
LQR-Trees: Feedback motion planning
on sparse randomized trees

Russ Tedrake. Paper-ID 116

Abstract— Recent advances in the direct computation of Lya-
punov functions using convex optimization make it possible to
efficiently evaluate regions of stability for smooth nonlinear
systems. Here we present a feedback motion planning algorithm
which uses these results to efficiently combine locally-valid linear
quadratic regulator (LQR) controllers into a nonlinear feedback
policy which probabilistically covers the reachable area of a
(bounded) state space with a region of stability, certifying that
all initial conditions that are capable of reaching the goal will
stabilize to the goal. We carefully investigate the algorithm on a
two-dimensional model system and discuss the potential for the
control of more complicated underactuated control problems like
bipedal walking.

I. INTRODUCTION

Randomized algorithms for motion planning have become
incredibly popular in recent years due to their ability to effi-
ciently solve relatively high-dimensional configuration space
planning problems with kinematic constraints[13]. Random-
ized approaches have dominated because complex geometric
constraints can be difficult to reason about analytically, or
design heuristics for, but can often be sampled very efficiently
with a fast collision-checker. Work on sample-based feedback
motion planning attempts to scale this intuition to planners
which consider feedback stabilization while generating the
motion plan. So far, however, sample-based feedback planning
algorithms have mostly ignored problems with dynamics[13],
because it can dramatically complicate the design and evalu-
ation of even local feedback policies.

Another class of problems where motion planning plays an
essential role is in the control of underactuated systems. Un-
deractuated systems have second-order dynamic constraints;
the system cannot be controlled to follow arbitrary trajec-
tories (fully-actuated systems, by contrast, can be feedback-
linearized and commanded to follow arbitrary trajectories,
mitigating the need for advanced motion planning machinery).
Although there have been a number of very elegant domain-
specific instances of feedback motion planning for underac-
tuated systems (e.g., [6]), by contrast to configuration space
planning, there is a clear paucity of general algorithms.

This paper aims to build on recent advances from control
theory to design efficient and general algorithms for feedback
motion planning in underactuated systems. Specifically, the
controls community have recently developed a number of effi-
cient algorithms for direct computation of Lyapunov functions
for smooth nonlinear systems, using convex optimization [10,
18]. These tools can plug into motion planning algorithms to
automatically compute planning “funnels” for even very com-
plicated dynamical systems, and open a number of interest-

ing possibilities for algorithm development. In particular, we
present the LQR-Tree algorithm, which uses locally optimal
linear feedback control policies to stabilize planned trajectories
computed by local trajectory optimizers, and computational
Lyapunov ‘certificates’ based on a sum-of-squares method to
create the funnels.

The aim of this work is to generate a class of algorithms
capable of computing covering feedback policies for under-
actuated systems with dimensionality beyond that of dynamic
programming. The use of local trajectory optimizers and local
feedback stabilization scales well to higher-dimensions, and
reasoning about the feedback “funnels” allows the algorithm
to cover a bounded, reachable subset of state space with a
relatively sparse set of trajectories. In addition, the algorithms
operate directly on the continuous state and action spaces,
and thus are not subject to the pitfalls of discretization.
By considering feedback during the planning process, the
resulting plans are certifiably robust to disturbances and quite
suitable for implementation on real robots. Although scaling
is the driving motivation of this approach, this paper focuses
on the coverage properties of the LQR-Tree algorithm by
carefully studying a simple 2D example (the torque-limited
simple pendulum), which reveals the essential properties of
the algorithm in a space that can be easily visualized.

II. BACKGROUND

A. Feedback motion planning

For implementation on real robots, trajectories generated by
a motion planning system are commonly stabilized by a feed-
back control system1. While this decoupled approach works
for most problems, it is possible that a planned trajectory is not
stabilizable, or very costly to stabilize compared to other, more
desirable trajectories. Algorithms which explicitly consider the
feedback stabilization during the planning process can avoid
this pitfall, and as we will see, can potentially use a local
understanding of the capabilities of the feedback system to
guide and optimize the search in a continuous state space.

