our meth-
ods can be used to ameliorate some of the remaining linmigtioy providing better integrity pro-
tection for visually impaired voters, better privacy puiten for all voters, reducing the reliance
on procedures for handling paper, and reducing the costadifirg the source code. Combining

our methods with a VVPAT would be straightforward: N¥eteConfirmation module could be aug-

95

mented with support for a printer, and could print the vatsglections at the same time as they are
displayed on the confirmation screen. While our architectnight be most relevant to jurisdictions
that have decided, for whatever reason, to use paperless DiREexpect that our methods could
offer some benefits to VVPAT-enabled DREs, too.

Others have proposed cryptographic voting protocols taead the security of DREs[19,

39, 58, 60]. We note that our methods could be easily comhinttdthose cryptographic schemes.

5.7 Extensions and discussion

Other properties. In this chapter, we have extensively discussed verifyingpBrties 1 and 2;
Work done in conjunction with Molnar et al. addresses Priygp8r and Chapter 6 describes a
software checker for Property 6. That leaves Property 4 (DREstores ballots the voter approves)
and Property 5 (Ballot contains nothing more than the vetehbices).

Briefly, we sketch how the architecture presented in thiptgvaaids verification of both
these properties. For Property 4, it is easy to inspect, devarsoftware checker, that the ballot
is unmodified after th&/oteConfirmation module. The same ballot that enters the module is the
one that is sent to thBallotBox. Given the (linear) dataflow path in the architecture, itasyeto
verify the ballot data is unmodified. Of course, this leavesfying that the display routines in the
VoteConfirmation accurately reflect the ballot data for confirmation.

Finally, for Property 5, we can use a check function to guaenhat the ballot is in a
canonical format. Given that Property 4 guarantees thabaliet remains unmodified, a (boolean)
canonicalization function run during execution can legerghe fail-stop mode and halt on non-

canonical ballots. Chapter 6 addresses the benefits ofitretdp model for verifying properties.

96

Minimizing the underlying software platform. Our prototype runs under an embedded Linux
distribution that is custom designed for the gumstix plaifo Despite its relatively minimal size
(4MB binary for kernel and all programs and data), it stikgents a large TCB, most of which is
unnecessary for a special-purpose voting appliance. Wecéxpat a serious deployment would
dispense with the OS and build a single-purpose embeddditatmm running directly on the
hardware. For instance, we would not need virtual memorynarg protection, process scheduling,
filesystems, dual-mode operation, or most of the other featiound in general-purpose operating
systems. It might suffice to have a simple bootloader andradévice driver layer specialized to
just those devices that will be used during an election.rA#igvely, it may be possible to use ideas
from nanokernels [23], microkernels [29, 69], and opemsystem specialization [68] to reduce

the operating system and accordingly the TCB size.

Deploying code. Even after guaranteeing the software is free of vulnetadsli we must also
guarantee that the image running on the components is tlectomage. This is not an easy
problem, but the research community has begun to addreshaienges. SWATT [80] is designed
to validate the code image on embedded platforms, thoughrtieel does not allow for CPUs
with virtual memory, for example. TCG and NGSCB use a secardviare co-processor to achieve
the same ends, though deploying signed and untampered@wodeites still requires much work.
Additionally, a human must then check that all componengsranning the latest binary and must
ensure that the binaries are compatible with each other ‘hatoat version 1.0/oteCore is not
running with a version 1.10Multiplexor module, for example.

This concern is orthogonal to ours, as even current votinghmas must deal with ver-

sioning. It illustrates one more challenge in deploying @ise voting system.

97

5.8 Conclusions

Our approach uses hardware to isolate components from ¢laehand uses reboots to
guarantee voter privacy. In particular, we have shown haaigg theVoteSelection module,
where much of the hairiness of a voting system resides, iatown module can eliminate a great
deal of complex code from the TCB. Though isolation is not aehddea, the way we use it to
improve the security of DREs is new. This work shows that gassible to improve existing DREs
without modifying the existing voter experience or buraenthe voter with additional checks or
procedures.

The principles and techniques outlined here show that tlseeebetter way to design

voting systems.

98

Chapter 6

Environment-freeness

In this chapter, we seek to develop software analysis tgaksithat guarantee that the in-
memory copy of the ballot can be properly recovered afteakssation for later tallying. To do so,
we introduce the notion agnvironment-fredunctions, where the function’s behavior depends only
and deterministically on the arguments to the function.nl & show to use this concept to verify
the correct invertability oEncode operations such as serialization, compression, and etmnyp
through a mixture of static analysis and runtime checks. Jthetegy is to first verify that the
Decode implementation is environment-free and then add a simpdime check to ensure that
the encoded data can and will be correctly decoded in theefutdVe develop a static analysis
for verifying that Java code is environment-free. To dentrats its feasibility, we implemented
our algorithm as an Eclipse plug-in and used it to analyzes#r&lization routines in our voting
architecture from Chapter 3 and also to verify that decoypis the inverse of encryption in a Java
cryptography implementation.

Parts of this work are drawn with permission from prior work].

99

6.1 Introduction and motivation

Many computer programs perform serialization and deseat#bn, converting an in-
memory version of a data structure into a form suitable foregje or transmission and back again.
In this chapter, we develop novel methods for verifying tbeectness of serialization and deserial-
ization code. In particular, we wish to verify that deseriion is the inverse of serialization, i.e.,
that serializing a data structure and then deserializiegréisult will give you back the same data
structure you started with.

Verifying the correctness of serialization and deseradion is a difficult task. Serial-
ization and deserialization typically involve walking aofpntially cyclic) object graph, and thus
inevitably implicate complex aliasing issues. Reasoninguh aliasing is well known to be chal-
lenging. Also, the invariants needed to prove the correstrod serialization and deserialization
may not be immediately apparent from the code and may be naessynilluminating when writ-
ten down explicitly. Therefore, standard formal methodseap to be ill-suited for this task.

More broadly, serialization is just one of a family of comnudata transformation routines
that litter voting software. Two others in the family inckigéncryption/decryption and compres-
sion/decompression.

We seek to verify the following property about a pair of alfons, (Encode, Decode):
namely, for allz, Decode(Encode(z)) should yield some output’ that is functionally equivalent
to z. We want this property to hold even Mecode is invoked at some later time on some other
machine, so we will also need to verify tHaécode does not implicitly depend on any data (other
than its input) that might be different on some other machi& call this the Inverse Property,

since the goal is to verify thddecode is a left inverse oEncode. In many contexts, it is a serious

100

error if Decode fails to yield the original input.

We use one specific aspect of voting machine accuracy as smguexample in this paper.
As the voter makes selections, the voting machine accugsaithese selections into a data structure
in RAM. When the voter casts her ballot, the machine musakzeei Encode) this data structure to
disk. During the tallying stage, the disk will be read, and dhoices will need to be deserialized
(Decode) into the voter’'s original data structure in order to conepile tally. We wish to verify that
the vote data structure that is serialized and recordedstovanen the voter casts her ballot can later
be reconstructed exactly as it was when the voter cast Het.balfailure to reconstruct the original
data structure would be a serious problem, because it woalthrthat a voter’s choices could not

be recovered accurately, disenfranchising the voter.

6.2 Static analysis to enable dynamic checking

Statically analyzing the correctness of a pair of algorghim verify that the second is
alwaysthe inverse of the first is beyond our expertise. It is easi@upportfail-stop operation, in
which errors are detected at runtime but before any harntiusequences have taken place. The
current transaction leading to the error is then cancete@dssibly retried, if the error is likely to
be transitory).

Returning to our example, a voting machine endowed withrttéshanism would verify
the Inverse Property for each voter's ballot before annimgnto that voter that their vote was
successfully cast. If the check fails, the voter would béfieok and advised to use another voting
machine. Without the check, the voter would never know thairtballot had been improperly

serialized (and hence stored); depending upon the natute afeserialization error, the problem

101

may or may not be caught at tally time when their vote is calinte

Note that checking the Inverse Property requires knowledgrit a hypothetical future;
to confirm a voter's vote we must be confident that any fututengit to deserialize their ballot
will be successful. Ensuring this requires us to be ableedipt the future behavior of tHeecode
method. The easiest way to make such a method predictaldedguire it to “always do the same

thing” and to check its behavior once, with a check like tHoWwing:

y := Encode(z)

abort if # Decode(y)

For instance, in the voting machine example, we would tedasthe pseudo-code above into a
concrete Java implementation as follows:

byte[] bytes = ballot.serialize();
assert(ballot.equals(
Ballot.deserialize(bytes)));

The runtime assertion check is intended to ensure that tiedized bytes will properly
deserialize into thdallot . By checking that the deserialization is correct at the toheeri-
alization, we'd like to then infer that deserialization Mbke correct at som&ter time, when the
deserialize() function (or more generally tHeecode function) will be run. However, this in-
ference is only valid if we make several assumptions abaub#havior of theleserialize()

andequals() methods.

1. The result of theleserialize() function must be a deterministic function of its argu-
ments, namelypytes . Its output must not depend upon any other values, such ashhes

of global variables, the time of day, or the contents of tresfistem. Theeserialize()

102

function must yield the same results when it is later run @nsiéime input, even if it is run on

another machine at a later time.

2. Thedeserialize() function must not be able to modify global state; i.e. it cautyo

modify objects reachable from its argumehts

3. Theequals() method must check all relevant properties of ladlot object and does
not have any side-effects. We will take it as the specificadiowhat it means for twballot

objects to be functionally equivalent.

4. Thedeserialize() function that will be executed later (including any methodstatic

declarations it makes use of) must be the same one used iarttime check.

