Nonlinear Optimization for Optimal Control

Pieter Abbeel
UC Berkeley EECS

[optional] Boyd and Vandenberghe, Convex Optimization, Chapters 9 — | |
[optional] Betts, Practical Methods for Optimal Control Using Nonlinear Programming

Bellman’s curse of dimensionality

= n-dimensional state space

= Number of states grows exponentially in n (assuming some fixed
number of discretization levels per coordinate)

= In practice

= Discretization is considered only computationally feasible up
to 5 or 6 dimensional state spaces even when using
= Variable resolution discretization
= Highly optimized implementations

Page 1

This Lecture: Nonlinear Optimization for
Optimal Control

= Goal: find a sequence of control inputs (and corresponding sequence
of states) that solves:

H
minu,z Zg(fttvut)
t=0

subject to w41 = f(xg,u) Vit
Uy € Z/{t Vit
Ty € Xt Vit

= Generally hard to do. We will cover methods that allow to find a
local minimum of this optimization problem.

= Note: iteratively applying LQR is one way to solve this problem if
there were no constraints on the control inputs and state

Outline

|
= Unconstrained minimization

» Gradient Descent

= Newton’s Method
» Equality constrained minimization

= |nequality and equality constrained minimization

Page 2

Unconstrained Minimization

i (7))

(Implicitly assumed z can be chosen from the entire domain of f, often R™.)

n I x* satisfies:

V.f@) = 0 (2)
V(@) =

then x* is a local minimum of f.

= In simple cases we can directly solve the system of n equations given by (2) to find
candidate local minima, and then verify (3) for these candidates.

= In general however, solving (2) is a difficult problem. Going forward we will
consider this more general setting and cover numerical solution methods for ().

Steepest Descent

|
= Idea:

= Start somewhere
= Repeat: Take a small step in the steepest descent direction

This is the path followed by the optimizer to reach the global minimum[0.22777 -1.6257]

10+

Initial Condition
5|
0-
g Local Minimum
54
Ea —
T o L e g
U 2 0

Figure source: Mathworks

Page 3

‘Steep Descent

= Another example, visualized with contours:

Figure source: yihui.name

Steepest Descent Algorithm

l. Initialize x

2. Repeat
|. Determine the steepest descent direction Ax
2. Line search. Choose a step size t > 0.

3. Update. x:=x +t Ax.

3. Until stopping criterion is satisfied

Page 4

What is the Steepest Descent Direction?

Assuming a smooth function, we have that
f(@o + Az) = f(x0) + Vaf(z0) Az

The (locally at () direction of steepest descent is given by:

At = ar min 20) + Vo f(z0) T Az
Az:||Az|l2=1 f(O) f(0)
i T
argAm:”rgglllzzlv f(zo) ' Az
As we have all a,b € R" that ming,s|,=1 a7 is achieved for b — —ﬂ(;lm’ .

have that the steepest descent direction

Ax* = =V, f(xo)

Stepsize Selection: Exact Line Search

t = arg m>i¥)1 f(x + sAx)

= Used when the cost of solving the minimization problem with
one variable is low compared to the cost of computing the
search direction itself.

Page 5

Stepsize Selection: Backtracking Line Search

= Inexact: step length is chose to approximately minimize f
along the ray {x + t Ax | t > 0}

Backtracking Line Search.

given a descent direction Az for f at x € domf, a € (0,0.5),5 € (0,1).
t:=1

while f(z +tAz) > f(z) + atVf(z) T Ax,t := jt.

Stepsize Selection: Backtracking Line Search

flz +tAz)

@)+ V@ AT (@) +atV (@) A
- t

t=0 to

Figure 9.1 Backtracking line search. The curve shows f, restricted to the line
over which we search. The lower dashed line shows the linear extrapolation
of f, and the upper dashed line has a slope a factor of a smaller. The
backtracking condition is that f lies below the upper dashed line, i.e., 0 <
t < to.

Figure source: Boyd and Vandenberghe

Page 6

Gradient Descent Method

Algorithm 9.3 Gradient descent method.

given a starting point z € dom f.

repeat
1. Az := -V f(z).
2. Line search. Choose step size t via exact or backtracking line search.
3. Update. = := = + tAz.

until stopping criterion is satisfied.

The stopping criterion is usually of the form |V f(z)|/2 < 7, where 7 is small and
positive. In most implementations, this condition is checked after step 1, rather
than after the update.

Figure source: Boyd and Vandenberghe

Gradient Descent: Example 1

- 329—0.1 —325—0.1 , _—z1—0.1
f(z1,20) = 17972 + eF17o%2 +e™ ™

backtracking line search exact line search

Figure source: Boyd and Vandenberghe

Page 7

Gradient Descent: Example 2

a problem in R0

500
flz)=c'z— E log(b; — al z)
i=1
10
102
x
S8
I
—~ 0 N
= 10 s.exact |s.
Pl
1072
backtrack|ng |.s.
—4 -
10 0 50 100 150 200
k

‘linear’ convergence, i.e., a straight line on a semilog plot

Figure source: Boyd and Vandenberghe

Gradient Descent: Example 3

f(@) = (1/2) (2% +~23) (v>0)

with exact line search, starting at z(9) = (v, 1):

k k
ORI ek L0 (=l
L "\y+1) 2 v+1

e very slowif y>1lory<1

e example for v = 10:

4

—10 0 10

Figure source: Boyd and Vandenberghe

Page 8

Gradient Descent Convergence

—10

Condition number = 10 Condition number = 1

For quadratic function, convergence speed depends on ratio of highest
second derivative over lowest second derivative (“condition number”)

In high dimensions, almost guaranteed to have a high (=bad) condition
number

Rescaling coordinates (as could happen by simply expressing quantities in
different measurement units) results in a different condition number

Outline

= Unconstrained minimization
= Gradient Descent

= Newton’s Method
» Equality constrained minimization

= |nequality and equality constrained minimization

Page 9

Newton’s Method

|
» 2" order Taylor Approximation rather than |t order:

flz+ Az) ~ f(z) + VF(z)T Az + %AxTVQ f(x)Az

assuming V2 f(x) = 0 , the minimum of the 2" order
approximation is achieved at: Az, = — (VQf(g;))_l Vf(x)

)

(z, f(z))

(.’I.‘ + A-'rnte f((l? + A:Eut)) f
Figure source: Boyd and Vandenberghe

Newton’s Method

Algorithm 9.5 Newton’s method.

given a starting point z € dom f, tolerance € > 0.
repeat
1. Compute the Newton step and decrement.
Az := =V2f(z)"'Vf(z); N :=Vfiz) Vif(z)"'Vi(z).
2. Stopping criterion. quit if */2 < e.
3. Line search. Choose step size t by backtracking line search.
4. Update. x := x + tAzys.

Figure source: Boyd and Vandenberghe

Page 10

Affine Invariance

Consider the coordinate transformation y = A x

If running Newton’s method starting from x© on f(x) results in

x©@ x(O, x@), .

Then running Newton’s method starting from y© = A x©® on g
(y) = f(A'y), will result in the sequence

yO = A xO, y(0) = A x(0, y@ = A x®, ...

= Exercise: try to prove this.

Newton’s method when we don't have V2 f(z) = 0

|
= Issue: now A X, does not lead to the local minimum of the

quadratic approximation --- it simply leads to the point where
the gradient of the quadratic approximation is zero, this could
be a maximum or a saddle point

= Three possible fixes, let XAX " = V2f(z) be the eigenvalue
decomposition.

s Fix I: Replace V2f(z) with XAXT,
with A a diagonal matrix with A; ; = max(0, A; ;).

= Fix2: Replace V?f(z) with XAX T,
with A a diagonal matrix with A;; = A;; + (—1) * min; A, ;

s Fix 3: Use a gradient descent step, rather than a Newton step,
in the current iteration.

In my experience Fix 2 works best.

Page 11

Example 1

z1+3z9—0.

f(xlt TQ) =€

gradient descent with
backtracking line search

Newton’s method with
backtracking line search

Figure source: Boyd and Vandenberghe

§(®) ~p*

Example 2

500
. 100 . T T
a problem in R fz)=cTz = log(b; — a] z)
i=1
104 10°
102 L 100
Q,
. . /L s backtracking
10 ~.exact |s. = 10
s 8 .
:‘;/ exact line search
1073 10~10
backtrack|i
—4 >~ —15
1075 50 150 20 10715 2 1 6 8 10

100
k

gradient descent

Newton’s method

Figure source: Boyd and Vandenberghe

Page 12

Larger Version of Example 2

R'99% (with sparse a;)

example in
100000

10000

flz)=- Z log(1 — 2?) — Z log(b; — aF'z)
i=1 i=1

10°

*-\

a

| 10°

—~
=z

5

=

Dl

1079
0 5 10 15 20
k

e backtracking parameters oo = 0.01, 8 = 0.5.

e performance similar as for small examples

Gradient Descent: Example 3

(v>0)

|
f(@) = (1/2) (2% +~23)

with exact line search, starting at z(9) = (v, 1):
k

L0 (=1
2 v+1

k
ORI ek
1 ! /‘7+1)

e very slowif y>1lory<1

e example for v = 10:

—10
Zy

Figure source: Boyd and Vandenberghe

Page 13

Example 3

4t L
//:::'/j',——:/:'_'_—_____ ZZZ N “_::121:\‘:\\ z®
gop 000 W
N AP A0
—4} T i
—10 0 10

» Gradient descent

= Newton’s method (converges in one step if f convex quadratic)

‘ Quasi-Newton Methods

I
= Quasi-Newton methods use an approximation of the Hessian

= Example |: Only compute diagonal entries of Hessian, set
others equal to zero. Note this also simplfies
computations done with the Hessian.

= Example 2: natural gradient --- see next slide

Page 14

Natural Gradient

m Consider a standard maximum likelihood problem:

_).
méixf(@) m(?xzi:logp(a: ;0)

s Gradient:

af) T dlogp(x);0) > Op(zD;0) 1

09, a0, = 20, p(z;0)
m Hessian:
>’reo) Pp;0) 1 9p(x;e) 1 opx™;0) 1
90,00, S 00,00, p(z);0) 0, p(x®;0) 90, p(z;0)

V2p(x(i)'9))) T
2100 —) (2D (@.

Viloe f0) =30 gy — (Veer(e?:0) (Viogn(=:0))

= Natural gradient only keeps the 2" term
|: faster to compute (only gradients needed); 2: guaranteed to be
negative definite: 3: found to be superior in some experiments

Outline

|
m Unconstrained minimization

= Gradient Descent
= Newton’s Method
= Equality constrained minimization

= |nequality and equality constrained minimization

Page 15

Outline

|
m Unconstrained minimization

» Equality constrained minimization

= Inequality and equality constrained minimization

Page 16