Mason popularized the metaphor of a funnel for a feedback
policy which collapses a large set of initial conditions into
a smaller set of final conditions[16]. Burridge, Rizzi, and
Koditschek then painted a beautiful picture of feedback motion
planning as a sequential composition of locally valid feedback
policies, or funnels, which take a broad set of initial conditions
to a goal region[6] (see Figure 1). At the time, the weakness

1Note that an increasingly plausible alternative is real-time, dynamic re-
planning



Fig. 1: Cartoon of motion planning with funnels in the spirit of [6].

of this approach was the difficulty in computing, or estimating
by trial-and-error, the region of applicability - the mouth of the
funnel, or preimage - for each local controller in a nonlinear
system. Consequently, besides the particular solution in [6],
these ideas have mostly been limited to reasoning about vector-
fields on systems without dynamics[13].

B. Direct computation of Lyapunov functions

Burridge et al. also pointed out the strong connection
between Lyapunov functions and these motion planning
funnels[6]. A Lyapunov function is a differentiable positive-
definite output function, V (x), for which V̇ (x) ≤ 0 as the
closed-loop dynamics of the system evolve[22]. If these con-
ditions are met over some ball in state space, Br, containing
the origin, then the origin is said to be locally stable in the
sense of Lyapunov. The ball, Br, can then be interpreted as
the preimage of the funnel. Lyapunov functions have played an
incredibly important role in nonlinear control theory, but can
be difficult to discover analytically for complicated systems.

The last few years has seen the emergence of a num-
ber of computational approaches to discovering Lyapunov
functions for nonlinear systems, often based on convex op-
timization(e.g., [10, 18]). One of these techniques, which
forms the basis of the results reported here, is based on the
realization that one can check the uniform positive-definiteness
of a polynomial expression (even with constant coefficients as
free parameters) using a sums of squares (SOS) optimization
program[18]. Sums of squares programs can be recast into
semidefinite programs and solved using convex optimization
solvers (such as interior point methods); the freely available
SOSTOOLS library makes it quite accessible to perform these
computations in MATLAB[19]. As we will see, the ability to
check uniform positive (or negative) definiteness will infer the
ability to verify candidate Lyapunov functions over a region
of state space for smooth (nonlinear) polynomial systems.

These tools make it possible to automate the search for Lya-
punov functions. Many researchers have used this capability to
find stability proofs that didn’t previously exist for nonlinear
systems, or even to estimate the basins of attraction of stable
nonlinear systems[18]. In this paper, we begin to explore the
implications for planning of being able to efficiently compute
planning funnels.

C. Other related work

The ideas presented here are very much inspired by the
randomized motion planning literature, especially rapidly-
exploring randomized trees (RRTs)[12] and probabilistic
roadmaps (PRMs)[11]. This work was also inspired by [15]
and [20] who point out a number of computational advantages
to using sample-paths as a fundamental representation for
learning policies which cover the relevant portions of state
space.

In other related work, [2] used local trajectory optimizers
and LQR stabilizers with randomized starting points to try to
cover the space, with the hope of verifying global optimality
(in the infinite resolution case) by having consistent locally
quadratic estimates of the value function on neighboring
trajectories. The conditions for adding nodes in that work were
based on the magnitude of the value function (not the region of
guaranteed stability). In the work described here, we sacrifice
direct attempts at obtaining optimal feedback policies in favor
of computing good-enough policies which probabilistically
cover the reachable state space with the basin of attraction.
As a result, we have stronger guarantees of getting to the goal
and considerably sparser collections of sample paths.

III. THE LQR-TREE ALGORITHM

Let us first consider the decoupled approach to planning and
control. Given an initial condition in state space and an open-
loop trajectory of control inputs (the result of a motion plan),
one natural way to stabilize that trajectory is by designing a
time-varying, linear quadratic regulator (LQR). LQR, iterative
LQR (iLQR)[23], and the closely related differential dynamic
programming (DDP)[9] are quietly becoming a common tool
for roboticists[2, 1], and have demonstrated success in a
number of applications. The design of a time-varying LQR
controllers along a trajectory involves linearization along the
trajectory, and proceeds by integrating a Riccati equation[3]
backwards in time to compute the time-varying cost-to-go
function and time-varying linear optimal feedback policy. It
turns out that, if one grows a randomized tree backwards from
the goal, then it is efficient and natural to recursively compute
the LQR stabilizers along all branches of the tree. The result is
that the backwards tree becomes a large stabilizing controller
which grabs trajectories and pulls them towards the goal.

