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Bellman’s curse of dimensionality 

n  n-dimensional state space 

n  Number of states grows exponentially in n (assuming some fixed 
number of discretization levels per coordinate) 

n  In practice 

n  Discretization is considered only computationally feasible up 
to 5 or 6 dimensional state spaces even when using 

n  Variable resolution discretization 
n  Highly optimized implementations 
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n  Goal: find a sequence of control inputs (and corresponding sequence 
of states) that solves: 

n  Generally hard to do.  We will cover methods that allow to find a 
local minimum of this optimization problem. 

n  Note: iteratively applying LQR is one way to solve this problem if 
there were no constraints on the control inputs and state  

   

This Lecture: Nonlinear Optimization for 
Optimal Control 

n  Unconstrained minimization 

n  Gradient Descent 

n  Newton’s Method 

n  Equality constrained minimization 

n  Inequality and equality constrained minimization 

Outline 
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n  If x* satisfies: 

    

  then x* is a local minimum of f.   

n  In simple cases we can directly solve the system of n equations given by (2) to find 
candidate local minima, and then verify (3) for these candidates. 

n  In general however, solving (2) is a difficult problem.  Going forward we will 
consider this more general setting and cover numerical solution methods for (1). 

Unconstrained Minimization 

n  Idea:  

n  Start somewhere 

n  Repeat:  Take a small step in the steepest descent direction 

Steepest Descent 

Local 

Figure source: Mathworks 
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n  Another example, visualized with contours: 

Steep Descent 

Figure source: yihui.name 

1. Initialize x 

2. Repeat 

1. Determine the steepest descent direction ¢x 

2. Line search.  Choose a step size t > 0. 

3. Update.  x := x + t ¢x. 

3. Until stopping criterion is satisfied 

Steepest Descent Algorithm 



Page 5!

What is the Steepest Descent Direction? 

n  Used when the cost of solving the minimization problem with 
one variable is low compared to the cost of computing the 
search direction itself. 

Stepsize Selection: Exact Line Search  
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n  Inexact: step length is chose to approximately minimize f 
along the ray {x + t ¢x | t ¸ 0} 

Stepsize Selection: Backtracking Line Search  

Stepsize Selection: Backtracking Line Search  

Figure source: Boyd and Vandenberghe 
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Gradient Descent Method 

Figure source: Boyd and Vandenberghe 

Gradient Descent: Example 1 

Figure source: Boyd and Vandenberghe 
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Gradient Descent: Example 2 

Figure source: Boyd and Vandenberghe 

Gradient Descent: Example 3 

Figure source: Boyd and Vandenberghe 
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n  For quadratic function, convergence speed depends on ratio of highest 
second derivative over lowest second derivative (“condition number”) 

n  In high dimensions, almost guaranteed to have a high (=bad) condition 
number 

n  Rescaling coordinates (as could happen by simply expressing quantities in 
different measurement units) results in a different condition number 

Gradient Descent Convergence 

 

  
 

  
 

  
 

  

Condition number = 10 Condition number = 1 

n  Unconstrained minimization 

n  Gradient Descent 

n  Newton’s Method 

n  Equality constrained minimization 

n  Inequality and equality constrained minimization 

Outline 
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n  2nd order Taylor Approximation rather than 1st order: 

   assuming                 , the minimum of the 2nd order 
approximation is achieved at: 

Newton’s Method 

Figure source: Boyd and Vandenberghe 

Newton’s Method 

Figure source: Boyd and Vandenberghe 
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n  Consider the coordinate transformation y = A x 

n  If running Newton’s method starting from x(0) on f(x) results in  

 x(0), x(1), x(2), …  

n  Then running Newton’s method starting from y(0) = A x(0) on g
(y) = f(A-1 y), will result in the sequence  

 y(0) = A x(0), y(1) = A x(1), y(2) = A x(2), … 

 

n  Exercise: try to prove this. 

Affine Invariance 

Newton’s method when we don’t have  

n  Issue:  now ¢ xnt does not lead to the local minimum of the 
quadratic approximation --- it simply leads to the point where 
the gradient of the quadratic approximation is zero, this could 
be a maximum or a saddle point 

n  Three possible fixes, let                   be the eigenvalue 
decomposition.  

n  Fix 1: 

n  Fix 2: 

n  Fix 3: 

  
In my experience Fix 2 works best. 
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Example 1 

Figure source: Boyd and Vandenberghe 

gradient descent with Newton’s method with 
backtracking line search 

Example 2 

Figure source: Boyd and Vandenberghe 

gradient descent Newton’s method 
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Larger Version of Example 2 

Gradient Descent: Example 3 

Figure source: Boyd and Vandenberghe 
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n  Gradient descent 

n  Newton’s method (converges in one step if f convex quadratic) 

Example 3 

n  Quasi-Newton methods use an approximation of the Hessian 

n  Example 1: Only compute diagonal entries of Hessian, set 
others equal to zero.  Note this also simplfies 
computations done with the Hessian. 

n  Example 2: natural gradient --- see next slide 

Quasi-Newton Methods 
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n  Consider a standard maximum likelihood problem: 

n  Gradient: 

n  Hessian:  

n  Natural gradient only keeps the 2nd term                             
1: faster to compute (only gradients needed); 2: guaranteed to be 
negative definite; 3: found to be superior in some experiments  

Natural Gradient 

n  Unconstrained minimization 

n  Gradient Descent 

n  Newton’s Method 

n  Equality constrained minimization 

n  Inequality and equality constrained minimization 

Outline 
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n  Unconstrained minimization 

n  Equality constrained minimization 

n  Inequality and equality constrained minimization 

Outline 


