Nonlinear Optimization for Optimal Control
Part 2

Pieter Abbeel
UC Berkeley EECS

Outline

|
s From linear to nonlinear

= Model-predictive control (MPC)
= POMDPs

Page 1

From Linear to Nonlinear
|

= We know how to solve (assuming g, U, X, convex):

H
minu,r th(zhut)
t=0

subject to 41 = Ayzy + Brug + ¢ Vit
uy € Uy, &y € Xy Y

(1)

= How about nonlinear dynamics: z;,1 = f(z4,u;) Vt

Shooting Methods (feasible) Collocation Methods (infeasible)
Iterate for i=1,2,3, ... Iterate for i=1,2,3, ...
Execute u((f),u(li), .. 7u¥) (from solving (1)) --- (no execution)---
Linearize around resulting trajectory Linearize around current solution of (1)
Solve (1) for current linearization Solve (I) for current linearization

Sequential Quadratic Programming (SQP) = either of the above methods, but instead of
using linearization, linearize equality constraints, convex-quadratic approximate objective function

‘ Example Shooting

%5 a nonlinear control problem: cartpole
clear; clc; close all;

max_iters = 10;
x_init = [-10; 0; 0; 0];
nX = 4; nU = 1;

0.1;

Q = eye(nX); R = eye(nu); Q_final = 100*eye(nX);
clear
for

(:,t+1) = sim cartpole(x(:,t), u(:,t), dt);
[A{t} B{t} c(t}] = compute_jacobian(€sim cartpole, x(:,t), u(:,t), dt);
cartpole_draw(t*dt, x(:,t));

end
figure(1); subplot(3,1,1); hold on; plot(u); ylabel('u');

subplot(3,1,2); hold on; plot(x(1,:)); ylabel('x'); subplot(3,1,3); hold on; plot(x(2,:));ylabel('\theta');
cost.(iter) = 0;

for t=1:T-

cosf.(iter) = cost(iter) + X(:,t) *Q*X(:,t) + u(:,t) ' *R*u(:,t) + norm(u(:,t+l)-u(:,t),2);

end
cost.(iter) = cost(iter) + X(:,T) *Q_final*x(:,T);
cost.

solve convex problem
cvx_begin
variables x_cvx(nX,T) u_cvx(nU,T) s_cvx(1,T);
minimize(sum(s_cvx(1:T)))
subject t
for t=1:T-1

X_CVX(:,t+1) == A{L}*(X_CVX(:,t)=X(:,t)) + B{t}*(U_CVX(:,t)-u(:,t)) + c{t};

nd
for t=1:T-1
s_cvx(1l,t) >= X_CVX(:,t) *Q*X _CVX(:,t) + u_cvx(:,t) *R*u_cvx(:,t) + norm(u_cvx(:,t+l)-u_cvx(:,t),2);

end

s_cvx(1,T) >= x_cvx(:,T) *Q_final*x_cvx(:,T);

for t=1:T
norm(x_cvx(:,t) - X(:,t),2) S= X_eps;
norm(u_cvx(:,t) - u(:,t),2) <= u_eps;

end
x_cvx(:,1) == x_init;
cvx_end
u =u_cvx;
end

Page 2

Example Collocation

I c c; close all;
T = 100;
u = randn(1,T)*0.1;
max_ite:
x_ini PL/10; =0.1; 0.1];
n
X

= X_init(1): (x_target(1)-x_init(1))/(T-1):x_target(1);

end
u_iterl=zeros(nu,T);

,£), u(:,t), de
Jacobian(esin_cartpole, X(:,t), u(:,t), dt);

tigure(2); subplot(3,1,1); hold on; plot(u); ylabel('u');
subplot(3,1,2); hold on; PLOt(x(1,:)); ylabel('x'); subplot(3,1,3); hold on; plot(x(2,:));ylabel('\theta

cost.(iter)
for t=1:1-1
COSF.(iter) = COSt(iter) + X(:,£) *QX(:,t) + u(:,t) *R*U(:,t) + MOFM(u(:,tH)=u(z,t),2);

st(iter) + x(:,T)'*Q_tinal®x(:,T);

cost.(iter)
cost.

varlables % cvy) o
mininize(sum(s_evx(1:T)))
bject

for tel:T-1
VX(:,t41) == A(E}(X_CVX(:,£)=X(:,8)) + B(EM(U_CVK(:,E)=u(,t)) + c{t};

- X(:,),2) s=
- u(:),2) <=

end
X_cvx(:,1) == x_init;
cvx_end

u = u_ovx;

= sim_cartpole(x(:,t), u(:,t), dt);

1('0);
7 subplot(3,1,3); hold on; plot(x(2,:));ylabel()

figure(3); subplot(3,1,1); hold on; plot(u); ylabe
subplot (3,1,2); hold of; Blot(x(L,4)); ylabel(s)
final_cost = 0
for tal:T-

final cost = final cost + X(:,£) *QX(:,E) + U(:,t) "RAU(:,E) + ROFM(U(:,tH1)-u(%,t),2);

end
final_cost = final_cost + X(:,T)’*Q_final®x(:,T);
finalcost

Practical Benefits and Issues with Shooting

+ At all times the sequence of controls is meaningful, and
the objective function optimized directly corresponds to
the current control sequence

- For unstable systems, need to run feedback controller
during forward simulation

= Why? Open loop sequence of control inputs computed for the
linearized system will not be perfect for the nonlinear system. If the
nonlinear system is unstable, open loop execution would give poor

performance.
= Fixes:
= Run Model Predictive Control for forward simulation

= Compute a linear feedback controller from the 2" order Taylor
expansion at the optimum (exercise: work out the details!)

Page 3

Practical Benefits and Issues with Collocation

+ Can initialize with infeasible trajectory. Hence if you have a rough
idea of a sequence of states that would form a reasonable solution,
you can initialize with this sequence of states without needing to
know a control sequence that would lead through them, and
without needing to make them consistent with the dynamics

- Sequence of control inputs and states might never converge onto a
feasible sequence

Iterative LQR versus Sequential Convex
Programming

H
= Both can solve .
ming g Z gt(I[,, ut)
t=0

subject to zy41 = fi(ze,u) Vit
up € U,z € Xy VI

= Can run iterative LQR both as a shooting method or as a collocation method, it’s just a
different way of executing “Solve (1) for current linearization.” In case of shooting, the
sequence of linear feedback controllers found can be used for (closed-loop) execution.

= Iterative LQR might need some outer iterations, adjusting “t” of the log barrier

Shooting Methods (feasible) Collocation Methods (infeasible)
Iterate for i=1,2,3, ... Iterate for i=1,2,3, ...
Execute feedback controller (from solving (1)) --- (no execution)---
Linearize around resulting trajectory Linearize around current solution of (1)
Solve (1) for current linearization Solve (1) for current linearization

Sequential Quadratic Programming (SQP) = either of the above methods, but instead of
using linearization, linearize equality constraints, convex-quadratic approximate objective function

Page 4

Outline

|
m From linear to nonlinear

= Model-predictive control (MPC)

For an entire semester course on MPC: see Francesco Borrelli

= POMDPs

Model Predictive Control

|
= Given: g

s Fork=0,1,2,...,T

= Solve
T
ming., »_ gi(we,ur)
t=k
s.t. Tit1 :f,,(act,ut) Vte{k,k+1,,T—1}
Tp = Tk

= Execute U,

= Observe resulting state, Z+1

Page 5

Initialization

m Initialization with solution from iteration k-1 can make solver
very fast

= can be done most conveniently with infeasible start
Newton method

Terminal Cost

I
= Re-solving over full horizon can be computationally too expensive
given frequency at which one might want to do control

m Instead solve Estimate of
cost-to-go
t+H—1
ming ,, Z (e, ur) + j(t+H)(CCt+H)
t=k
s.t. xep1 = fr(zg,ue) VEe{k,k+1,...,t+H—1}
Tk = Tk

= Estimate of cost-to-go
= If using iterative LQR can use quadratic value function found for time t+H

= If using nonlinear optimization for open-loop control sequence—>can find
quadratic approximation from Hessian at solution (exercise, try to derive it!)

Page 6

Car Control with MPC Video

|
m Prof. Francesco Borrelli (M.E.) and collaborators

= http://video.google.com/videoplay?
docid=-8338487882440308275

Outline

|
m From linear to nonlinear

= Model-predictive control (MPC)
= POMDPs

Page 7

POMDP Examples

= Localization/Navigation
—> Coastal Navigation
= SLAM + robot execution
- Active exploration of unknown areas
= Needle steering
—> maximize probability of success
= “Ghostbusters” (188)

- Can choose to “sense” or “bust” while navigating a maze
with ghosts

= “Certainty equivalent solution” does not always do well

Robotic Needle Steering

Fig. 5 Using an x-ray imager mounted on a rotating C-arm, it is possible to rotate the sensor about
the horizontal axis along which the patient is positioned (left). The anatomy as viewed from the
computed optimal sensor placement (right). The optimal path predominantly lies in the imaging
plane to minimize uncertainty in the viewing direction.

[from van den Berg, Patil, Alterovitz, Abbeel, Goldberg, WAFR2010]

Page 8

Robotic Needle Steering

I

T
1]

‘\
‘N
N |

Fig. 1 Two examples of sensor placement, in which (left) only the x- and z-coordinate and (right)
only the y- and z-coordinate of the needle-tip are measured by the imaging device (blue). Different
paths will be optimal even as the obstacles (grey) and target location (cross) are the same.

[from van den Berg, Patil, Alterovitz, Abbeel, Goldberg, WAFR2010]

POMDP: Partially Observable Markov

Decision Process
|

= Belief state B, B,(x) =P(X,=x] 2 ..., Z, Uy, ..., U)
= If the control input is U,, and observation z,, then

Bt (X') = 2, Bi(x) P(X'|x,U) P(Zes[X)

Page 9

POMDP Solution Methods

= Value Iteration:
= Perform value iteration on the “belief state space”

= High-dimensional space, usually impractical

= Approximate belief with Gaussian
= Just keep track of mean and covariance

= Using (extended or unscented) KF, dynamics model,
observation model, we get a nonlinear system equation
for our new state variables, (111, %:41) :

(41, Beg1) = [, B, ue, E[Zi44])
= Can now run any of the nonlinear optimization methods
for optimal control

Example: Nonlinear Optimization for Control in
Belief Space using Gaussian Approximations

(a) ()

@ (e) (6]

Fig. 1 Point robot moving in a 2-D environment with obstacles. (a) An initial collision-free tra-
jectory is computed using an RRT planner. (b) Nominal trajectory and the associated beliefs of
solution computed using our method. The robot moves away from the goal to better localize itself
before reaching the goal with significantly reduced uncertainty. Execution traces of the robot’s true
state starting from the initial belief (c) and a different initial belief (d), while following the com-
puted control policy. (¢) Nominal trajectory computed by ignoring the innovation term in the belief
dynamics. The optimization is unable to progress sufficiently to the region of the environment with
reliable sensing, resulting in considerable uncertainty in the robot state near the obstacles and at
the goal. (f) Execution traces of the robot’s true state starting from the initial belief and ignoring
the innovation term are much noisier as compared to the execution traces shown in (c).

[van den Berg, Patil, Alterovitz, ISSR 2011]

Page 10

Example: Nonlinear Optimization for Control in
Belief Space using Gaussian Approximations

Fig. 2 A car-like robot with second order dynamics moving in a 2-D environment with obstacles.
The robot obtains measurements from two beacons (marked by blue squares) and an on-board
speedometer. (a) An initial collision-free trajectory is computed using an RRT planner. (b) Nominal
trajectory computed using our method. Notice how the car-like robot localizes itself by moving
closer to the beacon before reaching the goal. (c) Execution traces of the robot’s true state starting
from the initial belief for the control policy computed in (b). The jaggedness of the paths is due
to the large amount of artificial motion and measurement noise introduced in the simulation. The
control policy is safely able to guide the robot to the goal, in spite of the large amount of noise. (d)
Nominal trajectory computed by varying the cost matrices (Q; = 10/). The robot tries to reduce the
uncertainty in its state by visiting both the beacons. (e) Execution traces of the robot’s true state
starting from the initial belief for the control policies computed in (d).

[van den Berg, Patil, Alterovitz, ISSR 2011]

Linear Gaussian System with Quadratic Cost:
Separation Principle

= Very special case:
= Linear Gaussian Dynamics
= Linear Gaussian Observation Model

= Quadratic Cost

= Fact: The optimal control policy in belief space for the above
system consists of running

= the optimal feedback controller for the same system
when the state is fully observed, which we know from
earlier lectures is a time-varying linear feedback controller
easily found by value iteration

= a Kalman filter, which feeds its state estimate into the
feedback controller

Page 11

