The transformation of linear second-order ODEs into independent second-order equations

Matthias Morzfeld
Mathematics group
Lawrence Berkeley National Laboratory

Fai Ma
Department of Mechanical Engineering
University of California, Berkeley

Beresford N. Parlett
Department of Mathematics, and
Electrical Engineering and Computer Science
University of California, Berkeley

Scientific Computing and Matrix Computations Seminar
University of California, Berkeley
January 2013
Introduction: modal analysis

Coupled linear system

\[M \ddot{q}(t) + K q(t) = f(t) \]

Decoupled linear system

\[\ddot{p}(t) + \Omega p(t) = g(t) \]

Computation

- Solve generalized eigenvalue problem
 \[M u \lambda^2 = K u \]
- Diagonalize by congruence transformation
 \[U^T M U = I \]
 \[U^T K U = \Omega \]
Introduction: modal analysis

Coupled linear system

\[M \ddot{q}(t) + Kq(t) = f(t) \]

- Standing wave solutions
- Physical profile of vibration

\[q(t) = \sum_{j=1}^{n} u_j p_j(t) \]

Decoupled linear system

\[\ddot{p}(t) + \Omega p(t) = g(t) \]
Introduction: modal analysis

Coupled linear system

\[M \ddot{q}(t) + Kq(t) = f(t) \]

\[q(t) = U \ddot{p}(t) \]

Decoupled linear system

\[\ddot{p}(t) + \Omega \dot{p}(t) = g(t) \]

Significance

- Cornerstone in vibration analysis and structural engineering
- Physical insight leads to good approximate methods
- Model order reduction: neglect modes with little energy
- Experimental testing and system identification
Introduction: modal analysis and viscous damping

Coupled linear system

\[M \ddot{q}(t) + C \dot{q}(t) + Kq(t) = f(t) \]

\[\dot{p}(t) + D\dot{p}(t) + \Omega p(t) = g(t) \]

Limitation

- Modal analysis can decouple if and only if damping is classical, i.e.
 \[CM^{-1}K = KM^{-1}C \]

- The above is necessary and sufficient for simultaneous diagonalization of three symmetric positive definite matrices
Non-classical damping

- Classical damping means that energy dissipation is uniformly distributed throughout the structure.
- Classical damping assumption is not a valid assumption for systems with two or more parts with significantly different levels of energy dissipation.
Non-classical damping in applications

Earthquake engineering

Optimal rotor control

Active vibration absorption

Compound damping matrix

Subsystem 1

Coupling

Subsystem 2
Agenda

1. Introduction

2. The decoupling problem

3. Decoupling via phase synchronization

4. Applications in structural dynamics
The decoupling problem

Coupled linear System

\[M\ddot{q}(t) + C\dot{q}(t) + Kq(t) = f(t) \]

Decoupled linear system

\[\ddot{p}(t) + D\dot{p}(t) + \Omega p(t) = g(t) \]

Traditional viewpoints

- Diagonalize by linear transformations
 - Proven to be impossible

- Triangularization by linear transformations
 - Proven to be impossible

- Approximate decoupling: errors are uncontrollable

- State space approach:
 - Structure is lost
 - Complex states without physical meaning
The decoupling problem

Coupled linear System

\[M\ddot{q}(t) + C\dot{q}(t) + Kq(t) = f(t) \]

Decoupled linear system

\[\ddot{p}(t) + D\dot{p}(t) + \Omega p(t) = g(t) \]

Traditional viewpoints

- Linear transformations can not work

We consider more general, perhaps nonlinear transformations
Agenda

1. Introduction
2. The decoupling problem
3. Decoupling via phase synchronization
4. Applications in structural dynamics
Review: how to solve a scalar second order ODE

Equation:

\[m\ddot{q}(t) + c\dot{q}(t) + kq(t) = 0 \]

Ansatz:

\[q(t) = ve^{\lambda t} \]

Algebraic equation:

\[(m\lambda^2 + c\lambda + k)v = 0 \]

Solution of differential equation:

\[q(t) = v_1 e^{\lambda_1 t} + v_2 e^{\lambda_2 t} \]

Complex eigenvalues: oscillations
Real eigenvalues: no oscillations
Quadratic eigenvalue problem

Equation:

\[M\ddot{q}(t) + C\dot{q}(t) + Kq(t) = 0 \]

Ansatz:

\[q(t) = ve^{\lambda t} \]

Quadratic eigenvalue problem:

\[(M\lambda^2 + C\lambda + K)v = 0 \]

- 2n eigenvalues and corresponding eigenvectors
- Complex eigenvalues/eigenvectors in complex conjugate pairs
- Eigenvectors associated with real eigenvalues are real