If we can statically verify that these four requirementsraet, then we will be entitled to conclude
that the serialized data will later be deserialized colyect

Note that we have explicitly not restricted the seriali@atfunction in any way. For ex-
ample, we don’t require thEncode function to be deterministic. In gener&incode might depend
on a source of randomness or non-determinism in generdasngutput. This is particularly im-
portant for encryption functions. As long as thBecode function deterministically reconstructs the
original data, it does not matter how it operates in any wagr dxample, we don't require the
serialize() function to be deterministic. In the general cdsSesode should be able to depend
on a source of non-determinism in generating its outputs hparticularly important for encryp-
tion functions. As long as thBecode function deterministically reconstructs its input, it dasot

matter how thé&Encode function works.

Lif the deserialize() function is passed a new deep copy of any arguments that inm#gte, theassert()
statement does not change the behavior of the program i€degals. In our case, making a deep copy bj[] is
trivial.

103

In summary, our strategy is as follows. First, we transfoh@a tode by introducing a
run-time assertion check after every calBacode. For arguments that are mutated by Berode
function, we pass it deep copies instead of the originalco®® we manually confirm that the
third and fourth requirements are met. Finally, we usecstatalysis to verify that that the first two
requirements are met. This strategy suffices to ensuretitegirogram satisfies fail-stop correct-
ness: if the transformed program does not abort, then tlexdavProperty will be satisfied on that
execution.

This paper addresses the first two of the above requiremaatdgvelop a static analysis
to make sure that thBecode function computes its output deterministically based amyits input
and does not cause disruptive side effects. Our static sinatydesigned to place as few restrictions

on the rest of the code as possible.

6.3 Environment-free and compile-time constants

6.3.1 Overview

One possible method to enable the fail-stop approach edtiim Section 6.2 is to require
the Decode function bepure A pure function is required to be free of side-effects; etieg such
a function and discarding the result should be a no-op. Ddipgron whose definition one uses, a
pure function may or may not be allowed to read the values thtially mutable global state; JML
seems to allow it [73] as it does not violate the no-op-edeivee requirement.

Pureness, at least in the JML sense, is thus both overlyiatestrand not restrictive
enough for our purposes. We do not require Breode function be side-effect free in general, but

we do restrict its side effects to objects reachable frorangsiments. In-place array manipulations

104

are common in decryption algorithms, and we wish to be ablsufport this pattern. Making a
deep copy of arguments before calling the checker sufficemsare that the check won’t modify
them.

Allowing pure functions to read static state is problemasis purity is only adequate
to ensure that two executions Dicode on equivalent inputs yield the same result when global
variables are the same. Equivalence of global states isTedasy property to check.

Instead, we propose eliminating the ability for thecode function to read from global
constants that may vary. We rely on a new concept, caledronment-freenesso describe the

property that théecode function should exhibit.

6.3.2 Environment-free functions

A function is environment-free if it satisfies the followitgo restrictions:

1. It may not cause any externally-visible mutation excephbdify objects reachable from its
arguments. This includes modifications of global state &g £xternal to the program, e.g.

disk or network.

2. Any two calls to that function with equal arguments arergotgeed to return (or throw) equal
results. This sense of equality is defined below. For ingtanethods in Java, the implied

this parameter is considered an argument.

For the purposes of this definition, equality between twaJdjects is defined as equiv-
alence of the graphs of objects reachable from the two abjéaxjuality over these graphs includes
the values of all primitive fields as well as the structure @hgers in the graph (including aliasing

of objects reachable from compile-time constants). Theeedpecial exception for the stack traces

105

stored inThrowable objects, as will be explained in Section 6.4.4. This reflélots strongest
notion of equality that is observable by an environmeng-ineethod, since the addresses of objects
are not visible to such methods, as discussed in SectioB. 8i5s also the relationship preserved
by default by Java serialization.

Note that this definition allows an environment-free fuostio modify objects that are
reachable from its arguments. Changing these argumentsausg different versions of the same

Java object to be unequal given the definition of equalitywabo

6.3.3 Compile-time constants

A compile-time constarit either a lexical constant that appears in the source code o
global variable that is guaranteed to have the same valdétamas. The value of a compile-time
constant must be a deterministic function of the programcecode and must be the same on every
execution of the program.

This notion is useful in our static analysis for verifyingatha function is environment-
free. For a function to be a strictly deterministic functiohits arguments, it cannot depend on
any other values that may vary. It would suffice to excludeeasdo all global (static) fields, but
we need not be that strict. It is safe to access a static fieldged that it is guaranteed to have a
deterministic, constant value. If we can be certain thatyetime the field is accessed it always has
the same value, it is possible to guarantee that the envientifree function will return the same
value when given the same input even if called at differemes. Therefore, our static analysis
algorithm imposes the requirement that any global variiideis accessed by an environment-free

function must be a compile-time constant.

106
6.3.4 How these are verified

At a high level, we can verify that a function is environmémte by confirming that it
does not read any external state, apart from what is reaehadlits arguments or via compile-
time constants. An environment-free function may call ofaactions, but we require those other
functions to be environment-free, too. Permitting an emvinent-free functiori() to call a non—
environment-free function could potentially allow a saiof non-determinism to affeéf)’s return
value, breaking the guarantee of determinism.

We verify that a global variable is a compile-time constanthecking that three condi-
tions are met. Firstly, its value must be set before any enment-free method that might access it
is invoked; and secondly, its value must not be changed &lifénof the program. These conditions
are verified using an extended notion of the checks that treectanpiler uses to enforce tfiral
attribute of fields. Finally, the global variable must betialized to a deterministic value; i.e., its
initialization expression must be a deterministic funectas the program source code. The restric-
tions on the initializer are similar to those on environmfzat fields. The initializer is only allowed
to rely on other (already initialized) compile-time comgtgaand may only call environment-free

methods.

6.4 Specifics and algorithm

Here we describe the mechanisms we use to verify these piespef Java 1.4 source

code.

107

6.4.1 Annotations

In our system, the programmer annotates each environmemtriethod’s declaration
with an annotatior@envfree to indicate that it (and all methods it transitively callsg alleged
to be environment-free. The annotation serves as a diestitithe static checker to validate the
correctness of this assertion. Therefore, to verify thBeeode method is environment-free, all a
programmer need do is mark it with @envfree annotation and run our static checker.

In practice, we have found it convenient to re-factor ourecstightly by introducing a
static method that returns a boolean indicating whether its firgtiment deserializes into the

second. In the example of Section 6.2, we would introducda@ving function:

/** Returns whether the deserialized first
* parameter "equals()" the second parameter.
* @envfree */
public static boolean check(byte[] bytes,
Ballot b) {
return b.equals(Ballot.deserialize(bytes));

}

The function would be invoked from an assertion, like this:

assert(check(bytes, ballot));

Introducing thecheck() function allows us to reduce the number of annotation sitescearly
indicates what check is being done. The annotation on thekcimethod will force the checker
to validate that both thequals() method andleserialize() method are environment-free
without extra annotations on either method. We can thug timei programmer’s burden.

We also allow a static field to be explicitly tagged with an @ation @ctc to indicate
they are compile-time constants. However, this annotasiomt strictly necessary, since all fields

required to be compile-time constants will automaticalydiscovered. This facility may be helpful

108

for a programmer who wishes to verify that a static field is mpite-time constant independently

of its use by an environment-free method.

6.4.2 Finding methods and variables to check

The checker analyzes the source to create a list of all “rehods” annotated with the
@envfree annotation. It then finds the transitive closure of all mdthacalled from these root
methods; all methods that ap®tentially reachable from an annotated environment-free method
must also be environment-free. The checker considers atiyosheeferenced in an environment-
free method as a method that could be called and hence sheuldecked to see whether it too is
environment-free. Methods in any subclasses that ovethideenvironment-free method are also
added to the list to be checked, since they too must be emagnohfree. Added to this list are
constructors that are invoked with thew operator within environment-free methods. These too
must be environment-free since a non-environment-frestnartor could introduce a source of
non-determinism into what should be a deterministic emrment-free function. All of these transi-
tively reachable methods are treated as though they hadnbaked with an (implicitfi@envfree
annotation.

Finally, any global §tatic) variable that is annotate@ctc or referenced within an
environment-free method must be a compile-time consténtddclaration site, with a reference to
its initializer, is queued into a list. Every element in theege will be checked to confirm that it is
indeed a compile-time constant.

We next describe the checker’s steps to check whether traf Esvironment-free meth-

ods and compile-time constants satisfy their requirements

109

6.4.3 Compile time constants

As outlined in Section 6.3.4, compile-time constants aggiired to meet three require-
ments. We ensure the first, that its value be set before it by any environment-free method,
by requiring it to be initialized where it is declared. Themed concerns mutability: A compile-
time constant field must be declaredfimal , so that the object the field points to cannot change.
In addition, the field must be of a type that is immutable adarpd below, to ensure that the
constant object cannot be modified after it is initializedheThird and final requirement concerns

determinism of initialization and is discussed in Sectich®

Immutability

A compile-time constant must have the same value over thénfié of the program’s
execution. Joe-E, an object-capability subset of the Javguage, provides useful definitions and
implementations for immutability. For compile-time coasts, we follow Joe-E’s lead and require
that the compile-time constant’s type must implemeniramutable interface [53]. The interface
does not have any members, but serves as a marker to the chreikating that the class (and all
its subclasses) must be transitively immutable (i.e. ittnmas be possible to mutate the object or
any other object reachable by following its fields).

Joe-E contains a more general set of requirements for intntitigaof an object than are
necessary for the definition of compile-time constant©ur checker for this application verifies

the following simplified set of properties that suffice to @msimmutability.

o All of the instance fields in an immutable type must must bdatedfinal . This ensures

2gpecifically, it allows more flexibility in the use of nestethsses and superclasses that are not Immutable. For
details, see the Joe-E specification [53].

