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Abstract.  We troduce two new tomporal dillerence (TD) atgorithing based on the theory of lingar (cas--
squares function approximation. We define an algorithm we call Least-Squares TD (LS TI) for which we prove
probability-one convergence when it is used with a function approximator linear in the adjustable parameters.
We then define a recursive version of this algorithm, Recursive Least-Squares TIY (RLS TD). Although these
new D algonthms require more computation per time—step than do Sutten’s T algorithins, they are more
efficient in a statistical sense because they extract more information from training cxperiénces. We describe
a simulation experiment showing the substantial improvement in learning rate achieved by RLS TD in an
example Markov prediction problem. To quantify this improvement, we introduce the TI3 error variance of a
Markov chain, o, and experimentally conclude that the convergence rate of a TD algorithm depends linearly
on o In additon to converging more rapidly, LS TD and RLS T do not have control parameters, such as
a learning rate paramcter, thus eliminating the possibility of achieving poor performance by an unlucky choice
of parameters.
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1. Introduction

The class of temporal difference (ID) algorithms {Sutton, 1988) was developed to pro-
vide reinforcement learning systems with an efficicnt means for learning when the con-
sequences of actions unfold over extended time periods. They allow a system o learn
to predict the total amount of reward expected over time, and they can be used for
other prediction problems as well (Anderson, 1988, Barto, et al., 1983, Sutton, 1984,
Tesauro, 1992). We introduce two new TD algorithins based on the theory of linear
least-squares function approximation. The recursive least—squares function approxima-
tion algorithm 1s commonly used in adaptive control (Goodwin & Sin, 1984} because it
can converge many (imes more rapidly than simpler algorithms. Unfortunately, extending
this algornithm to the case of TD learning is not straightforward.

We define an algorithm we call Least-Squares 'I'D (LS TD) for which we prove
probability--cne convergence when it is used with a function approximator linear in the
adjustable parameters. To obtain this result, we use the instrumental variable approach
{Lyung & Soderstrom, 1983, Soderstrém & Stoica, 1983, Young, 1984) which provides
a way to handle least—squares estination with training data that is noisy on both the
input and output observations. We then define a recursive version of this algorithm, Re-
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cursive Least—Squares TD (RLS TD). Although these new TD algorithms require more
computation per time step than do Sutton’s TD{A} algorithms, they are more efficient
in a statistical sense because they extract more information from training cxperiences.
We describe a simulation experiment showing the substantial improvement 1n learning
rate achieved by RLS TD in an example Markov prediction problem. To quantify this
improvement, we introduce the TD error variance of a Markov chain, oy, and experi:
mentally conclude that the convergence rate of a TD algorithm depends linearly on &y,
In addition 1o converging more rapidly, LS TD and RLS TD do not have control pa-
ramcters, such as a learning rate paramcter, thus climinating the possibility of achicving
poor performance by an unlucky choice of parameters.

We begin in Section 2 with a brief overview of the policy cvaluation problem for
Markov decision processes, the class of problems to which TD algorithms apply. After
describing the TD(A) class of algorithms and the existing convergence results in Sec-
tions 3 and 4, we present the least—squares approach in Section 5. Section 6 presents
issucs rclovant to sclecting an algoerithm, and Sections 7 and 8 introduce the TD crror
variance and use it 1o quantify the results of a simulation experiument.

2. Markov Decision Processes

TD{A) algorithms address the policy evaluation problem associated with discrete—time
stochastic optimal control problems referred to as Markov decision processes (MDPs). An
MDP consists of a discrete—time stochastic dynamic system (a controlled Markov chain),
an immediate reward function, R, and a measure ol long—term system petformance.
Restricting attention to finite—state, finite—action MDP’s, we let X and A respectively
denote finite sets of states and actions, and I denote the state transition probability
function. At time step . the controller observes the current state, r,, and cxecutes an
action, a;, resulting in a transition to state z,;,1 with probability [°{x,, 2,1, a,) and the
receipt of an immediate reward ry = R{xy, @41, a0). A (stationary} policy is a function
i X — A giving the controller’s action choice for each state.

For each policy p there is a value function, V'#, that assigns to cach state a measure of
long-term performance given that the system starts in the given state and the controller
always uses g to select actions. Confining attention to the infinite—horizon discounted
definition of long—term performance, the value function for g is deflined as follows:

-
VE(x) s Bl vtrelze = 2,

=1}

where ~, 0 < ~ < |, is the discount factor and F, is the expectation given that actions
are selected via . (In problems in which one can guarantec that there will cxist some
finite time 7 such that rx — 0 for & = 7, then one can sct v = 1.} The objective of the
MDP is 1o find a policy, 4%, that is optimal in the sense that V# (z) = V&(u) for all
x € X and for all policies p.

Computing the evaluation function for a given policy is called policy evaluation. This
compntation ic a component of the policy steration method for finding an optimal policy,
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and it 1s sometimes of intercst in ils own right to solve prediction problems, the perspec-
tive taken by Sutton (Sutton, 1988). The evaluation function of a policy must satisfy the
following consistency condition: for all x € X:

Vi) = Y Pla,y, ple)iR(z.y, plx)) = 7V* ()]

wur X

This is a set ot | X| linear equations which can be solved for V# using any of a number
of standard dircct or iterative methods when the functions It and F are known. The
TD{A) family ot algorithms apply to this problem when these functions are not known.
Since our concern in this paper 15 solely in the problem of cvaluating a fixed policy p, we
can omit reference to the policy throughout. We therefore denote the value function V'*#
simply as V', and we omit the action argument n the tunctions K and 7. bFurthermore,
throughout this paper, by a Markov chain we always mecan a finite—state Markov chain.

3. The TD({X) Algorithm

Although any TD(A) algorithm can be used with a lookup—table function representation,
1t 15 most often described in terms of a parameterized function approximator. In this
casc, V;, the approximation of V' at time step t, is defined by Vi(z) = f(8,, ¢.), for all
x C X, where {}, i¢ a parameter vector at time step #, ¢, is a fealure vector representing
state z, and f is a given real-valued function differentiable with respect to 8, for all ¢,
We usc the notation Vg, Vi ('} to denote the gradient vector at state = of ¥ as a function
of 8,.

Tuble !, Notation used in the discussion of the TD(A} learning rule.