Now consider a feedback motion planning algorithm which
grows a randomized tree backwards from the goal, computing
LQR feedback gains for each node in the tree as it is added,
and reasoning about those feedback controllers as the tree
grows. Conveniently, the LQR derivation also provides a
quadratic approximation of the cost-to-go function along the



trajectory; this cost-to-go function happens to be a Lyapunov
function for the linearized system. Exploiting this, we can
formulate a sum of squares program to discover a region of
state space over which the quadratic cost-to-go function is still
a valid Lyapunov function for the nonlinear system. The result
is an efficient optimization to obtain a Lyapunov certificate.

Finally, we use the computed certificates, and resulting
basin of attraction to influence the way that our tree grows,
with the goal of probabilistically filling the reachable state
space with the basin of attraction of the goal state. Subgoals
are sampled uniformly from a bounded region of state space
which is currently outside the basin of attraction of the current
stabilized tree.

A. Essential Components

1) Time-varying LQR feedback stabilization: Let us first
consider the subproblem of designing a time-varying LQR
feedback based on a time-varying linearization along a nomi-
nal trajectory. Consider a controllable, smoothly differentiable,
nonlinear system:

ẋ = f(x,u), (1)

with a stabilizable goal state, xG. Define a nominal trajectory
(a solution of equation 1) which reaches the goal in a finite
time: x0(t),u0(t), with ∀t ≥ tG,x0(t) = xG and u0(t) = uG.
Define

x̄(t) = x(t)− x0(t), ū(t) = u(t)− u0(t).

Now linearize the system around the trajectory, so that we
have

˙̄x(t) ≈ A(t)x̄(t) + B(t)ū(t).

Define a quadratic regulator (tracking) cost function as

J(x′, t′) =
∫ ∞

t′

[
x̄T (t)Qx̄(t) + ūT (t)Rū(t)

]
dt,

Q = QT ≥ 0,R = RT > 0,x(t) = x′.

In general, Q and R could easily be made a function of time
as well. With time-varying dynamics, the resulting cost-to-go
is time-varying. It can be shown that the optimal cost-to-go,
J∗, is given by

J∗(x̄, t) = x̄T S(t)x̄, S(t) = ST (t) > 0.

where S(t) is the solution to

−Ṡ =Q− SBR−1BT S + SA + AT S (2)

and the boundary condition S(tG) is the positive-definite
solution to the equation:

0 = Q− SBR−1BT S + SA + AT S

(given by the MATLAB lqr function). The optimal feedback
policy is given by

ū∗(t) = −R−1BT (t)S(t)x̄(t) = −K(t)x̄(t)

2) Computing certificates: It is well-known that J∗(x̄, t) is
a Lyapunov function for the linearized system. Our goal is to
provide a certificate for the closed-loop nonlinear system of
the form[17]:

d

dt
J∗(x̄(t), t) ≤ 0, for t ∈ [tk, tk+1], J∗(x̄, t) ≤ ρk. (3)

In order to impose the domain from Equation (3), we introduce
a Lagrange multiplier:

d

dt
J∗(x̄, t) + h(x̄, t) (ρ0 − J∗(x̄, t)) ≤ 0, h(x̄, t) ≥ 0. (4)

(h can make the left-hand terms arbitrarily more negative over
the region where ρk < J∗). If we are willing to perform
a polynomial expansion of J∗ and d

dtJ
∗, then we can solve

this problem (finding an h which satisfies the negative semi-
definiteness) as a sum-of-squares (SOS) problem[18].

First, approximate x0(t) as an Nxth order spline, x̂0(t), and
S(t) as an NS th order (element-wise) spline, Ŝ(t), based on
the ODE integration results over the domain [t0, t1], and ˙̄x is
approximated with an Nf th order Taylor expansion. Then we
have

J∗(x̄, t) ≈ x̄Ŝ(t)x̄,

J̇∗(x̄, t) ≈ 2x̄T Ŝ(t)ˆ̄̇x + x̄T ˙̂S(t)x̄.