110

that the references assigned at the type’s constructidmetichange at some later time.

e The static type of all instance fields within of an immutahbtpe must also implement the
Immutable interface. The requirement that all instanceg$i@hust be final is not sufficient
to guarantee immutability. If an immutable typehas an instance field that has a mutable
member, therT is no longer immutable, due to the transitive definition ofriotability. To

eliminate such cases, all objects reachable from an objeégb@T also be of immutable type.

e We require all that the superclass of an immutable fy@dso implement thémmutable
interface (with the exception gava.lang.Object , which has no fields). This ensures

that fields inT’s superclass will also be Immutable, which is necessarii@sdre a part of.

We restrict implementation of the Immutable interface to-kevel classes and static inner classes.
Non-static inner classes are more complicated as they angegl access to fields of their enclosing
classes. It would not be difficult to support such structubes we did not see much need for this
particular programmatic pattern. Static inner classepammitted without restriction since they are
not constructed with the implicit pointer to their enclagiclass. We also forbid local or anonymous
classes from implementing the Immutable interface; thesev@re complicated as they can also
inherit access to local variables in scope. While one cam @isate criteria for Immutable local
and anonymous classes, we similarly did not see a need t@guppOur use of immutability is
to support compile-time constants, which does not requagses to be defined within a method’s

scope.

111

Library types Primitive types
java.lang.Boolean boolean
java.lang.Byte byte
java.lang.Char char
java.lang.Double double
java.lang.Float float
java.lang.Integer int
java.lang.Long long
java.lang.Short short

java.lang.String

Table 6.1: List of types that are on the Immutable whiteN§e analyzed these library and built-in
types to guarantee they honor the Immutable properties.

Primitives and whitelists

Without amending our previous rules for immutability, ammmable type could never
contain primitive data types. But a final field containing enptive type satisfies our requirements
for immutability: its value cannot change once initializedence, we endow the checker to ac-
cept all of Java’s primitive types (Table 6.1) to be immuéglas if they implement the Immutable
interface. This allows an immutable type to contaifinal int field, for example.

Additionally, we have manually analyzed the semantics efabrresponding Object type
for each primitive to ensure that they too satisfy the imroiitg properties (See Table 6.1). We
should note that not all the classes in the whitelist woukbghae Immutability checker (for example,
an Integer’s value field is ndinal), but they exhibit the necessary immutability propertiése
also addjava.lang.String to our immutable whitelist; we believe that it also satisfies

immutability criteria.

112
Arrays

Arrays have many uses as compile-time constants, pantigida lookup tables for de-
cryption functions. However, supporting them in Java rezgiextra work since the entries of a Java
array can be modified at any time. For an array variable to mgpite-time constant requires that
the variable reference can't change, the constituent elemeéerences can’t change, and each item
should be immutable. Enforcing and checking the first anddasditions is relatively simple: the
array must be declared final and its base type must implernetihtnutable interface. However,
this does not prevent the array from being modified; an elémecan be updated with a different
value.

To solve this, we must make sure the array’s elements arehaoiged after initialization
time. This can happen when the array or its element is used bgadue in an assignment expres-
sion. If this occurs after initialization, this indicates alement of the array is being overwritten.
The checker looks for compile-time constant arrays usddeérisvalues flags and them as errors.

In Java, it is possible to alias an array or a subarray to areifit variable. If such aliases
were made of the array, a naive checker would miss mutatibiie array by way of the alias. This
risk is prevented by requiring that all occurrences of thayawariable aside from its declaration
occur within expressions that index the array to its fullthee view passing partial index values
explicitly as an acceptable alternative to using a payti@itlexed array. The other use of partially
indexing arrays is when reading the length field of a subariiyis represents a legitimate case
where the array is not fully indexed; given the frequencyhif toding paradigm, we make a special
case exception to allow partial indexing of an array only whiee length field is being accessed.

Thus, referring to a compile-time constant array as a whiopadially indexing a multidimensional

113

compile-time constant array without accessing its lengthl fis flagged as an error by our checker.
This analysis requires a “closed-world” assumption, ibat the full source code of the program is
present in order for this reasoning to be sound. If there weolecked code present in the system,

it could bypass these restrictions and modify the array.

Initializers

Not only must a compile-time constant be Immutable, but ist@lso be initialized to the
same value every time. This means that its initializer esgioen should be a deterministic function,
i.e. it must be environment-free. In the course of makingdbmpile-time constant checks, the
checker generates a queue of all variable initializers dongile-time constants. These will later be
checked just by the environment-free checker, and whietidtiem as methods with no arguments.
Since all compile-time constants must be final, a compiteetconstant that doesn’t have a variable
initializer must be initialized in a static initializer litk. These too must be environment-free, and

thus are added to the list of environment-free methods gsateeencountered.

6.4.4 Environment-free methods

As discussed in Section 6.3.2, an environment-free metraydanly call a method if it is
environment-free. Additionally, an environment-free huet must not access global variables that

are not compile-time constants.

Constructors

Constructors are treated like any other method, and anytrootar that is invoked due

to a new object instantiation from within an environmemefrmethod must itself be considered

114

environment-free. Thus, any methods that the construetokes must be checked for environment-
freeness. This includes chained constructors or any dagsrconstructors that may be invoked

implicitly.

Overridden methods

A class can only override an environment-free method witbrarironment-free method.
If this were not the case, invoking the method on the base clasld actually invoke the overridden
method when the runtime type differs from the static typehef dbject. If at static analysis time,
the method is deemed to be environment-free, we must enkatahte runtime method is also
environment-free. Effectively, the environment-freeibttte is a part of the method’s signature that
must be inherited with any overridden methods. The checkgfies this property. In the general
case, this requires the whole program to be present. (Altelyy we could require environment-
free methods to be final, but we already require a closed wWorldur treatment of compile-time

constant arrays.)

Whitelist

Library methods called by an environment-free method megspecial care. In general,
the checker does not have the source code to such methodsamiit assess whether they are
environment-free or not. The conservative action in thiseocaould be to flag all calls to a library
from an environment-free method as errors.

However, excluding all library functions is not practicaven the size and utility of the
Java library. Forbidding environment-free functions frasing the large subset of the library that

is environment-free unfairly constrains the programmet gapresents a serious usability burden.

Whitelisted method and constructor signatures

byte[] java.lang.String.getBytes()

java.lang.String(byte[])

java.lang.String(char[])

boolean java.lang.String.equals(java.lang.Object)

void java.lang.System.arraycopy(java.lang.Object, int , java.lang.Object, int, int)
boolean java.util.Arrays.equals(byte[], byte[])

java.util.ArrayList()

java.lang.Object[] java.util.ArrayList.toArray(java. lang.Obiject[])
java.lang.Object java.util. ArrayList.get(int)

boolean java.util.ArrayList.add(java.lang.Object)

int java.util.ArrayList.size()

java.lang.lllegalArgumentException(java.lang.String)

Table 6.2: List of methods that are on the environment-fré@ealist. We analyzed these library methods to guaranteg tlonor the
environment-free properties.

ST1

116

We get around these limitations by allowing the programmespecify a list of allowable library
methods and constructors. The programmer specifies thislias &g method signatures, as in
Table 6.2. Of course, it is critical that the programmer fyetihat the methods specified in the
whitelist are in fact environment-free; doing otherwisewedbcompromise the analysis. Table 6.2
represents the whitelist table we used for the applicatiemsliscuss in Sections 6.5.1 and 6.5.2.
For method invocations to a library function, the checkersudts the whitelist to see if

the function is environment-free.

Exceptions

As Table 6.5.2 shows, we have whitelisted ttegalArgumentException con-
structor. As is a common Java coding practice, functions theeive unexpected or abnormal
arguments often create and then throw this exception todlercThe code we analyzed makes use
of this pattern.

This raises the question of how to treat environment-freetions that may throw excep-
tions. The most natural approach is to treat such excepéis@sother form of return value. Under
this view, if an environment-free method is passed input gdaases an exception to be thrown,
the exception must be the same under all invocations. Hawjgwe.lang.Throwable , the
root of all exceptions, contains a stack trace. This stametwill naturally vary depending upon
the caller’s location in the method-call stack of the exmrutUnder a strict view of environment-
freeness, this should not be allowed, since the return \{ttheeexception) depends upon something
other than the method’s arguments. Ultimately, the soufdki® problem arises whenever an ex-
ception is constructed, even if it is not thrown. It is treationof an exception is not environment-

free, as the stack trace is filled in Byhrowable ’s constructor in a manner that depends on the

117

stack rather than its arguments. In addition to throwingrtbe-deterministic exception, there is
a second risk: an environment-free method could poteptebhmine an exception’s stack trace
and return a value that depends on the trace. This can besaddreimply by ensuring that the
getStackTrace() andprintStackTrace() methods (and any methods that call them) are
not on the environment-free whitelist. The non-determmnis then hidden from the environment-
free function.

We see four possible approaches for dealing with this scafroen-determinism:

1. We could disallow environment-free functions from thiogvexceptions. On an error, such
a function could return an error code, for example. This wduhder error handling and
represents a change in style. The biggest problem with gpsoach, however, is the ubig-
uity of exceptions in Java. Many library calls (which mighherwise be environment-free)
can throw exceptions, particularly runtime exceptionschimeed not be declared. Various
constructs of the language itself such as null-pointerfdezaces, array index violations, and
arithmetic can throw exceptions. Ensuring that Java codxdgption-free is difficult and

overly restrictive.

2. An alternative would be to only throw pre-existing exdéeps$ stored in compile-time con-
stants. For each type of exception that we wish to throw, wedcimitialize a compile-time
constant with an exception of that type. An environmeng-fienction that encounters an ex-
ceptional condition can throw this constant and does nal teénstantiate a new exception.
Since the stack trace is filled in during the exception’s ttveathe stack trace will not vary
based on the environment-free function’s call stack. Unfaately, this approach is at least

as problematic as the first one. We still need to enumeragmadiible exceptions that could

118

be thrown by a function. Additionally, compile-time constanitializer expressions are sup-
posed to be environment-free, but Exception creation isew@n when called from a static
initializer. The stack trace depends upon class load ovd@ch could vary depending upon

the behavior of non—environment-free code.