Assumption\(^*\): if the system is non-defective, then the solution of the differential equation is:

\[q(t) = \sum_{j=1}^{2n} v_j e^{\lambda_j t} c_j \]

* This assumption is not restrictive and can be relaxed, see D.T. Kawano, M. Morzfeld, F. Ma, JSV (2011).
The decoupled system

Coupled linear system

\[M\ddot{q}(t) + C\dot{q}(t) + Kq(t) = f(t) \]

Decoupled linear system

\[\ddot{p}(t) + D\dot{p}(t) + \Omega p(t) = g(t) \]

Facts

- Eigenvalues determine nature of system response (oscillations vs. no oscillations)
- Decoupled and original system should be isospectral
- Linear transformations are isospectral (eigenvalues are preserved)
The decoupled system

Coupled linear system

\[M \ddot{q}(t) + C \dot{q}(t) + K q(t) = f(t) \]

Fact

Let \(M, C \) and \(K \) be square matrices and let \(M^* \) be nonsingular. A real and diagonal system, isospectral to the \(M, C, K \) system is given by \(I, D \),

\[D = -\text{diag}(\lambda_j + \bar{\lambda}_j), \]

\[\Omega = \text{diag}(\lambda_j \bar{\lambda}_j). \]

Decoupled linear system

\[\ddot{p}(t) + D \dot{p}(t) + \Omega p(t) = g(t) \]

Isospectral systems are not necessarily connected by linear transformations

This assumption is not restrictive and can be relaxed, see D.T. Kawano, M. Morzfeld, F. Ma, JSV (2013).
Back to the quadratic eigenvalue problem

Equation: \[M\ddot{q}(t) + C\dot{q}(t) + Kq(t) = 0 \]

Ansatz: \[q(t) = ve^{\lambda t} \]

Quadratic eigenvalue problem: \[(M\lambda^2 + C\lambda + K)v = 0 \]

Solution of differential equation: \[q(t) = \sum_{j=1}^{2n} v_j e^{\lambda_j t} c_j \]

Damped modes:
\[s_j(t) = v_j e^{\lambda_j t} c_j + \bar{v}_j e^{\bar{\lambda}_j t} \bar{c}_j \]
\[= C_j e^{\alpha_j t} \begin{pmatrix} r_{j,1} \cos(\omega_j t - \phi_{j,1} - \theta_j) \\ \vdots \\ r_{j,n} \cos(\omega_j t - \phi_{j,n} - \theta_j) \end{pmatrix} \]

Free response: \[q(t) = \sum_{j=1}^{n} s_j(t) \]
Damped modes

Idea:
Define a transformation on the modes to make them synchronous
Phase synchronization of damped modes

\[CM^{-1}K \neq KM^{-1}C \]

\[y_j(t) = \begin{pmatrix} s_{j,1}(t + \phi_{j,1}/\omega_j) \\ \vdots \\ s_{j,n}(t + \phi_{j,n}/\omega_j) \end{pmatrix} \]

Phase synchronization

\[s_j(t) = \begin{pmatrix} y_{j,1}(t - \phi_{j,1}/\omega_j) \\ \vdots \\ y_{j,n}(t - \phi_{j,n}/\omega_j) \end{pmatrix} \]

\[CM^{-1}K = KM^{-1}C \]
Decoupling by phase synchronization

Coupled linear system

\[M \ddot{q}(t) + C \dot{q}(t) + K q(t) = 0 \]

\[q(t) = \sum_{j=1}^{n} s_j(t) \]

\[s_j(t) = \begin{pmatrix} \dot{y}_{j,1}(t - \phi_{j,1}/\omega_j) \\ \vdots \\ \dot{y}_{j,n}(t - \phi_{j,n}/\omega_j) \end{pmatrix} \]

\[y_j(t) = \begin{pmatrix} s_{j,1}(t + \phi_{j,1}/\omega_j) \\ \vdots \\ s_{j,n}(t + \phi_{j,n}/\omega_j) \end{pmatrix} \]

\[y_j(t) = z_j p_j(t) \]

\[\ddot{p}(t) + D \dot{p}(t) + \Omega p(t) = 0 \]

Decoupled linear system
Decoupling by phase synchronization

Coupled linear system

\[M \ddot{q}(t) + C \dot{q}(t) + K q(t) = 0 \]

Phase synchronization

\[q(t) = \sum_{j=1}^{n} \text{diag}(p_j(t - \phi_{j,i}/\omega_j)) z_j \]

Decoupled linear system

\[\ddot{p}(t) + D \dot{p}(t) + \Omega p(t) = 0 \]
Phase synchronization: real eigenvalues

Complex eigenvalues: pair complex conjugates

\[s_j(t) = v_j e^{\lambda_j t} c_j + \bar{v}_j e^{\bar{\lambda}_j t} \bar{c}_j \]