Note that in our implementation, u0(t) and K(t) are held in
a zero-order hold over the domain t ∈ [t0, t1]. Similarly, we
will search for Lagrange multipliers of a quadratic form:

h(x̄, t) = m(t,x)T H0mT (t,x),

where m is a vector of all monomials from order 0 to order
Nm, and H0 is a matrix of free variables (the constant
coefficients). If the sum of squares optimization returns a
feasible solution to the problem, then J∗(x, t) is a valid
Lyapunov function for the system over the domain defined
by t ∈ [tk, tk+1], J∗(x, t) ≤ ρk. In order to compute the
Lyapunov certificates recursively backwards from the goal, we
require that ρk ≤ ρk+1; this ensures that the funnel at time k
leads into the funnel at time k + 1. We use a line search on
ρk to find the largest certificate possible for every node of the
tree.

The certificate is conservative in every way, except that the
nonlinear dynamics are approximated by the polynomial ex-
pansion (therefore limiting it to smooth nonlinear systems). In
practice, the algorithm acquires conservative, but impressively
tight approximations of the basin of attraction for the system
in initial tests with the pendulum and Acrobot.

3) Growing the tree: Another essential component of the
LQR tree algorithm is the method by which the backwards tree
is extended. Following the RRT approach, we select a sample
at random from some distribution over the state space, and
attempt to grow the tree towards that sample. Unfortunately,
RRTs typically do not grow very efficiently in differentially
constrained (e.g., underactuated) systems, because simple dis-
tance metrics like the Euclidean distance are inefficient in
determining which node in the tree to extend from. Further



embracing LQR as a tool for motion planning, in this section
we develop an affine quadratic regulator around the sample
point, then use the resulting cost-to-go function to determine
which node to extend from, and use the open-loop optimal
policy to extend the tree.

Choose a random sample (not necessarily a fixed point)
in state space, xs and a default u0, and use x̄ = x − xs,
ū = u− u0.

˙̄x =
d

dt
(x(t)− xs) = ẋ(t)

≈f(xs,u0) +
∂f
∂x

(x(t)− xs) +
∂f
∂u

(u− u0)

=Ax̄ + Bū + c.

Now define an affine quadratic regulator problem with a hard
constraint on the final state, but with the final time, tf , left as
a free variable[14]:

J(x̄0, t0, tf ) =
∫ tf

t0

[
1 +

1
2
ūT (t)Rū(t)

]
dt,

s.t. x̄(tf ) = 0, x̄(t0) = x̄0, ˙̄x = Ax̄ + Bū + c.

Without loss of generality (since the dynamics are au-
tonomous), we will use J(x̄0, tf − t0) as a shorthand for
J(x̄0, t0, tf ). It can be shown that the optimal (open-loop)
control is

ū∗(t) = −R−1BT eA
T (tf−t)P−1(tf )d(x̄(t0), tf ),

where

Ṗ(t) = AP(t) + P(t)AT + BR−1BT , P(t0) = 0

d(x̄, t) = r(t) + eAtx̄, ṙ(t) = Ar(t) + c, r(x̄, t0) = 0

and the resulting cost-to-go is

J∗(x̄, tf ) =tf +
1
2
dT (x̄, tf )P−1(tf )d(x̄, tf ).

Thanks to the structure of this equation, it is surprisingly
efficient to compute the cost-to-go from many initial condi-
tions (here the existing vertices in the tree) simultaneously.
For each x̄ the horizon time, t∗f = argmintf

J∗(x̄, tf ), is
found by selecting the minimum after integrating P(t) and
r(t) over a fixed horizon. This cost-to-go function provides
a relatively efficient dynamic distance metric2 for the RRT
expansion which performs much better than Euclidean metrics
for underactuated systems[7].

Once the “closest” node in the existing tree is identified, by
this LQR distance metric, the tree is extended by applying a
series of actions backwards in time from the closest node. The
initial guess for this series of actions is given by ū∗(t) from the
LQR distance metric, but this estimate (which is only accurate
in the neighborhood of the sample point) can be further refined
by a fast, local, nonlinear trajectory optimization routine.
In the current results, we use a direct collocation[24, 4]
implementation using the formulation from equation III-A.3,

2Note that it is not technically a distance metric, since it is not symmetric,
but works very well.

but with the nonlinear dynamics. If the direct collocation
method cannot satisfy the final value constraint, then the point
is considered (temporarily) unreachable, and is discarded.
Interestingly, using the LQR open-loop control to initialize
the nonlinear optimization appears to help overcome many of
the local minima in the nonlinear optimization process.