3. A third option would be to wrap calls to environment-fregrg-point functions so that all
Throwable s are caught and something else is returned. The easiesbvdaythis would
be to return a null reference, as null is a valid value for abjd type. This would keep
the library’s control flow and exception handling the saméhat cost of losing debugging
information. While this option is feasible, the loss of infmation and need to modify the

program make this unattractive.

4. One could “define away” the problem by allowing the retuatue of an environment-free
function to depend on its method-call stack, i.e. by treptirese method calls as an implicit
argument to the method. One must be careful not to relax tpdidavever, or environment-
freeness ceases to mean much. If the function can haveaaybitependencies on the stack,
we can no longer derive the properties we want. Its dependamthe stack must be limited

so that it allows for the use of exceptions but does not allmwh&rmful nondeterminism.

We chose a variant of the last option. We allow the return evatian environment-
free function to depend on its execution staiy in the stack trace of any throwables it returns
or throws. This is the semantics that results from allowing tonstruction of exceptions (and
encountering exceptions resulting from method calls anduage operations) but disallowing any

qguerying of the stack traces contained within such excaeptiddherence to this rule relies only on

3The stack trace includes the context of the field access dnadetall that referenced the class being statically
initialized and thus caused it to be loaded.

119

ensuring that the whitelisted methods don't allow acceskdcstack traces of throwables; we have

verified that this is the case.

6.4.5 Implementation

We implement our checker as an Eclipse 3.2.1 [1] plugin tekl¥ava 1.4 source code.
The checker is 1199 lines of code. We rely on Eclipse’s vidiloctionality to perform our anal-
ysis. The visitation functionality allows the checker téyren Eclipse for parsing, name and type
resolution, and walking over the typed AST. Our checks wamnpke enough that we did not need a
data-flow engine; analysis simply consists of severalatisih passes over the AST of a program.

Figure 6.1 shows an image of the plugin running under Eclgzsan AES implementa-

tion. In Section 6.5.1, we discuss the results of the armalysi

6.5 Results and Discussion

We tested our checker on two applications. The tests weratt@ahow that the checker
can find real bugs in real code as well as to verify useful pitggeabout interesting programs. In
this section, we discuss the results of running our checkeval as additional issues regarding

non-determinism.

6.5.1 AES block cipher

We analyze an AES block cipher implementation to ensurettietipher will be able
to decrypt the ciphertext to the original plaintext at sorated time. We analyze a third-party

AES implementation [10] and check that its decryption mdtisoenvironment-free. This property

dva - A AV pse 5D L]
Fle Edit Source Refactor Navigate Search Project Run Window Help
|rivE & | -0-r | B#Eer ™2 |G- [IE|d-irn ora s [
M FAES java X =
; \ ; . ; bl ||
F* alog table for field GFi2*m) used to speed up multiplications., */ =
static final int[] zlog = new int[256];
/* log table for field GF(2*m) used to speed up multiplications. */
static final dint[] log = new int[256];
% static code to initialise the log and alog tables, JE
Used to implement multiplication in GF(27&).
*/
static {
int i, j;
/f produce log and aleg tables, needed for multiplying in the field GF(2%8)
zlaglo] = 1;
for (i =1; 1 = 256; 1++) {
j = lalogli-1] =< 1) ~ alogli-1]:
if ((§ & OxlOB@) 1= B) j "= ROOT;
aloglil = 3:
for (i =1; 1 = 255; i++) lgglalogli]] = 1i;
i k|
II III
[%l Problems 32 . Javadac| Declaration o 5 L
3_e_r_rur5, 3 warnings, 0 infos
Description | Resource | Path | Location |
= T Errors (3 items)
@Lcu'mpllu-ttim'&' constant cannatappearinan |value assignment. (AES.java ‘dynicheckfvarchisre/ballotbox line 168
3 Campiletime constant cannot appear in an |-value assignment. AES java dyncheckivarch/src/ballothox line 172
@ Compile-time constant cannot appear in an |-value assignment. AES java dyncheckfvarch/src/ballotbox line 174
[- Warnings (3 items)
| T B | Writable | Smart Insert | 175:6 ‘

Figure 6.1: Screenshot of the environment-free checkerctley errors in AES code. The constants array taligs andalog are
generated at class load time. This represents a modifidat@eompile-time constant array; we eliminate the stataedslock, and instead
use variable initializers. After these modifications, theaker did not find any errors.

0cT

121

guarantees, for example, that if the cipher is used to ehdafa, it is guaranteed to be recoverable
using the decrypt function and the key. We checked its 8&slof Java source code. We added a

check function, including one annotation:

[** @envfree */
static boolean check (byte[] plaintext,
byte[] encr, byte[] key) {
AES aes = new AES();
aes.setkey (key);
return Arrays.equals (aes.decrypt(encr),
plaintext);

For the above check to guarantee decryption will be the sanserae later time, the
check() function must be environment-free, which is indicated wifite annotation. The checker
detected three errors, as depicted in the screenshot imeFgl. The errors stemmed from the
decryption function relying on two static final arraysit[] log andint[] alog . These
are logarithm and anti-logarithm tables computed at claad time in a static initializer block.
The environment-free checker flagged the initializationcpss as erroneous. To fix the errors, we
replaced the code with precomputed array initializerseAtthis change, the checker did not report
any errors. An alternative fix would be to inspect the code ramteé the writes were only used for
initialization and to further verify that the initializendinot make any use of the static tables before

their array values were initialized.

6.5.2 Serialization of voting data structures

As detailed in Section 6.1, we began thinking about provewusty properties of election
systems after analyzing two commercial voting systemsthEuinspecting our own prototype vot-

ing system [74], we realized that manually proving seralan is not easy. Unintended bugs (or in

122

a larger software engineering effort, possibly malicioode) can easily interfere with deserializing
a particular ballot—-when using long write-ins, for exampler our voting system, we wanted to
rule out problems for the critical step of recovering ballafter they've been stored to disk. The
voting machine code we analyzed was over 4400 lines of Java.

We wrote five check functions very similar to the ones in $ec6.4.1 and 6.5.1, each
with one annotation, and inserted calls to the check funstadter serialization. The data structures
being serialized include thieallot , as well as four message structures that are serialized and
passed via serial cable to different components of the gatiachine that are physically separated
for isolation. It is critical that each of the serializedustiures be deserialized into an equivalent
copy. The inserted dynamic checks guarantee this.

The checker did find one class of errors which required usgbats} restructure the code.
Two of the messages being passed between components ish@udenotonically increasing serial
number to filter out duplicates. The last received serial Imemwas stored as a static field inside
the message class. Inside the deserialization class, thgagess serial number is compared with
the static value of the most recently received serial numibéhne serial number was already re-
ceived, the deserialization method would return null. Tindrenment-free checker discovered that
deserialization made use of a global field, and hence dégatian is not guaranteed to produce
the same result in all instances. We view this as a succeas iohecker, as it found an error our
manual inspection missed. To fix this, we separated the idézation functionality from duplicate

message suppression, and the checker no longer found any erthe code.

123

6.5.3 Non-determinism

An environment-free function should not have access toe"tmpn-determinism, as it
could cause it to produce different output at different smRestricting code to ensure determinism
is tricky, as it is easy to miss possible sources of nondatésm. While our checker prevents access
to sources of nondeterminism that are explicit in the pnogrdava provides implicit nondetermin-
ism in other ways. Handling these in a general way is out gbedor our simple environment-free
checker; we leave this as future work. However, we have impteged conservative checks that
could be implemented in a more precise fashion since thdigsudbr our application.

The first source of implicit nondeterminism provided to aalpvogram is the layout of
objects in memory. An object’s memory location is exposedl thie defaulthashCode() and
toString() functions defined ijava.lang.Object . Two separate instances of an Object
will occupy different memory addresses even if all theirdgehre the same, making the two objects
otherwise indistinguishable. Because a method that hizsisCode() or toString() can tell
the difference between invocations, it is not possible fgrmethod that returns a newly constructed
object to be truly deterministic. Since these methods aremdhe whitelist, however, eheck()
method cannot call these methods explicitly to affect itsmevalue. Our checker flags implicit
calls totoString() from within an environment-free method as errors.

The virtual machine can throw a Jataror nondeterministically at runtime, such as
an OutOfMemoryError . A devious function could intentionally exhaust memory tigaating
large objects within a loop; when the JVM throws the memorgreit could use the loop index as a
non-deterministic value in @atch or finally block. A general solution to this problem would

involve engineering some minimal restrictions on the abdf environment-free methods to recover

124

from errors. The applications we looked at do not haveaatgh or finally blocks within the
environment-free code, and so do not pose a risk. Our cuctestker is overly conservative and
bans allcatch or finally blocks within environment-free code.

We view as out of scope detecting runtime resource exhawuatiacks that cause different
return values; for example, Becode function might return the correct result, or it might cause
an OutOfMemoryError ; further work will be needed to detect varying behavior ie thce of

resource pressure.

6.6 Conclusion

Environment-freeness is a useful property in proving prigeabout invertible functions.
In this paper, we have defined environment-freeness forid@thods. We have described a simple
algorithm for checking this property of Java programs angehdiscussed some of the issues that
arise. We have implemented an environment-free checkeuseulit to permit runtime verification
of the Inverse Property for an encryption implementatiorusé&r of the encryption program can be
confident that any encrypted data will later be recoverabiengthe associated key.