&y, = states of the Markovy chain
Ty the state at time step t
the rmmediate reward associated with the transition from state @y (0 @y Tr =

Tt f{(ftfg,ﬂ:¢+l).
the vector of expected Tmmediate rewa[ds;
r P qu‘( Plr. y)R{z. y);, ry = Xye.’( Plog. y) R,y
s the vector of starting probabilities
X’ the transpose of the vector or matrix X
v the truc value function
o the feature veclor representing state x
&y the feature vector representing state . ¢y = @5,
& the matrix whose x-th row 15 ¢,
T the proportion of time that the Markov chain is expecied to spend in stale =
I the diagonal matrix diag{)
a* the true value function parameter vector
&y the csiimate of 8™ at ime ¢
Vila) the estimated value of state  using parameter vector #y
Gp(z,) e slep-size parameter used (o update the value of
7lae) the number of transitions from state @y up (¢ me step £,

Using additional notation, summarized in Table I, the TD(A) learning rule for a dit-
ferenuable parameterized function approximator {Sutton, 1988) updates the parameter
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vector &, as follows:

2

vt = B+ ey [ B WValzenn) = Velae) ] D0 AT Vo, Vi (ap)

k=1
- 9.’, T an(.r:t)Agi‘.r
where
t
Aby = | B+ Vi) Vila) |0 N5V, Viday)
k=1
_ By +vVilzy 1) - Vi(ap) ] E,
and
':“\
A P R AETN 2

k=l

Notice that A¢, depends only on estimates, Vi(rz), made using the latest parametcr
values, #,. This 1s an attempt to separate the effects of changing the parameters from
the effects of moving through the state space. However, when V; is not lincar in the
parameter vector #, and A # 0. the sum %; cannot be formed i an cfficient, recursive
manner. Insiead, it is necessary to remember the xy, and to explicilly compule Vg, Vy(xp)
for all & < ¢ This is necessary because if V, is nonlincar in 6;, Vg, Vi {r¢) depends on
B:. Thus. £, cannot be defined recursively in terms ol ¥, ;. Because recomputing 33,
in this manner at every Lime slep can be cxpensive, an approximation is usually used.
Assuming that the step—size parameters arc small, the difference between &; and 4, | 15
also small. Then an approximation to X can be defined recursively as

Y, =AY, + Vo, Vi), (2)

If V' is linear in 6, then (2) can be used to compute ¥, cxactly. No assumptions about
the step—size parameters are required, and no approximations arc madc.

We will be concerned in this paper with function approximators that are linear in the
parameters, that 15, functions that can be expressed as follows: Vi(x) — ¢4, where ¢,
denotes the transpose of ¢, so that ¢l 0, is the Inner product of ¢, and 9,. In this casc,
(2) becomes

Yoo AL b @
so that {1) stmplifies to

£
N i T
3y, — L,\i .

k=1
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| Select #5.

2 Bett — 0.

3 forn - Cwoo

4 Choose a start state @z, according 1o the start-state probabilities given by 5.

3 Set A, - 0

6 while 3, i5 not an absorbing state {

7 Lot the state change from x, 10 441 according to the Markov chain transition
probabilitics.

8 Set Ay = A, + Af, where Ay is given by (3).

9 t—t 1L

10 1

11 Update the parameters at the end of trial number 1 8y 40 = 8, + o, 0,

12}

Figure . Trial based TD(A) for absoibing Markov chains. A trial is a sequence of states pencrated by the
Markov chain, starting with some initial state and ending in an absorbing state. The vanable n coonts the
number of tials. The vartable A counts the number of steps within a wial. The parameter vecton ¢ bs upadatcd
only at the end of a mial.

4. Previous Convergence Results for TD{A)

Convergence of a TDMA) learning rule depends on the state representation, {(_‘.‘.‘):,;}_,.gx\
and the form of the function approximator. Although TD(A) rules have been used suc-
cesslully with function approximators that are nonlinear in the parameter vector £, most
notably the use of a multi-layer artificial neural nevwork in Tesauro’s backgammon pro-
arams (Tesauro, 1992), convergence has only been proven for cases in which the value
function is represented as a lookup table or as a lincar function of 6 when the fea
ture vectors are linearly independent.! Sutton (Sutton, 1988} and Dayan (Dayan, 1002)
proved parametor convergence n the mean under these conditions. and Dayan and Se-
Jnowsk (Dayan & Scjnowski, 1994) proved parameter convergence with probability |
under these conditions for TI{A) applied to absorbing Markov chaing in a rrigl—based
mannet, 1.¢., with parameter updaics only at the end of every mal. A trial 1s a sequence
of statex generated by the Markev chain, starting with some initial state and ending 1n
an absorbing state. The start state for each trial 15 chosen according to a probability
distribution 5. Figure 1 describes this algorithm.  Since parameter updates lake place
only at the end ol each trial, A8, must be defined somewhat differently from above:

3
AB DR G - B 1Y N Fey (3)
Joms L

where »o1s the trial number and ¢ 15 the Ume step. The parameler veclor ¢, ts held
constant throughout inal », and 1w updated only at the end of cach tnal.
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Less restrictive theorems have been obtained for the TD(() algorithm by considering
it as a special case of Watkins’ (Watkins, 1989) (2-learning algorithm. Watkins and
Dayan (Watkins & Dayan, 1992), Jaakkola, Jordan, and Singh, (Jaakkola, et al., 1994),
and Tsitsiklis (Tsitsiklis, 1993) note that since the TD(0) learning rule is a special case
of (J-learning, their probability—one convergence proofs for (J-learning can be used to
show that on—fine usc of the TD{0} learning rulc (i.c., not trial-based) with a lookup~
table function representation converges to V' with probability 1. Bradtke (Bradtke, 1994)
extended Tsitsiklis® proof to show that on—line use of TD{(}) with a function approximator
that is lincar in the paramecters and in which the feature vectors arc lincarly independent
also converges to V' with probability 1.

Bradtke aiso proved probability -one convergence under the same conditions for a
normalized version of TD((0) that he called NTD(0) (Bradtke, 1994). Bradtke also defined
the NTD(A) family of learning algorithms, which are normalized versions of TIXA). As
with similar learning algorithms, the size of the input vectors ¢, can cause instabilities in
TD{A) lcarning until the step—size paramcter, «, 1s reduced to a small cnough valuc. But
this can make the convergence rate unacceptably slow. The NTD(A) family of algorithms
addresses this problem. Since we use NTD(A) in the comparative simulations presented
below, we define 1t here.