Phase synchronization gives:

\[y_j(t) = \begin{pmatrix} s_{j,1}(t + \phi_{j,1}/\omega_j) \\ \vdots \\ s_{j,n}(t + \phi_{j,n}/\omega_j) \end{pmatrix} = z_j p_j(t) \]

Pair any two distinct real eigenvalues

\[s_j(t) = v_a e^{\lambda_a t} c_a + v_b e^{\lambda_b t} c_b \]

Phase synchronization gives: (after some algebra)

\[y_j(t) = \begin{pmatrix} s_{j,1}(t + \phi_{j,1}/\omega_j) \\ \vdots \\ s_{j,n}(t + \phi_{j,n}/\omega_j) \end{pmatrix} = z_j p_j(t) \]
Decoupling by phase synchronization: real eigenvalues

Coupled linear system

\[M \ddot{q}(t) + C \dot{q}(t) + K q(t) = 0 \]

Phase synchronization

\[q(t) = \sum_{j=1}^{n} \text{diag}(p_j(t - \phi_{j,i}/\omega_j))z_j \]

Decoupled linear system

\[\ddot{p}(t) + D \dot{p}(t) + \Omega p(t) = 0 \]
Decoupling by phase synchronization: real eigenvalues

Complex eigenvalues

\[(M\lambda^2 + C\lambda + K)v = 0\] has eigenvalues \(\lambda_j, \bar{\lambda}_j, j = 1, \ldots, n\)

\[(I\lambda^2 + D\lambda + \Omega)e = 0\] eigenvalues are roots of the characteristic (quadratic) equations \(\lambda_j^2 + D_{jj}\lambda_j + \Omega_{jj} = 0\). For real coefficients, complex conjugate pairs are paired up: \(D_{jj} = - (\lambda_j + \bar{\lambda}_j), \Omega_{jj} = \lambda_j \bar{\lambda}_j\)

Real eigenvalues

\[(M\lambda^2 + C\lambda + K)v = 0\] as eigenvalues \(\lambda_j, j = 1, \ldots, 2n\)

\[(I\lambda^2 + D\lambda + \Omega)e = 0\] Eigenvalues are roots of characteristic (quadratic) equations \(\lambda_j^2 + D_{jj}\lambda_j + \Omega_{jj} = 0\). The coefficients are real for any pairing of real eigenvalues: \(D_{jj} = - (\lambda_j + \bar{\lambda}_j), \Omega_{jj} = \lambda_j \bar{\lambda}_j\)

Nonuniqueness
Decoupling by phase synchronization: real eigenvalues

\[\lambda_{o+1} \quad \lambda_{o+2} \quad \cdots \quad \lambda_n \quad \lambda_{n+o+1} \quad \lambda_{n+o+2} \quad \cdots \quad \lambda_{2n} \]

\[\text{Re} \quad \text{Im} \]

\[\lambda_o \quad \lambda_2 \quad \lambda_1 \quad \lambda_{n+1} \quad \lambda_{n+2} \quad \lambda_{n+o} \]
Decoupling by phase synchronization: inhomogeneous equation

Coupled linear system

\[M \ddot{q}(t) + C \dot{q}(t) + K q(t) = f(t) \]

Decoupled linear system

\[\ddot{p}(t) + D \dot{p}(t) + \Omega p(t) = g(t) \]
Decoupling by phase synchronization: inhomogeneous equation

State-space:

\[
\begin{pmatrix}
\dot{q}(t) \\
\ddot{q}(t)
\end{pmatrix} =
\begin{pmatrix}
0 & I \\
-M^{-1}K & -M^{-1}C
\end{pmatrix}
\begin{pmatrix}
q(t) \\
\dot{q}(t)
\end{pmatrix} +
\begin{pmatrix}
0 \\
M^{-1}f(t)
\end{pmatrix}
\]

Define:

\[\Lambda_1 = \text{diag}(\lambda_1, \ldots, \lambda_o, \lambda_{o+1}, \ldots, \lambda_n)\]
\[\Lambda_2 = \text{diag}(\bar{\lambda}_1, \ldots, \bar{\lambda}_n, \lambda_{n+o+1}, \ldots, \lambda_{2n})\]
\[V_1 = (v_1, \ldots, v_o, v_{o+1}, \ldots, v_n)\]
\[V_2 = (\bar{v}_1, \ldots, \bar{v}_n, v_{n+o+1}, \ldots, \bar{v}_{2n})\]

Real, invertible coordinate transformation

\[
\begin{pmatrix}
q(t) \\
\dot{q}(t)
\end{pmatrix} =
\begin{pmatrix}
V_1 & V_2 \\
V_1\Lambda_1 & V_2\Lambda_2
\end{pmatrix}
\begin{pmatrix}
I & I \\
\Lambda_1 & \Lambda_2
\end{pmatrix}^{-1}
\begin{pmatrix}
p_1(t) \\
p_2(t)
\end{pmatrix}
\]
Decoupling by phase synchronization: inhomogeneous equation