We have also applied the checker to ballot and wire seriadizan our prototype voting
system; we can now be confident that serialized data will beverable when it is later needed.
This allows us to rule out a class of denial-of-service &daan a voting machine, proving that a
voter’s ballot will not be lost due to buggy or malicious sdidation code. We are encouraged by the
added assurance provided by this check with a minimal ationtaurden and believe that it bodes
well for the potential for other practical program analyse®nsure useful properties of software

systems.

125

Chapter 7

Related work

The ideas in this dissertation are built upon existing waorkhie security field. We apply
known principles and original ideas to a new and sociallyangmt problem domain.

In contrast to prior efforts to secure general purpose tiperaystems, however, the
voting application’s limited scope helps tremendouslye Elxperiences gained in designing secure
operating systems apply to the voting case, but many of thi@gams can be simplified since we can
deploy special purpose solutions. Finally, the progresgp-safe languages and better verification
tools can only help in gaining confidence in our proposeditacture. In this chapter, we detail the

relationships with existing work.

7.1 Voting

Peter Neumann was one of the earliest to write about bothettgrisy and non-security
goals of electronic voting systems [62]. It is remarkablggmient in cautioning against a number

of flaws in real DRE voting systems, such as vulnerabilitresising fixed passwords that later af-

126

flicted Diebold voting machines [18, 42, 72]. In a landmarnkdst Kohno et al. obtained Diebold
source code for one of their voting machines and found marthefiforementioned basic secu-
rity flaws. Their work, as well as the others detailing votmgchine flaws, impelling many in the
security community to seek alternatives. A review by by tladifGrnia’s Voting Systems Technol-
ogy Assessment Advisory Board (VSTAAB) found a number ofsla security bugs in Diebold
election software, though they noted the impacts of the bogfl be mitigated through procedural
controls [90]. This study, along with one by Feldman et a&b][2oted the importance of physical
security and the breakdown of all security guarantees ialitence. Another study commissioned
by the Florida State Division of Elections analyzed the sewode of an ES&S voting machine
in response to 18000 undervotes in a Congressional race B4y found numerous bugs, but
could not attribute the bugs they discovered to the undenauditionally, they commented on the
difficulty in proving the absence of security problems inttparticular system.

Diebold, Hart Intercivic, Sequoia Voting Systems, and Etet Systems and Software
each currently market DRE voting machines. Their systeratufe an interface to input votes
(all but the HART use a touch-screen) and store the votesnitg in an electronic form. These
machines have alternate interfaces to allow people witiaicedisabilities to vote and preserve their
confidentiality. A criticism of the machines, however, iatipeople must trust the software running
on the machines since the voter cannot be sure their vote regenty recorded. They have little
reason to trust the software, in contrast to our effort wiverdication gives some assurance as to
the software’s proper design. Rebecca Mercuri has calledeiodors to augment DRE machines
with a Voter Verified Paper Audit Trail (VVPAT) [50, 51]. In ih DRE variant, the voter must

approve a paper copy of their selections that serves as theapent record. The paper copy is

127

typically held behind glass so the voter cannot tamper vtiti e voter can verify that the paper
copy accurately reflects the voter’s selection, even if tifexare is malicious. In part because of
Mercuri’s efforts, jurisdictions are requiring VVPAT-dolad DRE machines. All four vendors have
such machines available for sale. VVPAT helps to guararfeztien integrity, but does not protect a
voter’s confidentiality. VVPAT may in fact negatively aftszonfidentiality. The techniques we look
at, therefore, will be useful even in VVPAT DREs and in factulebprovide a useful starting point
for such an architecture. They would additionally help guéee the correctness of the electronic
copy.

Soon after the 2000 federal election, Caltech and MIT laadc project to investigate
voting technology. As part of their research, they propaaearchitecture for voting that they call
FROGS [11]. The voter chooses their selections on an uetiusirminal, which then stores the
provisional ballot onto an electronic memory device calidtbg. The voter then takes the frog to
a trusted device to verify the contents of the frog, and if/thee acceptable, to cast the frog into
a final ballot. The trusted device displays the frog’s cot#teihe user can then reject the process
to start over or cast the ballot, which causes the trustettelév 1) “freeze” the frog and prevent
further changes; 2) send a copy of the data to a number of émdlemt vote storage units; and 3)
physically keep the frozen frog for later audits. The FROGhaecture inspired some of our efforts
to isolate the vote selection process, where much of the lexitylies and not require it to be part
of the TCB. We also add the goal of developing an architealesggned explicitly for verification.

The SAVE voting system (Secure Architecture for Voting Eiegically) is another Cal-
tech/MIT voting proposal [79]. They propose an architegtuith four components with well-

defined interfaces: a user interface component, a crygibgraignature generator, a registration

128

verifier, and a tallier. Then, they propose implementingheammponent except the user interface
usingn version programming. Each version would be implemented bifferent vendor, so that
corrupting the system would require corrupting each separarsion. Finally, they propose us-
ing n-separate digital cameras that would take pictures of tta ¢onfirmation screen to act as a
check on the user interface component. Their prototype jdemented in Java, with the compo-
nents communicating via XML over sockets:version programming is compelling, but it increases
development and testing costs; additionally, a bug in arth@fversions could cause a privacy vi-
olation. The separate versions are most useful in guardiagst integrity errors. Nevertheless,
some of their techniques may be applicable to our setting.

The Spanish company scytl produced a whitepaper desciibé@igproposal for securing
DREs that they call Pnyx.DRE [2]. Their proposal, like theQ®RS proposal, seeks to remove
the vote selection module from the trusted computing basheioting system. They propose
attaching a separate device to the DRE that combines a gigjitla a processor and two external
buttons: “Confirm” and “Cancel”. The separate device is emed to the DRE using a USB or
serial cable. After the voter makes their selections on tR&EDthe device displays the choices
to the voter, who can either confirm or cancel the selectibthe voter accepts the selection, the
device encrypts the vote and adds integrity protection. driwrypted and protected ballot is then
sent back to the DRE for storage. The device may optionallg ameceipt containing a random
number that is part of the encrypted vote. The receipt dbesveal the voter’s selection in any way.
This proposal, like FROGS and our proposal, tries to engegraater trust in the election system by
minimizing the TCB. However, it doesn’t help with the priyagoals of our system, since the DRE

can still leak votes; it does, however, help to guarantesgitly of the votes. A study considering

129

the machines for integration with Diebold DREs noted thatglototype, while well designed, did
not completely implement the advertised specification.[83]

The Dutch water board recently used a system called Rijnlatginet Election System
(RIES). The system allows voters to vote over the Internegfoe the election starts, election
officials generate a kel; for each voter; for each voter the officials create and record a string
Hy, (election id||Hy, (candidate J|| - - - || Hy, (candidaten). The officials use an out of band paper
channel, such as the postal system, to deliver the voteifspleey. The officials then destroy the
voter specific key. During the election period, the voteitsithe election website, enters their key
k; from the mail, and then makes their selection. The votersvser then computes and sends
Hy, (election id||Hy, (candidate index The voter can verify their proper selection was recorded
by visiting the website; the election officials tally the @stby looking up the voter’s selection in
the list of candidates specific to the voter. The system, keweuffers from the list of flaws that
Jefferson et al. noted that any Internet voting scheme rsuféereliance on the DNS systems, lack
of privacy, vulnerability to denial of service attacks, aswksceptibility to worms surreptitiously
changing a voter’s selection and even subsequent verfic§@b, 34]. Hence, this approach may
bring convenience but seems to sacrifices too much in the Wwagaurity for use in government
elections.

In Chapter 3, we analyzed two existing cryptographic vosiagemes [60, 19, 39]. Moran
and Naor have produced follow on work that is based on Ne#isegal approach [56]. It provides
integrity protection and preserves privacy even from campanally unbounded adversaries that
have access to the bulletin board. They rely on a specialeptypf Pedersen commitments, and

then generalize their results to general commitment schemg with Neff’s scheme, the use of a

130

bulletin board invites privacy vulnerabilities.

There are other cryptographic voting protocols, but thefpranately are not nearly as
complete as Neff’'s or Chaum'’s: they remain protocols anchate/et systems. For example, Josh
Benaloh presents an outline of two cryptographic appraaatree similar to the FROGS system [8].
However, as we showed in Chapter 3, there is a large gap betwetocol and a system, and that
gap can often impact security. A second lesson is that thagyaphic voting protocols cannot treat
humans as perfect actors, as is typical in traditional $siygomotocols: a person will make mistakes
and may not follow their end of the protocol. Attackers cdeetadvantage of this fallibility to erode
a voter's privacy or steal their vote.

Ka-Ping Yee et al. designed a voting system using pre-reddeser interfaces to also
minimize the amount of trust in a voting system [95]. He usefai structure similar to a de-
terministic finite state machine with the user’s input colitng the transitions between states of
pre-rendered ballot images. The pre-rendered ballot imatminate Ul toolkits and a large part
of the application and OS complexity from the voting machi¥ilee’s prototype is written in fewer
than 300 lines of Python, making manual verification of thitveare a possibility.

Work in conjunction with Molnar et al. described algorittm@nd hardware techniques
to store votes on a programmable read-only memory device [bbeir storage mechanism was
meant to preserve anonymity through a history independermgerty and by eliminating subliminal
channels in the storage format, while retaining the abititgetect tampering with the storage media
after polls have closed. Follow on work has eliminated thedntar special hardware by using

cryptographic techniques [9].

131

7.2 Information Flow

One of the techniques we leverage is managing the flow of camifeal information within
the application: if a component cannot see confidentiakimédion it cannot leak it. This principle
of guarding information flow based on principals has beenengemerally studied in the context
of multilevel security (MLS) [77]. Multilevel security sysms manage data sources with different
secrecy labels (e.g. unclassified, secret, top secret) mwethat the programs that interact with
these data sources also honor the secrecy labels.

The LOCK program from SRl tried for 17 years to build a MLS gyst They originally
intended to use a separate processor called the SIDEARMeadsramce monitor [76]. The LOCK
program had its roots in the PSOS (Provably Secure Oper8iiatgm) project [24, 63]. They faced
problems with their hardware based reference monitor streeded cost and time to completion.
Additionally, the LOCK designers intended to write formpksifications and ensure their correct-
ness with the GYPSY proof checker. An important realizatbtheir effort was that GYPSY was
not sophisticated enough and ultimately did not help inateig bugs. This cautionary tale about
the difficulty in formal verification steered our efforts tawds architectures to simplify verification
instead of work on formal tools. The exercise was not a wéste/ever, since they found that the
time spent to consider the formalisms and prepare the spet@ifins led the designers themselves to
catch bugs they believe they would have otherwise missedreTdére important differences, how-
ever; they were trying to build a general purpose systemlewke are designing a specific one.
Additionally, formal methods have advanced greatly in thiterivening years, and as we show, can
be used to achieve successes.

The Starlight Interactive Link is a hardware device thatvai a workstation trusted with

132

secret data to safely interact with an unclassified netwdfk As in the MLS scenario, a chief
concern is secret data leaking onto the untrusted netwdnk. Skarlight Interactive Link acts as a
data diode. Their data diode serve a similar purpose to thesbwe introduce in Chapter 5. The
enable a system to be partitioned but allow limited commaiioa topologies enforced by hardware.
Users typically install the Interactive Link between thested workstation and the keyboard and
mouse. The Interactive Link routes the 1/O either to thetedisvorkstation or to a remote untrusted
application server connected to the untrusted network itdaally, the Interactive Link can display
the untrusted application on the secure workstation by Isitimg parts of the X protocol to enforce
the one way flow of information from low to high. Subsequentrikwbuilds on the Interactive
Link and extends the technique of data diodes in softwareveldp MLS CORBA for distributed
applications [38].

Jones and Bowersox develop a one-way serial bus to prevektvbeds data-flow and
mitigate the presence of covert channels [37]. It is desigioe easy verification: the entire data
diode fits on a small PCB and is comprised of fewer than 20 eis@omponents. We could imagine
using their verifiable one-way serial bus in our architestamd provides a real world example that it
is possible to build the communication primitives necegsaenable communication in a verifiable
topology. The intent is that it should be simple to verify twegrectness of the specification and fur-
ther that the physical data diode matches the specificafiba.idea of simple verification parallels
our effort. Jones and Bowersox postulate the data diode $6 nseful to publish incremental results

from the tallying computer to public reporting softwaretthey have an Internet connection.

133

7.3 Isolation

Another key technique we leverage is the principle of isofatit is well understood
that restricting different parts of a system to communitateugh well-defined standard interfaces
may increase security. A vulnerability in one component @aly affect another component if an
adversary can subvert the first and then exploit the interflestween components. Recognizing this
fact, the systems community has studied and implementeq wlifferent isolation mechanisms.
We make use of this idea in this work.

High assurance applications take a similar view to the ingpme of verifying that sys-
tems achieve specific safety, reliability, and securitypprties. High assurance applications are
frequently found in transportation, medical, or commuti@a contexts. They use a wide vari-
ety of techniques. We we adopt on some of these techniquesriwark, such as minimizing
TCB sizes and decomposing the application into cleanly ipdccomponents. The challenge,
in our case, is to elucidate just how to take these high lewetepts and apply them to the vot-
ing specific context, since secure components may not be @ggaple into a secure system [49].
Additionally, there are important differences in the useamnponents and isolation in traditional
high-assurance applications and voting. Deep space afiplisc use multiple components for re-
liability and fault tolerance [96], while telephony comnicetions use redundant components for
software upgrades [96]. In their MLS-PCA avionics arcHitee, Northrop Grumman is proposing
an architecture suitable to the Department of Defenseist Josion 2020 [91]. MLS-PCA is an
architecture for future avionics systems supporting tensundreds of thousands of separate pro-
cessors. Their use of isolation is manifold: mission flditipirequirement of supporting multi-level

security for interoperating with non-profit organizatipa®d a reduction in the amount of trusted

134

software over traditional federated architectures. O$¢heeasons, the last, is most related to our
setting in that isolation helps in minimizing the size andntwer of trusted components.

Operating systems originally were designed to provide sedfeurce sharing, and in some
cases, isolation among different processes. Unfortupatehny people have noted they do not
provide sufficient isolation: the TCB is large and compleaxd &ugs allow one process to subvert
another. Microkernels such as Mach or L4 try to place eachubedd separate protection domains,
but have not ultimately caught on, in part due to the perforcesoverhead [47, 69]. A more recent
lightweight approach is to run device drivers in their owntpction domain [86, 87]. Swift et al.
note that drivers are a significant source of bugs, and thigviethat driver isolation can help
improve reliability and reduce the time between rebootheydperating system.

There is also a trend to using virtual machine monitors orilamiechniques to pro-
vide isolation since bugs in operating systems and sidendiardo not provide enough separa-
tion. Disco, Denali, and Xen are virtual machine monitaiisat can be used to provide isola-
tion [6, 14, 92, 93]. This approach was first suggested by Busere he suggested thasecurity
kernelshould provide the same isolation that an application deesvas hosted on separate sys-
tems [71]. Rushby points to the VM/370 as a virtual machinaitoo that begins to provide the
isolation level demanded by a security kernel. With the dropardware prices, it becomes feasi-
ble in this dissertation to allocate a separate micropsmet® each component. Rushby used the
security kernel as a mechanism to help securely multipleshvirare, while | use separate hardware.

Provos et al. noticed that in many privileged applicatiom& separate protection do-

mains, representing high and low, can be used to help isaléterabilities in the low domain from

Xen is actually a paravirtualizing virtual machine monisimce it exports an instruction set that is slightly diffare
than found in the underlying hardware implementation.

135

letting the attacker achieve the high component’s prigetefp7]. Their response was to privilege
separate OpenSSH, so as to minimize the trusted code; tbesedtit was feasible to do so with a
minimal performance penalty. This approach required haodified code. Brumley et al. automate
the separation task using static analysis and source toestnanslation tools [12].

Many of these systems differ from our intended isolationsuisethat they are meant
for the general purpose systems and hence general purpplieatipns. Our use is a specialized
application: we can therefore create customized solutibasmay not be feasible in the general
case. We can design and use hardware tailored to the votplgcaon that are not useful for

general purpose applications.

7.4 \erification

Hoare first broached the idea that analysis tools may be aljppeove properties about
programs given a few starting axioms [30]. His work positeat it may be possible to write proofs
for the correct functioning of programs. With many advariodbe field, it is now possible to prove
specialized properties of an application given the souockc

Verification tools were able to generate proofs for the ML8perties in the KSOS-6
operating system [84]. KSOS-6 has 10,000 lines of source380@ lines of a formal specification
language called SPECIAL; their MLS verification tool detstB3 security flaws. However, 29 of
the flaws were detected manually. The considerable efferitsp generating the specification and
working with the verification tools points to the immaturid§ the tools. Another report candidly
remarks that “formal methods are useful only when the dgezloan pose the right questions” and

it may not be possible to generate complete proofs of caresstin large, general purpose operating

136

systems [78].

A more recent success story verifies the containment mesrhani the EROS operating
system [82]. EROS is a capability based operating systethilaey were able to verify the OS’s
containmentmechanism, whereby the operating system creates a redtecivironment with a
limited set of capabilities. They demonstrate that therigst environment can only access the
resources granted by its capability set and no others.

Joe-E is a subset of Java that enforces the capability diseifb3]. We drew inspiration
for the environment-free checker from their work; they pdeva useful framework for immutability
that we use as the basis for the environment-free checlaripite time constants.

Itis now possible to soundly detect all format string vulatalities in C code [81] and find
all user-kernel bugs in the Linux kernel [36]. Both techmguely on type inference, a technique
for developers to add a few annotations to the type systemtlaerd perform analyses to detect
inconsistencies in the enriched type system, which areilgedsugs in the application software.
These techniques show the promise of being able to proveseeatity properties about real code.

Spec# [7] and JML [15, 44] are language extensions that dhevprogrammer to specify
pre-conditions and post-conditions on methods as welhasiants for classes for the C# and Java
language respectively. They followed Bertrand Meyer'skwwhere he suggested that classes and
methods should have a contract specified through annataitgh). Using these extra annotations,
program verifiers check that the code is consistent with pleeification. These tools provide a first
step in proving systems correct.

Additionally, it should be mentioned that safe languageshsas Java or C#, eliminate

a large class of vulnerabilities since the virtual machmahich they run enforces the type-safety

137

of the code it executes. We take advantage of these featuessse the verification task since the

language itself does not allow for programs with certaimeubilities to be considered valid.

7.5 State management

The Recovery Oriented Computing (ROC) project advocatesqua view to state man-
agement [65]. The project seeks to increase reliability availability of software services; as
a part of this, they suggest that components in a softwarkcappn should be designed for re-
boot [16, 17]. Each component should be able to be restattedyaime, and in fact they call for
prophylactic reboots to reset state in volatile memberatées, based in part by work by Huang
et al. [31]. In order for a component to be rebootable, it sdedstore all persistent state in a sepa-
rate module and not hold any pointers across component boesd Our work also uses rebootable
components, but for a different purpose: security. A votownows that a component reboots
after leaving the voting booth can be better assured thatgbasitive information cannot leak to
the next voter if there is no way for sensitive informatioridave the ballot box; secondly, a voter
who knows that the voting machine reboots before they atovese it can be better assured that the

previous voter’s actions will not affect their voting sessi

138

Chapter 8

Conclusion

In this dissertation, we have explored a property basedoapfprto improving voting
security. Under this view, one must be cognizant of how endgwa voting system with one property
impacts the system’s goals. It is important, also, to cardige voting system as a whole, including
the technology as well as the humans that interact with tblentdogy: the technology does not
exist in a vacuum.

Our solutions apply to a range of voting platforms and adddifferent properties. Re-
booting can be used as an effective approach to stem privalations across voter sessions for a
variety of different voting technologies. Likewise, oumgponentised voting architecture applies to
DRE based systems to more easily prove a few voting propeer software analysis techniques
can prove deserialization and decryption are correct inl-gtiagp model. These analyses are useful
for all voting platforms, and can even apply in non-votingiexts.

People should be able to trust their voting technology h#&ceuint security guarantees.

The fully verified voting machine is not yet in our grasp. Bustshould not stop us from attempting

139

to design and build voting systems that meet increasinglsersecurity properties. This dissertation

begins that path towards the verified voting machine.

140

Bibliography

[1] The Eclipse Platformhttp://www.eclipse.org

[2] Auditability and voter-verifiability for electronic wong terminals. http://www.scytl.
com/docs/pub/a/PNY X.DRE-WP.pdf , December 2004. White paper.

[3] Atul Adya, William Bolosky, Miguel Castro, Gerald CeringRonnie Chaiken, John Douceur,
Jon Howell, Jacob Lorch, Marvin Theimer, and Roger WattéehoFARSITE: Federated,
available, and reliable storage for an incompletely trdigtievironment. Irbth Symposium on
Operating System Design and Implementation (O3Ayes 1-14, December 2002.

[4] M. Anderson, C. North, J. Griffin, R. Milner, J. Yesberg)daK. Yiu. Starlight: Interactive
Link. In Proceedings of the 12th Annual Computer Security AppboatiConference (AC-
SAC) 1996.

[5] Jonathan Bannet, David W. Price, Algis Rudys, Justig€inand Dan S. Wallach. Hack-
a-vote: Demonstrating security issues with electronigngpsystems. IEEE Security and
Privacy Magazine2(1):32-37, Jan./Feb. 2004.

[6] Paul Barham, Boris Dragovic, Keir Fraser, Steven HanohelHarris, Alex Ho, Rolf Neuge-
bauer, lan Pratt, and Andrew Warfield. Xen and the art of &lization. InProceedings of the
19th ACM Symposium on Operating Sstems Principles (SOSH,ZD6tober 2003.

[7] Mike Barnett, K. Rustan Leino, and Wolfram Schulte. Thme8# programming system: An
overview. InProceedings of Construction and Analysis of Safe, Secutel@ieroperable
Smart Devices (CASSIS004.

[8] Josh Benaloh. Simple verifiable elections. WSENIX/ACCURATE Electronic Voting Tech-
nology WorkshopOctober 2006.

[9] John Bethencourt, Dan Boneh, and Brent Waters. Crypfggc methods for storing ballots on
a voting machine. Ii4th Annual Network & Distributed System Security ConfesgiNDSS
2007) February 2007.

[10] Lawrie Brown. AEScalchttp://www.unsw.adfa.edu.au/"Ipb/src/AEScalc/
AEScalc.jar

[11] Shuki Bruck, David Jefferson, and Ronald Rivest. A mladwoting architecture (“Frogs”).
http://lwww.vote.caltech.edu/media/documents/wps/vtp _wp3.pdf , Au-
gust 2001. Voting Technology Project Working Paper.

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

141

David Brumley and Dawn Song. Privtrans: Automaticalbrtitioning programs for privilege
separation. IfProceedings of the 13th USENIX Security SymposAungust 2004.

Jeremy Bryans and Peter Ryan. A dependability anabfdise Chaum digital voting scheme.
Technical Report CS-TR-809, University of Newcastle upgnéel July 2003.

Edouard Bugnion, Scott Devine, and Mendel Rosenblunsc® Running commodity oper-
ating systems on scalable multiprocessors.Pioceedings of the 16th ACM Symposium on
Operating Systems Principles (SOSBttober 1997.

Lilian Burdy, Yoonsik Cheon, David Cok, Michael Ernsipseph Kiniry, Gary Leavens,
K. Rustan Leino, and Erik Poll. An overview of JML tools andpfipations. International
Journal on Software Tools for Technology Transfer (STT{3):212-232, June 2005.

George Candea and Armando Fox. Recursive restattabilirning the reboot sledgehammer
into a scalpel. IfProceedings of the 8th Workship on Hot Topics in Operatirgge3ys (HotOS-
VIIl), May 2001.

George Candea, Shinishi Kawamoto, Yuichi Fujiki, GFegedman, and Armando Fox. Mi-
croreboot — a technique for cheap recovery.6ih Symposium on Operating System Design
and Implementation (OSDQIPecember 2004.

RABA Innovative Solution Cell. Trusted agent reportebold AccuVote-TS voting system,
January 2004.

David Chaum. Secret-ballot receipts: True voterfiaie electionsIEEE Security & Privacy
Magazine 2(1):38-47, Jan.—Feb. 2004.

David Chaum, February 2005. Personal Communication.

CIBER. Diebold Election Systems, Inc. Source codea@vand functional testing. Califor-
nia Secretary of State’s Voting Systems Technology Assessidvisory Board (VSTAAB),
February 2006.

Frank Dabek, M. Frans Kaashoek, David Karger, Robertridoand lon Stoica. Wide-area
cooperative storage with CFS. Rroceedings of the 18th ACM Symposium on Operating
Systems Principles (SOSP '0ppges 202—-215, October 2001.

Dawson Engler, M. Frans Kaashoek, and James O’'Tooleké&mel: An operating system
architecture for application-level resource managemariroceedings of the 15th ACM Sym-
posium on Operating Systems Principles (SQ&R}Jober 1995.

Richard Feiertag and Peter Neumann. The foundatioasPobvably Secure Operating System
(PSOS). InProceedings of the National Computer Confererpages 329-334, 1979.

Ariel Feldman, J. Alex Halderman, and Edward W. Felt&ecurity analysis of the Diebold
AccuVote-TS voting machine. In submission.

Shafi Goldwasser and Silvio Micali. Probabilistic eyytion. Journal of Computer and System
Sciences28(2):270-299, April 1984.

142

[27] Shafi Goldwasser, Silvio Micali, and Charles Rackofhelknowledge complexity of interac-
tive proof systemsSIAM Journal on Computindl8(2):270-299, 1984.

[28] Nevin Heintze and J. D. Tygar. A model for secure prote@nd their compositionslEEE
Transactions on Software Engineerjrit2(1):16—30, January 1996.

[29] Gernot Heiser. Secure embedded systems need micesgketdSENIX ;login 30(6):9-13,
December 2005.

[30] C.A.R. Hoare. An axiomatic basis for computer programgn Communications of the ACM
12(10):576-580, 1969.

[31] Yennun Huang, CHandra Kintala, Nick Kolettis, and N.dby Fulton. Software rejuvena-
tion: Analysis, module and applications. Twenty-Fifth International Symposium on Fault-
Tolerant Computing1995.

[32] Markus Jakobsson. A practical mix. Advances in Cryptology — EUROCRYPT 19@8ume
1403 ofLecture Notes in Computer Scienpages 448-461. Springer-Verlag, May/June 1998.

[33] Markus Jakobsson, Ari Juels, and Ronald Rivest. Makignets robust for electronic voting
by randomized partial checking. Iith USENIX Security Symposiupages 339-353, August
2002.

[34] David Jefferson, Aviel Rubin, Barbara Simons, and @akiagner. Analyzing Internet voting
security. Communications of the ACM7(10):59-64, October 2004.

[35] David Jefferson, Aviel Rubin, Barbara Simons, and [daWagner. A security analysis
of the secure electronic registration and voting experinf8&ERVE). http://www.cs.
berkeley.edu/"daw/papers/servereport.pdf ,January 2004. Report to the De-
partment of Defense (DoD).

[36] Rob Johnson and David Wagner. Finding user/kerneltpoibugs with type inference. In
Proceedings of the 13th USENIX Security SymposAungust 2004.

[37] Douglas Jones and Tom Bowersox. Secure data export @ditng using data diodes. In
USENIX/ACCURATE Electronic Voting Technology Workslitober 2006.

[38] Myong Kang, Judith Froscher, and Ira Moskowitz. An d@®etture for multilevel secure in-
teroperability. InProceedings of the 13th Annual Computer Security AppboatiConference
(ACSAC 97)1997.

[39] Chris Karlof, Naveen Sastry, and David Wagner. Crypapdic voting protocols: A systems
perspective. IrFourteenth USENIX Security Symposium (USENIX Securit)2@ugust
2005.

[40] Arthur Keller, David Mertz, Joseph Hall, and Arnold Umk Privacy issues in an electronic
voting machine. IIACM Workshop on Privacy in the Electronic Socjgtsiges 33—-34, October
2004. Full paper available http://www.sims.berkeley.edu/ jhall/papers/

143

[41] Paul Kocher and Bruce Schneier. Insider risks in ebexsti Communications of the ACM
47(7):104, July 2004.

[42] Tadayoshi Kohno, Adam Stubblefield, Aviel D. Rubin, d@ddn S. Wallach. Analysis of an
electronic voting system. IFEEE Symposium on Security and Privapages 27-40, May
2004.

[43] Markus Kuhn. Optical time-domain eavesdropping risk€RT displays. INEEE Symposium
on Security and PrivagyMay 2002.

[44] Gary Leavens and Yoonsik Cheon. Design by contract WML. ftp://ftp.cs.
iastate.edu/pub/leavens/IJML/jmldbc.pdf

[45] Matt Lepinski, Silvio Micali, and abhi shelat. Collusi-free protocols. IfProceedings of the
37th ACM Symposium on Theory of Computiigy 2005.

[46] Matt Lepinski, Silvio Micali, and abhi shelat. Fair peknowledge. IrProceedings of the 2nd
Theory of Cryptography Conferendeebruary 2005.