The NTIX(A) learning rule for a function approximator that is linear in the parameters
is

t
Oryr =0, V() Ry + 00 — ¢y J Zx\tik

k=1

P
e, “h
€+ P 9K
where e is some small, positive number. If we know that all of the ¢, are non. zero, then
we can set ¢ 1o zero. The normalization dees not change the directions of the updates;
it merely bounds their size, reducing the chance for unstable behavior.

5. A Least-Squares Approach to TD Learning

The algorithms described above require relatively little computation per time step, but
they use information rather inetficiently compared to algorithms based on the least

squares approach. Although least—squares algorithms require more computation per tme
step, they typicatly require many [ewer tme steps 1o achieve a given accuracy than do
the algorithms descnbed above. This section describes a dertvation of a TI) learning
rule based on least-squares techniques. Table 2 summarizes the notation we usc in this
section,

5.1. Linear Least-Squares Function approximation

This scction reviews the basics of linear least—squares function approximation, mcluding
instrumental variable methods. This background material leads in the next section to a
least—squares T algorithm. The goal of linear least squares function approximation is
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Tuble 2. Notation used throughout this section in the discussion of Least-Squares algerhms.

1 ¥R — W, the linear function to be approximated
B the ohserved inpit at time step ¢

[

i e & R, the observed output at time step

Nt 7y € R, the observed output nowse at time step £

O wy — wg + (¢, the noisy input observed af time L

Gt G & T, the input noise at tme siep ¢

Cor{x,y) Cor{x.y} = E {xy'}, the correlation matrix for random variables = and y
e g & BT, the instrumental variable observed at time step ¢

to hnearly approximate some function ¥ : R™ — R given samples of observed inputs
w € ™ and the corresponding observed outputs 1, € . If the input observations are
not corrupted by noise, then we have the following situation:

Py = Tlwy) + 1y
= w8+, (5
where 8% is the vector of true (but unknown) parameters and vy, is the output observation
noise.
Given (5), the least—squares approximation to #*at time ? is the vector &, that minimizes
the quadratic objective function
1 t
L 5
Ji = i L e —wipld”
kool
Taking the partial derivative of J, with respect 1o 8, setting this equal to zero and solving
for the minimizing &, gives us the 7 estimate for 8%,

—1
1 3 1 1

9,’ = E Zw‘kud}; ? Z w;;?;")k . (6)
koL ko1

The following lemma, proved in ref. (Young, 1984), gives a set of conditions under
which 4, as defincd by (6) converges in probability 10 87

ToemMa 1 I the correlaion rmutrin Cor{w, w) iy nonsingulur and findte, and the cutput
observation noise my Is uncorrelated with the input observations wy, then 0y as defined
by (6) converges in probability to 0%,

Equation (5) models the situation in which observation errors occur only on the output,
In the more general case, the 1nput observations are also noisy. Instead of being able to
dhrectly observe . we can only observe @y — wy + (&, where {; is the input observation
noise vector at time . This is known as an errors-n-variables situation (Young, 1984),
The following equatton models the errors—in—variables situation:

wy = 'Jf'(.p‘,', =+ i
= Wy Gt
— gt 8T (7)
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The problem with the crrors—in—variables situation 1s that we cannot usc w, instead of
wy in (6) without vielating the conditions of Lemma {1). Substituting o, directly for wy,
in (6} has the cifect of introducing noise that is dependent upon the current state. This
introduces a bias, and ¢, no longer converges to #*. One way around this problem is
to introduce mstrumental variables {Ijung & Soderstrom, 1983, Soderstrém & Stoica,
1983, Young, 1984). An instrumcntal vanable, gy, is a vector that is corrclatcd with
the true input vectors, we, but that 18 uncorrelated with the observation noise, {;. The
following cquation is a modification of {6) that uses the instrumental variables and the
noisy inputs:

I3

1 i

QL = ? ‘ ,ﬁkL‘-’j\'; ? Z P;gl-”k R (8)
hol =l

The following lemma, proved in ref. (Young, 1984), gives a set of conditions under

which the introduction of instrumental variables solves the errors—in—vaniables problem

LeEMMA 2 If the correlation matrix Cor(p,w) is nonsingular and finite, the correlation
matrix Cor(p, () = U, and the output observation noise 1y Is uncorrelated with the
instrumental variables p,, then 8, as defined by (8) converges in probability to §*.

5.2, Algortthm IS TD

Here we show how to use the instrumental variables method to derive an algorithm
we call Least-Squares TD (LS 'TD), a least—sguares version of the TD algorithm. The
TD algorithm used with a linear—in—the—parameters function approximator addresses the
problem of finding a parameter vector, #%, that allows us to compute the value of a state
xas Vr) = &.4%. Recall that the value function satisfies the following consistency
condition:

Viz) = Y Play)R(r ) +4V(y)

ye X

= SN PRy v S Pl Vi)
ye X veX

S Y PV,

ue AXF

where 7,15 the expected immediate reward for any siate transition from state x. We can
rewrite this in the form used in Section 5.1 as

oo V)=~ Z Ple.ydyViy)
wi X

— LT Z Pla gy, o
UE_Y
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= (gr Y Plry)ey)0, (9N
y(:X

for every state ¢ X. Now we have the same kind of problem that we considered
in Section 5.1. The scalar output, ¥, 18 the inner product of an input vector, ¢, —
v _Eye)i P(v;r:, y)q.‘vy, and the trutf parameter vc‘cmr, ()" ' _

For cach time step ¢, we therefore have the following equation that has the same form

as (5):

Ty = (O[ Y Z F)(ch)()y)fg* + ('T'[ —'j:;_), (]D)
y(ﬁX

where 7, is the reward received on the transition from @, to 244, (r, — 7} corresponds
to the noise term 7; in (5). The following lemma, proved in Appendix A, estabhishes
that this noise term has zero mean and is uncormrelated with the input vector w, =

Gt =¥ x Plre ey

LeMMAa 3 For any Markov chain, if @ and y are states such that Pl 1) = 0,
with gy = Rz, y) -7, and w, — (¢, - A"ZyeX Pz, y)ey,). then E{n} = 0, and
Cor{w.n) =0,

Therefore, it we know the state transition probabihty tunction, I, the feature vector
&z, for all 2 ¢ X, if we can observe the state of the Markov chain at cach time step,
and if Cor{w.w) 18 nonsingular and finite, then by Lemma (1) the algorithm given by
(6) converges in probability to 0-.

