Grasping

Pieter Abbeel
UC Berkeley EECS

Many figures and equations taken from:

Murray, Li, Sastry, A Mathematical Introduction to Robotic Manipulation, Chapter 5

Outline

- Contacts
 - Frictionless
 - Friction
 - Soft finger

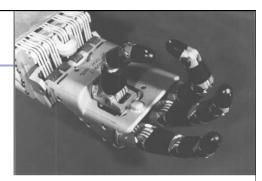
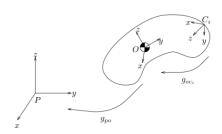



Figure 5.1: The Utah/MIT hand. (Photo courtesy of Sarcos, Inc.)

- Grasps
- Grasp quality: force closure
- Contact point selection (John Schulman, ISRR 2011)

Frictionless Point Contact

- Forces can only be applied in direction normal to the surface of the object

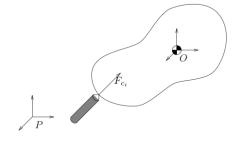
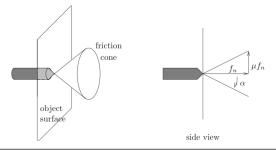


Figure 5.2: Coordinate frames for contact and object forces.


Figure 5.3: Frictionless point contact.

Coulomb Friction Model

Let f^t denote the tangential force and fⁿ denote the magnitude of the normal force, then Coulomb's law states that in the static case:

$$|f^t| \le \mu f^n$$

ullet μ is the (static) coefficient of friction

Coulomb Friction Model

Table 5.1: Static friction coefficients for some common materials. (Source: CRC Handbook of Chemistry and Physics)

Steel on steel	0.58	Wood on wood	0.25-0.5
Polyethylene on steel	0.3-0.35	Wood on metals	0.2-0.6
Polyethylene on self	0.5	Wood on leather	0.3-0.4
Rubber on solids	1-4	Leather on metal	0.6

Point Contact with Friction

Space of possible applied wrenches:

$$F_{c_i} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} f_{c_i} \qquad f_{c_i} \in FC_{c_i},$$

$$FC_{c_i} = \{ f \in \mathbb{R}^3 : \sqrt{f_1^2 + f_2^2} \le \mu f_3, \ f_3 \ge 0 \}.$$

Soft-Finger Contact

- Also allows for torque around the normal
- Space of possible applied wrenches:

and the friction cone becomes

$$FC_{c_i} = \{ f \in \mathbb{R}^4 : \sqrt{f_1^2 + f_2^2} \le \mu f_3, \ f_3 \ge 0, \ |f_4| \le \gamma f_3 \},$$

where $\gamma > 0$ is the coefficient of torsional friction.

General Contact Model

In general, we model a contact using a wrench basis, $B_{c_i} \in \mathbb{R}^{p \times m_i}$, and a friction cone, FC_{c_i} . In all of our examples, we chose p = 6, the dimension of the space of generalized forces that can be applied in SE(3). Other choices are possible, the most common being p = 3, which is used for planar grasping. The dimension of the wrench basis, m_i , indicates the number of independent forces that can be applied by the contact. We require that FC_{c_i} satisfy the following properties:

- 1. FC_{c_i} is a closed subset of \mathbb{R}^{m_i} with non-empty interior.
- 2. $f_1, f_2 \in FC_{c_i} \implies \alpha f_1 + \beta f_2 \in FC_{c_i} \text{ for } \alpha, \beta > 0.$

The set of allowable contact forces applied by a given contact is:

$$F_{c_i} = B_{c_i} f_{c_i} \qquad f_{c_i} \in FC_{c_i}. \tag{5.5}$$

Summary of Common Contact Models

Contact type	Picture	Wrench basis	FC
Frictionless point contact	4	$\begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$	$f_1 \ge 0$
Point contact with friction	4 0	$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$	$\sqrt{f_1^2 + f_2^2} \le \mu f_3$ $f_3 \ge 0$
Soft-finger	-	$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 &$	$ \sqrt{f_1^2 + f_2^2} \le \mu f_3 $ $ f_3 \ge 0 $ $ f_4 \le \gamma f_3 $

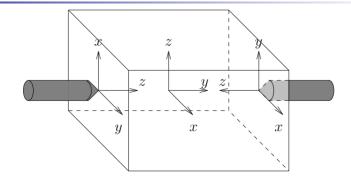
Grasp

= set of wrenches that can be achieved

$$F_o = G_1 f_{c_1} + \dots + G_k f_{c_k} = \begin{bmatrix} G_1 & \dots & G_k \end{bmatrix} \begin{bmatrix} f_{c_1} \\ \vdots \\ f_{c_k} \end{bmatrix}$$

$$f_c \in FC$$

- G_i = wrench basis vectors transformed into single reference coordinate frame
- $G = [G_1 \dots G_k] = \text{grasp map}$


Example: Grasp Map for Frictionless Point Contacts

$$F_o = \begin{bmatrix} n_{c_1} & \cdots & n_{c_k} \\ p_{c_1} \times n_{c_1} & \cdots & p_{c_k} \times n_{c_k} \end{bmatrix} \begin{bmatrix} f_{c_1} \\ \vdots \\ f_{c_k} \end{bmatrix} = Gf_c, \qquad F_o \in \mathbb{R}^6$$

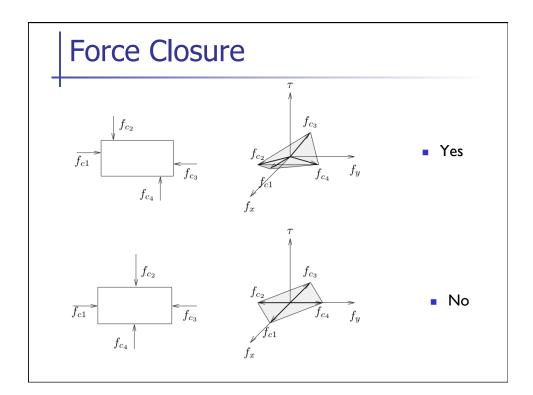
$$f_{c_i} \ge 0.$$

x = outer product

Example: Soft Finger Grasp of a Box

$$G = \begin{bmatrix} 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & -1 & 0 \\ 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ -r & 0 & 0 & 0 & 0 & +r & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & -1 \\ 0 & +r & 0 & 0 & -r & 0 & 0 & 0 \end{bmatrix}$$

$$G = \begin{bmatrix} 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & -1 & 0 \\ 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ -r & 0 & 0 & 0 & 0 & +r & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & -1 \\ 0 & +r & 0 & 0 & -r & 0 & 0 & 0 \end{bmatrix} \quad \begin{aligned} f_c &= (f_{c_1}^1, f_{c_1}^2, f_{c_1}^3, f_{c_1}^4, \ f_{c_2}^1, f_{c_2}^2, f_{c_2}^3, f_{c_2}^4) \in \mathbb{R}^8 \\ FC &= FC_{c_1} \times FC_{c_2} \\ FC_{c_1} &= \left\{ f_c : \sqrt{(f_{c_1}^1)^2 + (f_{c_1}^2)^2} \le \mu f_{c_1}^3, \ |f_{c_1}^4| \le \gamma f_{c_1}^3, f_{c_1}^3 \ge 0 \right\} \\ FC_{c_2} &= \left\{ f_c : \sqrt{(f_{c_2}^1)^2 + (f_{c_2}^2)^2} \le \mu f_{c_2}^3, \ |f_{c_2}^4| \le \gamma f_{c_2}^3, f_{c_2}^3 \ge 0 \right\} \end{aligned}$$


Grasp Quality: Force Closure

 \blacksquare A grasp is a force-closure grasp IF for any external wrench F_e there exist contact forces $f_c \in FC$ such that

$$Gf_c = -F_e$$

i.e., if able to apply sufficient force at each contact, every external wrench can be compensated for.

- Example external wrenches:
 - Gravity
 - Held object making contact with another object
 - By accident
 - To perform a task (e.g., insertion, hammering, writing, ...)

Detecting Force Closure

[make drawing on board]

$$\max_{y,\gamma} \quad \gamma$$
s.t.
$$y^{\top} G_i \ge \gamma$$

$$||y||_2 \le 1$$

Quality Metric in Case of Force Closure

$$\min_{y:\|y\|_2 \le 1} \max_{f \in FC} y^\top G f$$