[47] Jochen Liedtke. Toward real microkerneBommunications of the ACN89(9):70, September
1996.

[48] Heiko Mantel. On the composition of secure systemslEIBE Symposium on Security and
Privacy, pages 88-101, May 2002.

[49] Daryl McCullough. Noninterference and the composgbibf security properties. IHEEE
Symposium on Security and Privadjay 1988.

[50] Rebecca Mercuri. Electronic Vote Tabulation Checks & Balance®hD thesis, School of
Engineering and Applied Science of the University of Pehm@sya, 2000.

[51] Rebecca Mercuri. A better ballot boXZEE Spectrum39(10):46-50, October 2002.

[52] David Mertz. XML Matters: Practical XML data design anchanipulation for
voting systems. http://www-128.ibm.com/developerworks/xml/library/
X-matters36.html ,June 2004.

[53] Adrian Mettler and David Wagner. The Joe-E languageiigation (draft). Technical Report
UCB/EECS-2006-26, EECS Department, University of Catlifay Berkeley, March 17 2006.

[54] Bertrand Meyer. Applying “Design by contracttEEE Computer25(10):40-51, 1992.

[55] David Molnar, Tadayoshi Kohno, Naveen Sastry, and B&Vagner. Tamper-evident, history-
independent, subliminal-free data structures on PROMagtoror- How to store ballots on a
voting machine (extended abstract).IEEE Symposium on Security and Privaijay 2006.

[56] Tal Moran and Moni Naor. Receipt-free universally-fiable voting with everlasting privacy.
In Advances in Cryptology — CRYPTO 200®lume 4117 ofLecture Notes in Computer
Sciencepages 373-392, August 2006.

144

[57] Deirdre Mulligan and Joseph Hall. Preliminary anadysf e-voting problems highlights need
for heightened standards and testing. A whitepaper sulmige the NRC’s Committee
on Electronic Voting,http://www7.nationalacademies.org/cstb/project_
evoting_mulligan.pdf , December 2004.

[58] C. Andrew Neff. A verifiable secret shuffle and its apation to e-voting. IrBth ACM Con-
ference on Computer and Communications Security (CCS 208ges 116—-125, November
2001.

[59] C. Andrew Neff, October 2004. Personal Communication.

[60] C. Andrew Neff. Practical high certainty intent verdioon for encrypted votes.http:
Ilwww.votehere.net/vhti/documentation , October 2004.

[61] C. Andrew Neff. Verifiable mixing (shuffling) of EI Gamapairs. http://www.
votehere.net/vhti/documentation , April 2004.

[62] Peter Neumann. Security criteria for electronic vgtirin Proceedings of the 16th National
Computer Security Conferencgeptember 1993.

[63] Peter Neumann and Richard Feiertag. PSOS revisited?rdoeedings of the 19th Annual
Computer Security Applications Conference (ACSAC 23)7.

[64] Peter G. Neumann. Principled assuredly trustworthyipasable architectures. Final report for
Task 1 of SRI Project 11459, as part of DARPA's ComposablenHigsurance Trustworthy
Systems (CHATS) program, 2004.

[65] David Patterson, Aaron Brown, Pete Broadwell, Georgadea, Mike Chen, James Cultler,
Patricia Enriquez, Armando Fox, Emre Kiciman, Matthew Mexzher, David Oppenheimer,
Naveen Sastry, William Tetzlaff, Jonathan Traupman, andiNfreuhaft. Recovery Oriented
Computing (ROC): Motivation, definition, techniques, arase studies. Technical report,
University of California, Berkeley, March 2002.

[66] Birgit Pfitzmann and Andreas Pfitzmann. How to break threal RSA-implementation of
MiXes. In Advances in Cryptology — EUROCRYPT 1988lume 434 ofLecture Notes in
Computer Scienggages 373—381. Springer-Verlag, April 1989.

[67] Niels Provos, Markus Friedl, and Peter Honeyman. Rréwe privilege escalation. IRro-
ceedings of the 12th USENIX Security Symposimgust 2003.

[68] Mohan Rajagopalan, Saumya Debray, Matti Hiltunen, Richard Schlichting. Automated
operating system specialization via binary rewriting. Ar@cal Report TR05-03, University
of Arizona, February 2005.

[69] Richard Rashid Jr., Avadis Tevanian, Michael Youngchiel Young, David Golub, Robert
Baron, David Black, William Bolosky, and Jonathan Chew. Kiae-independent virtual
memory management for paged uniprocessor and multipracasshitectures. IFProceedings
of the 2nd Symposium on Architectural Support for Prograngntianguages and Operating
SystemsOctober 1987.

145

[70] Sean Rhea, Patrick Eaton, Dennis Geels, Hakim Wegtbers Ben Zhao, and John Kubia-
towicz. Pond: the OceanStore prototype. 2imd USENIX Conference on File and Storage
Technologies (FAST '03pages 1-14, March 2003.

[71] John Rushby. Design and verification of secure systeisProceedings of the 8th ACM
Symposium on Operating Systems Principles (SOB3&)ember 1981.

[72] Science Applications International Corporation (8AI Risk assessment report Diebold
AccuVote-TS voting system and processes, September 2003.

[73] Alexandru Salcianu and Martin C. Rinard. Purity andesidfect analysis for Java programs.
In VMCAI, pages 199-215, 2005.

[74] Naveen Sastry, Tadayoshi Kohno, and David Wagner.dbésj voting machines for verifica-
tion. In Fifteenth USENIX Security Symposium (USENIX Security 2@Qgyust 2006.

[75] Naveen Sastry, Adrian Mettler, and David Wagner. \end serialization through
environment-freeness, 2007. In submission to PLAS 2007.

[76] O. Sami Saydjari. LOCK: An historical perspective. Rroceedings of the 18th Annual
Computer Security Applications Conference (ACSZG)2.

[77] O. Sami Saydjari. Multilevel security: Reprid&EE Security and Privagy2(5):64—67, 2004.
[78] Fred Schneider, editoilrust in CyberspaceNational Research Council, 1999.

[79] Ted Selker and Jonathan Goler. The SAVE system — secan@ecture for voting electroni-
cally. BT Technology Journak2(4), October 2004.

[80] Arvind Seshadri, Adrian Perrig, Leendert van Doorrg &madeep Khosla. SWALt: Software-
based attestation for embedded devicesProceedings of the IEEE Symposium on Security
and Privacy May 2004.

[81] Umesh Shankar, Kunal Talwar, Jeffrey Foster, and D&Vafner. Detecting format-string
vulnerabilities with type qualifiers. IRroceedings of the 10th USENIX Security Symposium
August 2001.

[82] Jonathan Shapiro and Samuel Weber. Verifying the ER@fimement mechansim. IEEE
Symposium on Security and Privadfay 2000.

[83] Alan T. Sherman, Aryya Gangopadhyay, Stephen H. Hold&eorge Karabatis, A. Gunes
Koru, Chris M. Law, Donald F. Norris, John Pinkston, Andreea$s, , and Dongsong Zhang.
An examination of vote verification technologies: Finditagsl experiences from the maryland
study. INUSENIX/ACCURATE Electronic Voting Technology Worksl@giober 2006.

[84] Jonathan Silverman. Reflections on the verificationhef $ecurity of an operating system
kernel. InProceedings of the 9th ACM Symposium on Operating Systeimsigtes (SOSR)
December 1983.

146

[85] Pete Slover. Some Texas counties are clinging to thd.cBallas Morning News, March 8
2004.

[86] Michael Swift, Muthukaruppan Annamalai, Brian Berdhand Henry Levy. Recovering de-
vice drivers. InProceedings of the 6th ACM/USENIX Symposium on Operatisig@yDesign
and ImplementationDecember 2004.

[87] Michael Swift, Brian Bershad, and Henry Levy. Improgithe reliability of commodity op-
erating systems. IRroceedings of the 19th ACM Symposium on Operating Sstemsptes
(SOSP 2003)October 2003.

[88] Wim van Eck. Electromagnetic radiation from video déspunits: An eavesdropping risk?
Computers & Securityd, 1985.

[89] Poorvi Vora. David Chaum'’s voter verification using gypted paper receipts. Cryptology
ePrint Archive, Report 2005/050, February 200&p://eprint.iacr.org/

[90] David Wagner, David Jefferson, Matt Bishop, Chris Kérland Naveen Sastry. Security
analysis of the Diebold AccuBasic interpreter. CaliforSiecretary of State’s Voting Systems
Technology Assessment Advisory Board (VSTAAB), FebruddQ&

[91] Clark Weissman. MLS-PCA: A high assurance securityhiecture for future avionics. In
Proceedings of the 19th Annual Computer Security AppboatiConference (ACSAC 2003)
2003.

[92] Andrew Whitaker, Marianne Shaw, and Steven Gribblendbie A scalable isolation kernel.
In 10th ACM SIGOPS European Workshg§eptember 2002.

[93] Andrew Whitaker, Marianne Shaw, and Steven Gribbleal&and performance in the denali
isolation kernel. InProceedings of the 5th ACM/USENIX Symposium on Operatistgi®@y
Design and Implementatioidecember 2002.

[94] Alec Yasinsac, David Wagner, Matt Bishop, Ted Bakerefdy de Madeiros, Gary Tyson,
Michael Shamos, and Mike Burmester. Software review andrgg@nalysis of the ES&S iV-
oteronic 8.0.1.2 voting machine firmware. Report commissibby the Florida State Division
of Elections,, February 23 2007.

[95] Ka-Ping Yee, David Wagner, Marti Hearst, and Steverld&. Prerendered user interfaces
for high-assurance electronic voting. USENIX/ACCURATE Electronic Voting Technology
Workshop October 2006.

[96] I-Ling Yen and Ray Paul. Key applications for high-asswce systemsIEEE Computer
31(4):35-45, April 1998.