In general, however, we do not know £, {@;},.c vy, or the statc of the Markov chain
at cach time step. We assume that all that is available to define @, arc ¢, ¢,y and r,.
Instrumental vanable methods allow us to solve the problem under these conditions. Let
Wy = Oy YO, and {p Zw’. x Plz, y)o, . Then we can observe

u\)t 2 i S T |
i . ) * 3 ) ’
— (& o) Pley e, — (v E Flo gy o)
40 )( _lft’,_'X
wy G

with w, = ¢, ZU;,X Plag oy and § =~ 3y Plae y)oy — @0 1 We see,
then, that the problem futs the errors-n—variables situation. Specifically, the following
cquation 1 the form of (71 is equivalent to the consistency condition (9):

Ty = I:(f)f‘ Ty !']f()W f" Z j’[.f.',l. y)(by -y, |}’(}w + (T'f_ f_[)
e X
yl

Following Sccton 5.1, we introduce an snstrumental vauable, g, to avouwd the asymp-
totic bias wntroduced by crrors—in—variables problems. The following lemma, which is
proved i Appendix A, shows thal p, — & is an mstrumental variable because it is
uicotrelated witle the inpul obscivation noise, ¢, detined above:
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1 Sett=1.

2 repeat lvrever {

3 Set z; to be a start state sefected according to the probabilities given by S.
4 while x; is not an ahsorbing state {

) Let the state change from =, to z,4, according to the Markov chain
transition probabilities.

Use (11) to define 8,.

t=t+1

Relie cRRs B el

Figure 2. Tnal-based LS TD for absorbing Markov chains. A trial is a sequence of states that starts af some
start stace, foltows the Markov chain as it makes transitions, and ends at an absorbing state.

LEMMA 4 For any Markov chain, if (1) @ and y are states such thar P(x,y) = 0; (2)
Cay — —YZzEX Pl ey, — vy, (3) appy = R(e,y) — Foy und (4) py = b, then (1)
Cor{p,my =0, and (2) Cor(p, () = 0.

Using ¢, as the instrumental variable, we rewrite (8) 10 obtain the LS TD algorithm:

=] 1 S b O(dn — or ) }—1 [ LS Tk ] (1)

Figure 2 shows how (8) can be used as pat ot a tnal-based algorithm to find the
value function for an absorbing Markov chain. Figure 3 shows how (8) can be used as
part of an algomithm to find the value function for an ergodic Markov chain. Learning
takes place on—line in bodr algorithins, with parameler updates alter cvery state tran-
sition. The parameter vector 7, 15 not well defined when ¢ 1s small since the matrix
, %X:{__I Ol — vope) } is not invertible.

The LS TD atgorithen has some sinilarity woan algoritlue Werbos (Werbos, 1990)
proposed as a linear version of his Heuristic Dynamic Programming (Lukes, et al., 1990,
Werbos, 1987, Werbos, 1988, Werbos, 1992). However, Werbos™ algonithm is not amen-
able w a reoursive fonnulativn, as is LS TD, and docs not converge for arbitrary wmitial
parameter vectors, as does LS TD. See ref. (Bradike, 1994).

It remains to establish conditions under which [.S TD converges to #*. According 10
Eemma 2, we must establish that Cor{gp, w) is finie and nonsingular. We take this up in
the next section,

5.3. Convergence of Algorithm LS TD

In this section we consider the asymptotic performance of algorithm LS T when vsed
on-line 10 approximate the value functions of absorbing and ergodic Markov chains.
The following lemma, proved i Appendix A, starts the analysis by expressing 0,5,
limy ., o B¢, the limiting estimate found by algorithm LS TD for 8%, in a convenlent form.
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1 Sett=10

2 Select an arbitrary 1nitial ctate, ay.

3 repeat forever {

4 Let the state change from z, to x,4, according to the Markov chain transi-
tion probabilities. '

5 Use (11} to define ;.

6 t=1t+1.

7}

Figure 3 T8 T for ergodic Markov chaing

LeMMA 5 For anv Markov chain, when (1) 8, is found using algorithm LS TD; (2)
each state © € X is wisited infinitely often; (3} each state v € X 15 visited in the long
run with probability | in proportion w,; and (4) PN — ~PY®] is invertible, where ©
is the matrix of whose T—th row is ¢, and Il is the diagonal matrix diag(ﬂ), then

O = [P11{I — ~vP)D| " [@IIF
with probability 1.

The key to using Lemma 5 lics in the definition of 7, the proportion of time that the
Markov chain is expected to spend over the long run in state x. Equivalently, m, is the
cxpected proportion of state transitions that take the Markov chain out of state x. For an
ergodic Markov chain, #, is the invariant, or steady-state, distribution associated with
the stochastic matrix # (Kemeny & Snell, 1976). For an absorbing Markov chain, m, is
the expected number of visits out ol state x during one transitton sequence from a start
state to a goal state (Kemeny & Suoell, 1976). Since there are no transitions out of a goal
state, 7, — 0 for all goal states. These definttions prepare the way {or the following
two theorems. Theorem 1 gives conditions under which LS TD as used in Figure 2 will
cause g to converge with probability 1 to 6% when applied to an absorbing Markov
chain. Theorem 2 gives conditions under which LS TD as used in Figure 3 will cause
b5 to converge with probability [ to 8% when applied to an ergodic Markov chain.

THEOREM | (CONVERGENCE 08 L5 T'D FOR ARSORBING MARKOV CHAINS)
When using LS T as described in Figure 2 1o estimate the value funcrion for an absorb-
ing Markov chain, if (1) 5 Iy such thar there are no inaccessible states; (2) Rix,y) =
whenever both x.y € T, the ser of ubsorbing states,; (3} the set of feature vectors repre-
senting the non-absorbing states, {@, | 1 € N} iy lincarly independent; (4) ¢, — O for
all v & T; (5} each ¢, is of dimension m — |N7 and (6) 0 < v < 1, then 8% iy finite
and the asvmprotic parameter estimate found by algorithm LS TD, 8 ., converges with
probabiiity | to 8° as the number of trials (and staie fransitions) approaches mfiriy.

Different conditions are required in the absorbing and ergodic chain cases in order to
meet the conditions of Lermma 5. The conditions required i Theorem 1 are generaliza-
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tions of the conditions requircd for probability 1 convergence of TD(A) for ahsorbing
Markov chains. The conditions required in Theorem 2 are much less restrictive, though
the discount factor - must be less than 1t coswe that the value functon s (inite.

THEOREM 2 (CONVERGENCE OF LS TD FOR ERCODIC MARKOV CHAINS)

When using L8 TD as described in Figure 3 to estimate the value function for an ergodic
Markov chain, if (1} the set of feature vectors representing the states, {o, |z ¢ X}, is
linearly independent; (2) each ¢y 1s of dimension N — | X, (3) 0 <<~ < 1, then 8* is
finite and the asymptotic parameter estimate found by algorithm LS 11, 8., converges
with probability 1 to 67 as the number of state rransitions approaches infinity.

Theorems 1 and 2 provide convergence assurances for LS TD similar to those provided
by Tsitsiklis (Tsitsikdts, 1993) and Watkins and Dayan (Watkins & Dayan, 1992) for the
convergence of TIX0) using a lookup—table function approximator.

Proof of Theorem 1: Condition (1) implies that, with probability 1, as the total number
of state transitions approaches infinity, the number of times each state x & X is visited
approaches infinity. Since this is an absorbing chain, we have with probability | that the
states are visited in proportion 7 as the number of irials approaches infinity, Therefore,
by Lemma 5, we know that with probability 1

B — [T = 4 P)0 T

assuming that the inverse exists.

Conditions (3), (4), and (5) imply that & has rank v, with row = of & consisting of all
zeros for all = € T. Condition (1} implics that [I has rank 2. Row @ of I consists of
all zeros, for atl @ < 7. @ has the property that it all rows corresponding to absorbing
states are removed, the resulting submatrix is of dimensions (v ~ ) and has rank .
Call this submatrix A. I has the property that if all rows and columns corresponding o
absorbing states are removed, the resulling submatrix is of dimensions (s: % m} and has
rank a. Call this submatrix 2. {J — ~ P} has the property that if all rows and columns
corresponding to absorbing states are removed, the resulting submatrix is of dimensions
(v x ) and has rank m (Kemeny & Snell. 1976) Call this submatrix ¢, It can be
verified directly by performing the multiplications that [®II{7 ~+DP)D] — (A'BCA
Therefore. ®TII - ~P)®| 15 of dimensions {n x ) and has rank sn. Thus, it is
invertible.

Now, (9} can be rewritten using matrix notation as

F oo (1 — 2 P)be. (12)

This, together with conditions (2) and (6), unplies that £* is finite. Finally, substituting
{12} into the cxpression for ¢ ., gives us

low  |®THT — D& ST P o-
or.

Thus, & 4, converges to 87 with probability 1. |
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Proof of Theorem 2: Since this is an crgodic chain, as ¢ approaches infinity we have
with probabitity 1 that the number of times cach state x ¢ X is visited approaches
infinity. We also have with probability 1 that the states arc visited in the long run in
proportion w. Hrgodicity implics that 7, = 0 for all 2 € X, Therefore, 11 is invertible.
Condition (3) implies that (I —~F) is invertible. Conditions (1) and (2) imply that $ is
invertible. Therefore, by Lemma 3, we know that with probability 1

buoro — [Q'TI(T — vP)D] ™ [®T17] .

Condition (3) together with Equation (12) imply that #* is finite. And, as above,
substituting (12) into the expression for 6, s, gives

Bom —= [P - +PY®] ' 1 - ~P)P] 6
= 9.

Thus, 8 . converges to 8* with probability 1. [ |

5.4. Algorithm RILS TD

Algorithm LS TI) requires the computation of a matrix inverse at each time step. This
means bt LS TD has a computationat complexity of ¢P(m”), assuming that the state
representations are of length m. We can use Recursive Least-Squares (RLS) techniques
(Goodwin & Sin, 1984, Ljung & Soderstrim, 1983, Young, 1984} to derive a moditied
algurithi, Recursive Least—Squares T (RLS TD), with compurational complexity of
O(m?). The following equation set specifies algorithm RLS TD:

fro By — (f.f’t ’}’@‘a—u)rgn——l {13
C- 1 ) ~ I(? -
¢ o= — t 1(’{:(“ .'Qﬁtlz tll (14)
T4 (@ — vy ) Crovén
i
O = B0 = co. (15)

LA (¢ — v0u1) Croi iy

Notice that (15) 18 the TD{0) learning rule for function approximators that are linear in
the parameters, except that the scalar step-size parameter has been replaced by a gain
matrix. The user of an RLS algorithm must specify 8y and . C} is the #* sample

1 where @ and & are defined as m Section 5.2, (7 Lis typically

estimate of %Cor(p, i)
chosen to be a diagonal matrix of the form 37, where 3 is some large positive constant,
This ensures that Cy, the initial guess at the correlation mairix, is approximately 0, but
is invertible and symmetric positive definite.

The convergence of RIS TD requires the same conditions as algorithin L.S TD, plus
ope more. This 1s Condition A. 1, or equivalently, Condition A.2:

Condition A.1: {(,0 Ly Yy et | must be non-singular for all times ¢.

Condition A.2: (1 1 200 p,] # 0 for all times ¢
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Under the assumption that the conditions A.1 and A.2 are maintained, we have that

-1

¢

Cy= |5+ Z PR
k=1

and that
¢ 1 ¢
—1 - -1 :
b = (Ot + > ot Co'fo+ > prtn
k=1 k=1
1

1 | o [ 1
- ?Cgl + ? Z [)ki:}i, ?C‘Jlg(] -+ ? Z [);L{‘;‘;l
) k=1 ) k=1

If the conditions A.l and A.2 are nol met at some time [g, then all computations made
thereafter will be polluted by the indeterminate or infinite vatues produced at time 2. The
non-recursive algorithm LS TD does not have this problem because the computations
made at any tme step do not depend directly on the results of computations made at
earlier time steps.

5.5. Dependent or Extraneous Features

The value function for a Markov chain satisfies the equation
. 1.
Vi=:17T- “‘w,P] ¥
When using a function approximator linear in the parameters, this means that the param-
eter vector # must satisly the linear equation

-1 -vP ] 'F (16)
In this section, the rows of @ consist enly of the feature vectors representing the non—
ahsorbing stalcs, and V only includes the values for the non—absorbing states. This is
not essential, but it makes the discussion much simpler. Let = [N be the number of
non—ahsorhing states in the Markov chain. Matrix © has dimension 1 < mn, where m is
the length of the feature vectors representing the states.

Now, suppose that rank(®) — m < n. Dayan (Dayvan. 1992) shows that in this
case trial-based TD(A) (Figure 1) converges to [®/TI(T — v P)®] " [#/11R] for A = 0.
This is the same result we achieved in Lemma 3, since m — rank{®) if and only if
[®TI(I  ~F)®| is invertible?. The proofs of Theotems 1 and 2 show convergence nf
oo 10 [®TIT — ~P)B) ' [@1IR] as a preliminary result. Thus, 6, converges for
both absorbing and crgodic chains as long the assumptions of Lemma (3} are satisfied.

Suppose, on the other hand, that rank{®} — »n < »n. This means that the state repre
sentations are linearly independent but contain extrancous features. Therefore, there are
more adjustable parameters than there are constramts, and an 1nfinite number of param-
eter vectors @ satisfy (16). The stochastic approximation algorithms TIX(AY and NTD(A)
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converge to some & that satisfies (16). Which one they find depends on the order in which
the states are visited. LS TD does not converge, since [ %21:1 G (r — vour) J is
not invertible in this case. However, RLS TD converges to some # that satisfies (16). In
this case, too, the 6 to which the algorithm converges depends on the order in which the
states arc visiled.

6. Choosing an Algorithm

When TD(A) and NTD()) algorithms are used with function approximators that are linear
in the parameters, they involve O{m) costs at sach time step when measured either in
terms ol the number of basic computer operations, or in terms of memory requirements,
where . is the length of the feature vectors representing the states. Algorithm LS TD’s
costs are O{m>) in time and O(m?) in space at each time step, while RLS TD's are
O(m?) in both time and space. TD(A)Y and NTIX(A) are clearly superior in terms of cost
per time step. However, LS TD and RLS TD are more efficient estimators tn the statistical
sense. They extract more information from each additional observation. Therefore, we
would expect LS TD and RLS TD 10 converge morc rapidly than do TD(A) and NTD(A).
The use of LS TD and RLS TD is justified, then, if the increased costs per time step are
offset by increased convergence rate,

The performance of TD{X) 1s sensitive to a nwmber of interrelated factors that do
not affect the performance of either LS TD or RI.S TD. Convergence of TD(A) can be
dramatically slowed by a poor choice of the step—size (o) and trace (A} parameters. The
algorithm can become unstable if o is too large, causing & to diverge. TD(A) 15 also
sensitive to the norms of the feature vectors representing the states. Judicious choice of «
and A can prevent instability, but at the price of decreased learning rate. The performance
of TD(A) is also sensitive to |6y 6%, the distance between 8% and the initial cstimate for
4. NTD(A) 15 sensitive to these same factors, but normalization reduces the sensitivity.
In contrasr, algorithmsa T8 TD and RT.S TD are incensitive 1o all of theee factars Tlse
of LS TD and RLS TD eliminates the possibility of poor performance due to unlucky
choice of paramelers.

The transient behavior of a learning algorithm s also important. TD(A) and NTD(A)
remalin stable (assuming that the step—size parameter 1s small cnough) no matter what
sequence of states is visited. This 1s not true for LS TD and RLS TD. If ¢, ' =

Cot =300 pkw;g] is ill-conditioned or singular for some time #, then the estimate
#, can very far from 6%, LS TD will recover from this transient event, and 18 assurcd
of converging cventually to °. The version of RLLS TD described in Scction 5.4 wilt
not recover il C.“t’l is singular. [t may or may not recover from an ifl—conditioned (',’1,
depending on the machine arithmetic. However, there are weli—known techniques for
protecting RLS algorithms from transient instability (Goodwin & Sin, 1984).

TD(A), NTD(A), and RL.S TD have an advantage over LS TD in the case of extransous
features, as discussed in Section 5.5. TD(A), NTD(A), and RLS TD converge to the
correct vatue function in this situation, while LS TD does not.
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None of the factors discussed above makes a definitive case for one algonthm over
another in all situations. The choice depends finally on the computational cost structure
imposed on the user of thesc algorithms,

7. The TD Error Variance
One of the interesting characteristics of the TD error term,
C'm(gl‘, 1) = R; + ﬁf.@{urleifl - Qbietfh

is that it does nol go to zero as 8, converges to 0%, except in the trivial case of a
deterministic Markov chain. This is readily verified by inspection of (10). We define the
TD error vartance, o, of a Markov chain as follows:

Ty — E{ﬁ'rn(O*)z}
. 2
P{{R s o)

= 3w > Play) [Rlay) + el — o8]
;r,EX yEX

18 the variance of the TD crror werm under the assumptions that #; has converged to 0%,
and that the states {and the corresponding TD crrors) are sampled on—line by following a
sample path of the Markov chain. o, 1s & measure of the noise that cannot be removed
from any of the TD lcarning rules (TD(A), NTD{A), LS TD, or RI.S TD), cven after
parameter convergence. It seems reasonable 1o cxpect that experimental convergence
rates depend on oy,

8. Experiments

This scction describes two experiments designed to demonstrate the advantage in conver-
gence speed that can be gained through using least-squares techniques. Both experiments
compare the performance of NTD(A) with that of RLS T in the on—line estimation of
the value function of a randomly generated ergodic Markov chain, the firse with five states
and the second with fifty states (sce Appendix B for the specification of the smaller of
the Markov chains). The conditions of Theorem 2 are satisfied mn these experiments.
so that the lengths of the state representation vectors equal ive and ifty respectively in
the two experiments. In a preliminary scries of experiments, not reported here, NTD{A)
always performed at least as well as TIX A}, while showing less sensitivity (o the choice
of parameters, such as inital step size. Appendix C describes the algorithm we used
to set the step size parameters for NTD(A). Figures 4. 5, and 6 show the experimental
resnlts

The z-axis of Figure 4 measures the TD error varrance of the test Markov chain, which
was varicd over five distinet values from o, — 107! through o, = 107 by scaling the
cost function f2. The state transition probability function, P, and the state representations,
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Figure 4. Comparizon of RLS TD and NTD{A) on a randomly generated 5 state ergodic Markov chain. The
2 iwkds measures the TD error variance of the test Markov chain, which was varied over five distinet values from
aep = W07 Uihrough oy == 10% by scaling the cost function /£, The 1-axis measures the AVUTAZE CONVEIZLnes
tme over 100 waining runs of an—line leaming. There was one iine step counted lor each mieraction with
the envircnment.  The parameter vector was considered o have converged wher the average ol the error
6, o*
ThH. ('il‘aph-ll shows the performance of NTENA) where (|6 - 071, b Geaph C shows the performance of
NTDUA) where !|f; - 07, — 2

o =il below 10~ 2 and stayed below this value thereafier. Graph A shows the performance of RLS
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®, were left unchanged. The y-axis of Figure 4 measures the average convergence time
over 100 training runs of on—line leamning, This was computed as [ollows. For each of
the 100 training runs, [|8, — 8% was recorded at each time step (where i| - o denotes
the {5, or max, norm). These 100 error curves were averaged to produce the mean error
curve. Finally, the mean error curve was inspected to find the time step ¢ at which the
average error fell below 10 2 and stayed below 10" 2 for all the simulated times steps
thereafter.

Graph A of Figure 4 shows the performance of RLS TD. The other two graphs show
the performance of NTD(A) given different initial values for &,. Graph B shows the
performance of NTD(A) when # was chosen so that ||y — #*||, — | (where | - |2
denotes the /», or Euclidean, norm). Graph C shows the performance of NTD{\) when
fp was chosen so that [|[fy — 6%, = 2. One can see that the performance of NTD(A)
1s sensitive to the distance of the initial parameter vector from 6. In contrast, the
performance of RLS TD is not sensitive to this distance (6 for Graph A was the same
as that for Graph B). The performance of NTD(A) is also sensitive 1o the scttings of
four control parameters: A, cug, ¢, and 7. The parameters ¢ and + govern the evalution
of the sequence of step-size parameters (see Appendix C). A search for the best set
of control pararneters for NTD{A) was performed for cach experiment in an attempt 1o
present NTD(A) in the best light.* The controt parameter e (see Equation 4) was held
constant at 1.0 for all experiments.

Figure 4 shows a number of things. First, RLS TD cutperformed NTD{A) at every level
of oy, RLS TD always converged at least twice as fast as NTD{A), and did much better
than that at lower levels of o, Next, we soo that, at lcast for RLS T, convergeuce
time 1s a lincar function of oy, increase oy by a factor of 1¢, and the convergence
time can be expected to increase by a factor of 10. This relationship is less ¢lear for
NTD(A), although the curves scem to follow the same rule for larger v, Tt appears that
the effect of the mitial distance from & to 67, [|60y - 87|, is significant when o 18 small
but becomes less important, and is finally eliminated, as oy, increases.

Figures 5 and 6 present the results of repeating the experniment described above for
a randomly gencrated ergodic Markov chain with fifty states. Fach state of this larger
Markov chain has a possible transition to five other states, on average. Fieure 5 shows
that the convergence rates tor RIS TD follow the same patlern seen in Figere 4: the
convergence time rises at the same rate oy, rises. We attempted to expermmentally test
the convergence umes of NTD(A) on this problem as we did on the smaller problem.
However, we were unable to achieve convergence to the criterton (|6, 87 < 107%)
for any value ol oy, or any selection of the paramcters A, ey, ¢, and 7. Figure 6
compares the learning curves generated by RIS T and NTDeAY lor o, 1. The
parameters governing the behavior of NTD(A} were the best we could find. After some
miteal transrents, RLS TD settles very rapidly toward convergence, while NTI(A) settles
very slowly toward convergence. making almost no progress for tens of thousands of itme
steps. These results indicate that the relative advantage of using the RP.S T algorithm
may actually improve as the size of the problem grows, despite the order (i) cost
required by RLS TD at each time step.
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The results shown in Figures 4, 5, and 6 suggest that the use of RLS TD instead
of TDH{AY or NTD(A) 15 casily justificd. RLS TD's costs per tme sicp are an order of
= X| more expensive in both time and space than the costs for TD(A) or NTD{A}).
However, in the example problems, RLS TD always converged sipnificantly faster than
TD(A) or NTD{A}), and was at least an order of m: fasier for smalter op,. RLS TD has the
significant additional advantage that 1t has no control parameters that have to be adjusted.
In contrast, it required a very extensive search to select settings of the control parameters
g, o, and 7 of NTD(A) 1o show this algorithm in a good light.

9. Conclusion

We presenied three new TD learning algorithms, NTD(A), .S TD, and RLS TD, and
we proved probability T convergence for these algorithms under appropriate conditions,
These algonthms have a number of advantages over previously proposed 1D learming al-
gorithms. NTD¢A) is a normalized version of TIXA) used with a tincar—in—the—parareters
function approximator. The normalization serves io reduce the aigonthm’s sensitivity Lo
the choice of control parameters. LS 11 s a Least—Squares algornthm for finding the
value funciion of a Markov chain. Although LS TI} 1s mere expensive per time slep
than the algorithms TD(A) and NTDA), it converges more rapidly and has no control
parameters that need to be set, reducing the chances for poor performance. RLS TD g
a recursive versien of IS TD.

We also defined the TD error variance of a Markov chamn, o, 74, 18 4 measure of
the noise that is inherent in any TD learning algorithm, cven after the parameters have
converged 1o 7 Based on our expeniments, we conjecture that the convergence rate of a
TD algorithm depends linearly on o, (Figure 4). This relationship is very clear for RLS
TD, but also scems 1o hotd for NTD(A) for larger aq,.

The theorems concerning convergence of LS 1T (and RLS TD) can be generahized
in al least two ways. First, the immediate rewards can be randor variables instead of
constants. R y) would then designate the expecied reward of a transition from state
« 1o state ;o The second change involves the way the slates {and state transitions) are
sampled.  Throughout this chapter we have assumed that the states are visited along
sample paths of the Markov chain. This need not he the case. All (hat 18 necessary 18
that there s some limiting distribution, 7, of the states sclected for update, soch that
e = 0 for all states .

One of the goals of using a parameterized function approximator (of which the lincar—
in—the—parameters approximators considered 1n this article are the simplest examples) is
to <tare the value fonchon more compactly than it conld be siored in a lookup table.
Function approximators thal arc linear in the parameters do not achieve this goal if
the feature vectors cepreseniing the states arc hinearly independent, since in this casc
they usa the same amount of memary as a lookup tahle However we beheve that the
results presented here and elsewhere on the performance of T algonthms with function
approsimators thal are linear in the parameters are first steps toward understanding the

performance ot TI) algorithms vsing more compact representations
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Appendix A

Proofs of Lemmas

In preparation for the proofs of Lemmas 3 and 4, we first examine the sum
zy(, v Plz.y)(R(x.y) - 7,) for an arbitrary state x:

ST PGy (Rix,y) ) = Y Ploy)Rey) - Y Play)r

ue X ye X yeX
= Y PlayR(zy) - T
yEX
= Ty =Ty
= {.

Proof of Lemma 3: The result in the preceding paragraph leads dircctly to a proct that
Eint—
E{n} = E{R{zy) - rit

= Y m > Pl (Rl y) — )

R X e X

> w0
Eae X
= 0,

and to a proof that Cor{w, ) - O
Cor{w.1) = E{wn}
- Z T X Pz, y) [weney]
re X g X
— Y me > PlrgledR{ey) - 7

al X yve X

Z oy }_: Plo gV Rle y) — 72)

v X ol X

_ Z Tty
.::€X
_ 0.

Proof of Lemma 4: First we consider Cor{p, n):

Corip oy — E{pg'y
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= Y me Y Py [eanl,)

.LEX th

- Z Ty, Z P(T,y)@x(R(l,’tj) Tz‘)f
IEX UEX

= Z Ty Z W R{z,y) —72)
IEX yEX

= Z MGy - U
ze X

= [

Now for Cor{p, ():
Cor(p. () = E{p('}

Z Ty Z Pz, y) {Px(;;y]

X oy X
- Z Mo Z p(’fﬂ)@z(“f Z P(I,Z)d)z Ar.(-!)'.i})f
J:GX yEX ZEX
— Z Wz@m Z P(.L‘,y)("}’ Z ]:)(ZUZ)@L) -
ceX yEX ZEX
Z T s Z P(rr:',j;)fyq-‘);
e X we X
- Z W::,(fb;r,’? Z :I < C) - Z TF'L‘@'BF:” Z (T ?/);1;
zeX =X ze X y(lX
= 0.

Proof of Lemma 5: Equation 1} (repeated here) gives us the t“estimate found by algo-
rithm LS TD for H"‘.

[

; -1
1 L : 1 .
7 ; B (dr — YPk1) ] [E Z dp By

k=1

As ¢ grows we have by condition (2) that the sampled transition probabilities between
cach pair of states approaches the true transition probabilities, £, with probability 1. We
also have by condition (3) that each state * € X is visited in the proportion 7, with
probability 1. Therefore, given condition {4) we can express the limiting estimate found
by algorithm .S TD, & ., as

Dore — lim &
oo
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Appendix B
The Five-State Markov Chain Example

The transition probability function of the five—state Markov chain used in the experiments
appears in matrix form as follows, where the entry in row ¢, column j is the probabihty
of a transition [rom state i to state j (rounded to two decimal places):

042 015 0.14 (103 0.28
0.2 .08 0.16 0.3%3 0.13
0.08 6.20 0.33 0.17 0.22
0.36 0.05 0.00 0.51 .07
.17 0.24 0.19 0.18 0.22

The feature vectors representing the states (rounded to two decimal places) are listed
as the rows of the following matrix &:

74.29 34.61 T3.48 5320 779
G160 48 017 34 68 36 19 R2.(02
9700 488 8.5 8T.RYD 517
41.10 40.13 64.63 92.67 31.00
776 TOHED A3.78  H56 6111

'The immediate rewards were specified by the following matrix (which has been rounded
to two decimal places). where the entry in row 7, column 7 determines the immediate
reward {or a transition from state ¢ to state j The matnx was scaled to produce the
different TD error variance valucs used in the experiments. The relative sizes of the

immediate rewards remained the same
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104.66 2069 8236 37.49 6382
TH.86 2924 10037 0.31 35.99
R = B7.6R 6566 56.05 10044 A7.63
96.23 14.01  0.88 8977 66.77
7035 23.69 7341 T0.70 8541

Appendix C
Selecting Step-Size Parameters
The convergence theoremn {for NTD(() (Bradtke, 1994) requires a separate step—size pa-

rameter, (1), for each state r, that satisties the Robbins and Monro (Robbins & Moenro
1951) critena

>

X

Zr,’kk(lf) —x and zak(;r)z < 00
k=1

k=1

with probability 1, where v, () is the step—size parameter for the k—th visitation of state
. Instead of a scparale step -size parameter tor cach state, we used a single parameter
vy, which we decreased at every time step. Bar cach state o there is a corresponding
subscguence {ov }, that is used to update the value fanction when z is visiled. We
conjecture that if the original scquence {c, } satisfies the Robbins and Monro criteria, then
these subsequences also satisty the eriteria, with probhability | The averall convergence
rate may be decreascd by usc of a single step -stze parameter since cach subsequence
will contain fewer large step sizes.

The step—size parameter sequence {ov, b was generated nsing the “scarch then canverge”
algorithm described by Darken, Chang, and Moody {Darken, et al., 1992):

¥y = (Y-

The choice of parameters g, ¢, and 7 determines the transition of learning from “search
mode” 1o “converge mode”. Search mode describes the time during which 7 <« 7
Converge mode describes the ume during which ¢ 3 7. oy 18 nearly constant in search
mode, while o, =2 § 1n converge mode. The ideal choice of step—size parameters moves
#, as quickly as possible into the vicinity of * during search mode. and then settles nto
converge mode.

Notes

Lo I the set of [eature vectors 1s hmearly independent, then there exist parameter values such that gny real
valued function of X can be approximated with sero error by a function approximator linear i ihe
paramelers.  Using terminology from adaptive contol {Goodwin & Sin, 1984) this sitvation is swd
salisly the exacr muaching condition for abivary wal-valued funciions of X
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2. can not be less than rank (). If i > rank{$), then (P11 — vFP)P] is an (rm x m) matrix with
rank {ess than . [1is therefore not invertible,

3. The search for the best settings for AL ao. o and 7 was the limiting factor on the size of the state space
for this experiment.
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