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n  From linear to nonlinear 

n  Model-predictive control (MPC) 

n  POMDPs 

Outline 
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n  We know how to solve (assuming gt, Ut, Xt convex): 

 

   

n  How about nonlinear dynamics:  

From Linear to Nonlinear  

Shooting Methods (feasible) 

Iterate for i=1, 2, 3, … 

  Execute                (from solving (1)) 

  Linearize around resulting trajectory 

  Solve (1) for current linearization 

Collocation Methods (infeasible) 

Iterate for i=1, 2, 3, … 

          --- (no execution)--- 

  Linearize around current solution of (1) 

  Solve (1) for current linearization 

(1) 

Sequential Quadratic Programming (SQP) = either of the above methods, but instead of 
using linearization, linearize equality constraints, convex-quadratic approximate objective function 

Example Shooting 
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Example Collocation 

+   At all times the sequence of controls is meaningful, and 
 the objective function optimized directly corresponds to 
 the current control sequence 

 

-  For unstable systems, need to run feedback controller 
 during forward simulation 

n  Why?  Open loop sequence of control inputs computed for the 
linearized system will not be perfect for the nonlinear system.  If the 
nonlinear system is unstable, open loop execution would give poor 
performance. 

n  Fixes: 
n  Run Model Predictive Control for forward simulation 
n  Compute a linear feedback controller from the 2nd order Taylor 

expansion at the optimum  (exercise: work out the details!) 

Practical Benefits and Issues with Shooting 
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+  Can initialize with infeasible trajectory.  Hence if you have a rough 
 idea of a sequence of states that would form a reasonable solution, 
 you can initialize with this sequence of states without needing to 
 know a control sequence that would lead through them, and 
 without needing to make them consistent with the dynamics 

-  Sequence of control inputs and states might never converge onto a 
 feasible sequence  

Practical Benefits and Issues with Collocation 

n  Both can solve 

n  Can run iterative LQR both as a shooting method or as a collocation method, it’s just a 
different way of executing “Solve (1) for current linearization.”  In case of shooting, the 
sequence of linear feedback controllers found can be used for (closed-loop) execution. 

n  Iterative LQR might need some outer iterations, adjusting “t” of the log barrier 

 

   

Iterative LQR versus Sequential Convex 
Programming 

Shooting Methods (feasible) 

Iterate for i=1, 2, 3, … 

  Execute feedback controller (from solving (1)) 

  Linearize around resulting trajectory 

  Solve (1) for current linearization 

Collocation Methods (infeasible) 

Iterate for i=1, 2, 3, … 

          --- (no execution)--- 

  Linearize around current solution of (1) 

  Solve (1) for current linearization 

Sequential Quadratic Programming (SQP) = either of the above methods, but instead of 
using linearization, linearize equality constraints, convex-quadratic approximate objective function 
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n  From linear to nonlinear 

n  Model-predictive control (MPC) 
For an entire semester course on MPC: see Francesco Borrelli 

n  POMDPs 

Outline 

n  Given:  

n  For k=0, 1, 2, …, T 

n  Solve 

n  Execute uk 

n  Observe resulting state, 

Model Predictive Control 
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n  Initialization with solution from iteration k-1 can make solver 
very fast  

n  can be done most conveniently with infeasible start 
Newton method  

Initialization 

n  Re-solving over full horizon can be computationally too expensive 
given frequency at which one might want to do control 

n  Instead solve 

n  Estimate of cost-to-go 
n  If using iterative LQR can use quadratic value function found for time t+H 

n  If using nonlinear optimization for open-loop control sequenceàcan find 
quadratic approximation from Hessian at solution (exercise, try to derive it!) 

Terminal Cost 

Estimate of 
cost-to-go 
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n  Prof. Francesco Borrelli  (M.E.) and collaborators 

n  http://video.google.com/videoplay?
docid=-8338487882440308275 

Car Control with MPC Video 

n  From linear to nonlinear 

n  Model-predictive control (MPC) 

n  POMDPs 

Outline 
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n  Localization/Navigation 

  à Coastal Navigation 

n  SLAM + robot execution 

  à Active exploration of unknown areas 

n  Needle steering 

  à maximize probability of success 

n  “Ghostbusters”  (188) 

à Can choose to “sense” or “bust” while navigating a maze 
with ghosts 

n  “Certainty equivalent solution” does not always do well 

POMDP Examples 

[from van den Berg, Patil, Alterovitz, Abbeel, Goldberg, WAFR2010] 

Robotic Needle Steering 
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[from van den Berg, Patil, Alterovitz, Abbeel, Goldberg, WAFR2010] 

Robotic Needle Steering 

n  Belief state Bt,  Bt(x) = P(xt = x | z0, …, zt, u0, …, ut-1) 

n  If the control input is ut, and observation zt+1 then 

 Bt+1(x’) = ∑x Bt(x) P(x’|x,ut) P(zt+1|x’) 

 

POMDP: Partially Observable Markov 
Decision Process 
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n  Value Iteration: 

n  Perform value iteration on the “belief state space” 

n  High-dimensional space, usually impractical 

n  Approximate belief with Gaussian 

n  Just keep track of mean and covariance 

n  Using (extended or unscented) KF, dynamics model, 
observation model, we get a nonlinear system equation 
for our new state variables,                 : 

n  Can now run any of the nonlinear optimization methods 
for optimal control 

 

POMDP Solution Methods 

Example: Nonlinear Optimization for Control in 
Belief Space using Gaussian Approximations 

[van den Berg, Patil, Alterovitz, ISSR 2011] 
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Example: Nonlinear Optimization for Control in 
Belief Space using Gaussian Approximations 

[van den Berg, Patil, Alterovitz, ISSR 2011] 

n  Very special case: 

n  Linear Gaussian Dynamics 

n  Linear Gaussian Observation Model 

n  Quadratic Cost 

n  Fact: The optimal control policy in belief space for the above 
system consists of running  

n  the optimal feedback controller for the same system 
when the state is fully observed, which we know from 
earlier lectures is a time-varying linear feedback controller 
easily found by value iteration 

n  a Kalman filter, which feeds its state estimate into the 
feedback controller 

Linear Gaussian System with Quadratic Cost: 
Separation Principle 