4) A sampling heuristic: Finally, we take advantage of the
Lyapunov certificates by changing the sampling distribution.
Adding branches of the tree that will be contained by the
existing basin of attraction has little value. The sampling
heuristic used here is implemented by sampling uniformly over
the desired subset of state space, then rejecting any sample
which are already in the basin of attraction of any of the
tree branches. This “collision checking” is very inexpensive;
it is far more expensive to add a useless node into the tree.
Other sampling distributions are possible, too. One interesting
alternative is sampling from states that are just at the edges of
the basin of attraction, e.g, ∀iJ

∗(x − xi
0, t) > ρi,∃jJ

∗(x −
xi

0, t) ≤ 1.5ρj .

B. The Algorithm

The algorithm proceeds by producing a tree, T , with nodes
containing the tuples, {x,u,S,K, ρ, i}, where J∗(x̄, t) =
x̄T Sx̄ is the local quadratic approximation of the value
function, ū∗ = −Kx̄ is the feedback controller, J∗(x̄, t) ≤ ρ
is the Lyapunov certificate, and i is a pointer to the parent
node.

Algorithm 1 LQR-Tree (xg ,Q,R)

1: [A,B]⇐ linearization of f(x,u) around xG,uG

2: [K,S]⇐ LQR(A,B,Q,R)
3: ρ⇐ certificate computed as described in section III-A.2
4: T.init({xg,ug,S,K, ρ, NULL})
5: for k = 1 to K do
6: xrand ⇐ random sample as described in section III-

A.4; if no samples are found, then FINISH
7: xnear from cost-to-go distance metric described in

section III-A.3
8: utape from extend operation described in section III-A.3
9: for each u in utape do

10: x⇐ Integrate backwards from xnear with action u
11: [K,S] from LQR derivation in section III-A.1
12: ρ⇐ certificate computed as described in section III-

A.2
13: i⇐ pointer to node containing xnear

14: T.add-node(x,u,S,K, ρ, i)
15: xnear ⇐ x
16: end for
17: end for

Execution of the LQR tree policy is accomplished by
selecting any node in the tree with a basin of attraction which
contains the initial conditions, x(0), and following the time-
varying feedback policy along that branch all of the way to
the goal.



(a) 1 node (b) 8 nodes

(c) 24 nodes (d) 104 nodes

Fig. 2: An LQR tree for the simple pendulum. The x-axis is θ ∈ [−π/2, 3π/2] (note that the state wraps around this axis), and the y-axis
is θ̇ ∈ [−20, 20]. The green X (on the left) represents the stable fixed point; the red X (on the right) represents the unstable (upright) fixed
point. The blue ovals (darker, smaller) represent the “funnels”, sampled at every node.

IV. SIMULATIONS

Simulation experiments on a two-dimensional toy problem
have proven very useful for understanding the dynamics of
the algorithm. Figure 2 tells the story fairly succinctly. The
algorithm was tested on a simple pendulum, Iθ̈ + bθ̇ +
mgl sin θ = τ, with m = 1, l = .5, b = .1, I = ml

12 , g = 9.8.
Here x = [θ, θ̇]T and u = τ . The parameters of the LQR tree
algorithm were xG = [π, 0]T , uG = 0, Q = diag([10, 1]),
R = 15, Nf = 3, Nm = 2, Nx = 3, NS = 3.

Figure 2(a) shows the basin of attraction (blue oval) af-
ter computing the linear time-invariant (LTI) LQR solution
around the unstable equilibrium. Figure 2(b) shows the entire
trajectory to the first random sample point (red dot), and the
funnels that have been computed so far for the second-half of
the trajectory. Note that the state-space of the pendulum lives
on a cylinder, and that the trajectory (and basin of attraction)

wraps around from the left to the right. Plots (c-d) show the
basin of attraction as it grows to fill the state space. The
final tree in Figure 2(d) also reveals three instances where
the trajectories on the tree cross - this is a result of having an
imperfect distance metric.

Note that state x = [0, 0]T , corresponding to the stable
fixed-point of the unactuated pendulum, is covered by the
basin of attraction after 32 nodes have been added. The
algorithm was not biased in any way towards this state, but this
bias can be added easily. The entire space is probabilistically
covered (1000 random points chosen sequentially were all
in the basin of attraction) after the tree contained just 104
nodes. On average, the algorithm terminates after 146 nodes
for the simple pendulum with these parameters. For contrast,
[5] shows a well-tuned single-directional RRT for the simple
pendulum which has 5600 nodes. However the cost of adding



each node is considerably greater here than in the traditional
RRT, dominated by the line search used to compute the
Lyapunov certificates. The entire algorithm runs in about two
minutes on a laptop, without any attempt to optimize the code.

V. DISCUSSION

A. Properties of the algorithm

Recall that for nonlinear systems described by a polynomial
of degree ≤ Nf , the estimated Lyapunov certificates are only
conservative; the true basin of attraction completely contains
the estimated stability region. In practice, this is often (but not
provably) the case for more general smooth nonlinear systems.

Proposition 1: For nonlinear systems described by a poly-
nomial of degree ≤ Nf , the LQR tree algorithm probabilisti-
cally covers the sampled portion of the reachable state space
with a stabilizing controller and a Lyapunov function, thereby
guaranteeing that all initial conditions which are capable of
reaching the goal will stabilize to the goal.

Proving proposition 1 carefully requires a proof that the
local trajectory optimizer is always capable of solving a
trajectory to a reachable point in the state space that is in
an ε-region outside the existing basin of attraction. This is
likely the case, seeing as the nonlinear optimizer is seeded
by a linear optimal control result which will be accurate over
some region of similar size to the basin of attraction ellipse.
However, the full proof is left for future work.

Perhaps even more exciting is the fact that, in the model
explored, this coverage appears to happen rapidly and allow for
fast termination of the algorithm. The pendulum is a surpris-
ingly rich test system - for example, as key parameters such as
R or b change, the size of the funnels can change dramatically,
resulting in quite different feedback policy coverings of the
state space, and always resulting in rapid coverage.

It is also worth noting that the trajectories out of a more
standard RRT are typically smoothed. Trajectories of the
closed-loop system which result from the LQR algorithm
are (qualitatively) quite smooth, despite coming from a ran-
domized algorithm. The LQR stabilizing controller effectively
smoothes the trajectory throughout state space.

B. Why randomness?

During this study, we investigated a number of deterministic
concepts for efficiently extending the basin of attraction. While
these approaches may still bear fruit, the problem does seem
to have the essential quality that often motivates randomized
planning. While it is tractable to reason about the basin of
attraction of a single trajectory, it is difficult and expensive
to reason analytically, or computationally about the volumes
and boundaries of the basin of attraction of the entire tree
(especially when branches of the tree overlap or intersect).
However, it is relatively inexpensive and quite easy to evaluate
whether a random sample is inside or outside of the basin of
attraction.

C. Straight-forward variations in the algorithm

• Compatible with optimal trajectories. The LQR tree
algorithm provides a relatively efficient way to fill the
reachable state space with funnels, but does not stake
any claim on the optimality of the resulting trajectories.
If tracking particular trajectories, or optimal trajectories,
is important for a given problem, then it is quite natural
to seed the LQR tree with one or more locally optimal
trajectories (e.g., using [2]), then use the random explo-
ration to fill in any missing regions.

• Early termination. For higher dimensional problems,
covering the reachable state space may be unnecessary
or impractical. Based on the RRTs, the LQR trees can
easily be steered towards a region of state space (e.g., by
sampling from that region with some small probability)
containing important initial conditions. Termination could
then occur when some important subspace is covered by
the tree.

• Bidirectional trees. Although LQR trees only grow back-
wards from the goal, a partial covering tree (from an early
termination) could also serve as a powerful tool for real-
time planning. Given a new initial condition, a forward
RRT simply has to grow until it intersects with the volume
defined by the basin of attraction of the backwards tree.

• Finite-horizon trajectories. The LQR stabilization de-
rived in section III-A.1 was based on infinite horizon
trajectories. This point was necessary in order to use the
language of basins of attraction and asymptotic stabiliza-
tion. Finite-horizon problems can use all of the same tools
(though perhaps not the same language), but must define
success as being inside some finite volume around the
goal state at tG. Funnels connecting to this volume are
then computed using the same Riccati backup.

D. Controlling walking robots

A feedback motion planning algorithm like the LQR tree
algorithm could be a very natural control solution for walking
robots, or other periodic control systems. In this case, rather
than the goal of the tree being specified as a point, the goal
would be a periodic (limit cycle) trajectory. This could be
implemented in the tree as a set of goal states, which happen
to be connected, and the Lyapunov certificates about this
goal would emerge from the periodic steady-state solution
of the Riccati equation and certification process on the limit
cycle. Limit cycles for walking systems in particular are
often described as a hybrid dynamics punctuated by discrete
impacts. These discrete jump events must be handled with
care in the feedback and certificate derivation, but are not
fundamentally incompatible with the approach[21].

Figure 3 cartoons the vision of how the algorithm would
play out for the well-known compass gait biped[8]. On the
left is a plot of the (passively stable) limit cycle generated by
the compass gait model walking down a small incline. This
trajectory can be stabilized using a (periodic) time-varying
linearization and LQR feedback, and the resulting basin of
attraction might look something like the shaded region in



(a) The initial tree (b) After expanding four random nodes

Fig. 3: Sketch of LQR trees on the compass gait biped.

Figure 3(a). The goal of the LQR tree algorithm would then
be to fill the remaining portion of state space with transient
“maneuvers” to return the system to the nominal limit cycle.
A potential solution after a few iterations of the algorithm is
cartooned in Figure 3(b). In these hybrid models, the distance
metric will be especially important since it will also be used
to determine the mode of the hybrid system.

E. Multi-query algorithms

Another very interesting question is the question of reusing
the previous computational work when the goal state is
changed. In the pendulum example, consider having a new
goal state, xG = [π+0.1, 0]T - this would of course require a
non-zero torque to stabilize. To what extent the tree generated
for stabilizing xG = [π, 0]T be used to stabilize this new
fixed point? If one can find a trajectory to connect up the new
goal state near the root of the tree, then the geometry of the
tree can be preserved, but naively, one would think that all of
the stabilizing controllers and the Lyapunov certificates would
have to be re-calculated. Interestingly, there is also a middle-
road, in which the existing feedback policy is kept for the
original tree, and the LQR certificates are not recomputed, but
simply scaled down to make sure that the funnels from the old
tree transition completely into the funnel for the new tree. This
could be accomplished very efficiently, by just propagating a
new ρmax through the tree, but might come at the cost of
losing coverage.

One reason why this multi-query question is so exciting is
that the problem of controlling a robot to walk on rough terrain
could be nicely formulated as a multi-query stabilization of
the limit cycle dynamics from Figure 3. If the control system
could quickly adapt the motion plan from steady-state periodic
walking to a modified plan which allowed one or more steps
with different foot-placement, then this would provide a very
elegant solution to a very state-of-the-art problem.

VI. SUMMARY AND CONCLUSIONS

Recent advances in direct computation of Lyapunov func-
tions have enabled a new class of feedback motion planning
algorithms for complicated dynamical systems. This paper
presented the LQR-Tree algorithm which uses Lyapunov com-
putations to evaluate the basins of attraction of randomized
trees stabilized with LQR feedback. Careful investigations on
a torque-limited simple pendulum revealed that, by modifying
the sampling distribution to only accept samples outside of
the computed basin of attraction of the existing tree, the result
was a very sparse tree which covered the state space with a
basin of attraction.

Further investigation of this algorithm will likely result
in a covering motion planning strategy for underactuated
systems with dimensionality greater than what is accessible
by discretization algorithms like dynamic programming, and
early termination strategies which provide targeted coverage of
state space in much higher dimensional systems. The resulting
policies will have certificates guaranteeing their performance
on the system model.

ACKNOWLEDGMENT

The author gratefully acknowledges Alexandre Megretski
for many helpful discussions and tutorials.

REFERENCES

[1] Pieter Abbeel, Adam Coates, Morgan Quigley, and Andrew Y. Ng. An
application of reinforcement learning to aerobatic helicopter flight. In
Proceedings of the Neural Information Processing Systems (NIPS ’07),
volume 19, December 2006.

[2] Christopher G. Atkeson and Benjamin Stephens. Random sampling of
states in dynamic programming. In Advances in Neural Information
Processing Systems, 2008.

[3] Dimitri P. Bertsekas. Dynamic Programming and Optimal Control.
Athena Scientific, 2nd edition, 2000.

[4] John T. Betts. Practical Methods for Optimal Control Using Nonlinear
Programming. SIAM Advances in Design and Control. Society for
Industrial and Applied Mathematics, 2001.



[5] Michael Branicky and Michael Curtiss. Nonlinear and hybrid control
via RRTs. Proc. Intl. Symp. on Mathematical Theory of Networks and
Systems, 2002.

[6] R. R. Burridge, A. A. Rizzi, and D. E. Koditschek. Sequential
composition of dynamically dexterous robot behaviors. International
Journal of Robotics Research, 18(6):534–555, June 1999.

[7] Elena Glassman and Russ Tedrake. Rapidly exploring state space. In
Progress, 2009.

[8] A. Goswami, B. Espiau, and A. Keramane. Limit cycles and their
stability in a passive bipedal gait. pages 246 – 251. IEEE International
Conference on Robotics and Automation (ICRA), 1996.

[9] David H. Jacobson and David Q. Mayne. Differential Dynamic Pro-
gramming. American Elsevier Publishing Company, Inc., 1970.

[10] Tor A. Johansen. Computation of lyapunov functions for smooth
nonlinear systems using convex optimization. Automatica, 36(11):1617
– 1626, 2000.

[11] L.E. Kavraki, P. Svestka, JC Latombe, and M.H. Overmars. Probabilistic
roadmaps for path planning in high-dimensional configuration spaces.
IEEE Transactions on Robotics and Automation, 12(4):566–580, August
1996.

[12] S. LaValle and J. Kuffner. Rapidly-exploring random trees: Progress
and prospects. In Proceedings of the Workshop on the Algorithmic
Foundations of Robotics, 2000.

[13] Steven M. LaValle. Planning Algorithms. Cambridge University Press,
2006.

[14] Frank L. Lewis. Applied Optimal Control and Estimation. Digital Signal
Processing Series. Prentice Hall and Texas Instruments, 1992.

[15] Sridhar Mahadevan and Mauro Maggioni. Proto-value functions: A
laplacian framework for learning representation and control in markov
decision processes. Technical Report TR-2006-35, University of Mas-
sachusetts, Department of Computer Science, July 2006.

[16] M.T. Mason. The mechanics of manipulation. In Proceedings of the
IEEE International Conference on Robotics and Automation, pages 544–
548. IEEE, 1985.

[17] Alexandre Megretski. Personal communication, 2008.
[18] Pablo A. Parrilo. Structured Semidefinite Programs and Semialgebraic

Geometry Methods in Robustness and Optimization. PhD thesis, Cali-
fornia Institute of Technology, May 18 2000.

[19] Stephen Prajna, Antonis Papachristodoulou, Peter Seiler, and Pablo A.
Parrilo. SOSTOOLS: Sum of Squares Optimization Toolbox for MATLAB
Users guide, 2.00 edition, June 1 2004.

[20] Khashayar Rohanimanesh, Nicholas Roy, and Russ Tedrake. Towards
feature selection in actor-critic algorithms. Technical report, Mas-
sachusetts Institute of Technology Computer Science and Artificial
Intelligence Laboratory, 2007.

[21] A.S. Shiriaev, L.B. Freidovich, and I.R. Manchester. Can we make
a robot ballerina perform a pirouette? orbital stabilization of periodic
motions of underactuated mechanical systems. Annual Reviews in
Control, 2008.

[22] Jean-Jacques E. Slotine and Weiping Li. Applied Nonlinear Control.
Prentice Hall, October 1990.

[23] Emanuel Todorov and Weiwei Li. Iterative linear-quadratic regulator
design for nonlinear biological movement systems. volume 1, pages
222–229. International Conference on Informatics in Control, Automa-
tion and Robotics, 2004.

[24] Oskar von Stryk. Numerical solution of optimal control problems
by direct collocation. In Optimal Control, (International Series in
Numerical Mathematics 111), pages 129–143, 1993.