Transformed equations:

\[p_2(t) = \dot{p}_1(t) - g_1(t) \]
\[\ddot{p}_1(t) + Dp_1(t) + \Omega p_1(t) = (D + Id/dt)g_1(t) + g_2(t) \]

With:

\[g_1(t) = ((V_1\Lambda_1 - V_2\Lambda_2 V_2^{-1}V_1)^{-1} + (V_2\Lambda_2 - V_1\Lambda_1 V_1^{-1}V_2)^{-1})M^{-1}f(t) \]
\[g_2(t) = (\Lambda_1(V_1\Lambda_1 - V_2\Lambda_2 V_2^{-1}V_1)^{-1} + \Lambda_2(V_2\Lambda_2 - V_1\Lambda_1 V_1^{-1}V_2)^{-1})M^{-1}f(t) \]

Some rearranging reveals:

\[\ddot{p}(t) + D\dot{p}(t) + \Omega p(t) = g(t) \]
\[g(t) = (D + Id/dt)g_1(t) + g_2(t) \]
\[q(t) = (T_1 + T_2 \ d/dt)p(t) - T_2g_1(t) \]

Nonlinear transformation

Phase synchronization

Additional time-shifts due to external force
Decoupling by phase synchronization: algorithm

Coupled system

\[M\ddot{q} + C\dot{q} + Kq = f(t) \]

with coordinate \(q(t) \)

Solve the eigenvalue problem

\[(M\lambda^2 + C + K)v = 0 \]

Construct

\[\Lambda_1 = \text{diag}(\lambda_1, \ldots, \lambda_n), \quad \Lambda_2 = \text{diag}(\lambda_{n+1}, \ldots, \lambda_{2n}) \]

\[V_1 = (v_1, \ldots, v_n), \quad V_2 = (v_{n+1}, \ldots, v_{2n}) \]

\[T_1 = (V_1\Lambda_2 - V_2\Lambda_2)(\Lambda_2 - \Lambda_1)^{-1} \]

\[T_2 = (V_1 - V_2)(\Lambda_2 - \Lambda_1)^{-1} \]

\[D = -(\Lambda_1 + \Lambda_2), \quad \Omega = \Lambda_1\Lambda_2 \]

If \(f(t) = 0 \)

Set \(g(t) = 0. \)

Else

Compute \(g(t) \)

Decoupled system

\[\ddot{p} + D\dot{p} + \Omega p = g(t) \]

with coordinate \(p(t) \)
1. Introduction
2. Problem statement
3. Decoupling via phase synchronization
4. Applications in structural dynamics
Decoupling approximation

Coupled linear system

\[M\ddot{q}(t) + C\dot{q}(t) + Kq(t) = f(t) \]

\[q(t) = Up(t) \]

Computation

- Solve symmetric eigenvalue problem
 \[Mu\lambda^2 = Ku \]
- Diagonalize by congruence transformation
 \[U^TMU = I \]
 \[U^TCU = D \]
 \[U^TKU = \Omega \]
- Neglect off-diagonal elements
 \[D = \begin{pmatrix} d_{11} & d_{12} & d_{13} \\ d_{12} & d_{22} & d_{23} \\ d_{13} & d_{23} & d_{33} \end{pmatrix} \]
Response of light equipment in a base-isolated structure

Equipment simulation

- Linear viscoelastic model for a five-story, base-isolated building with internal equipment
- 3 DOFs, representing the displacement of the base, the primary structure and the equipment
- Base is subject to 1940 El Centro earthquake
- Decoupling by phase synchronization
- Each independent coordinate solved by RK 4.5, with coordinate dependent time-stepping
Earthquake analysis of nuclear power plant

Model order reduction

- Four interconnected rigid structures: core, pre-stressed concrete pressure vessel, basement, adjacent building
- Each structure 2 DOF (sway, rocking angle)
- Base is subject to 1940 El Centro earthquake
- Decoupling by phase synchronization
- Each independent coordinate solved by RK 4.5, with coordinate dependent time-stepping
- Low energy coordinates can be neglected to give very good 5 DOF approximation.
Model order reduction for nuclear power plant

Energy distribution among different modes generated by phase synchronization

Direct simulation

Phase synchronization: first five modes

Decoupling approximation: first five modes
Conclusions

• All viscously damped linear systems can be decoupled by phase synchronization

• The decoupling can be implemented efficiently by solving a quadratic eigenvalue problem

• Powerful model order reduction techniques can be developed

• The method can be extended to decouple systems with non-symmetric coefficient matrices
Thank you!

References: