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Why Mapping? 

n  Learning maps is one of the fundamental problems in mobile 
robotics 

n  Successful robot systems rely on maps for localization, path 
planning, activity planning etc. 
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The General Problem of Mapping 

n  Formally, mapping involves, given the control inputs and sensor 
data, 

 to calculate the most likely map 
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Mapping as a Chicken and Egg Problem 

n  So far we learned how to estimate the pose of a 
robot given the data and the map. 

n  Mapping, however, involves to simultaneously 
estimate the pose of the vehicle and the map. 

n  The general problem is therefore denoted as the 
simultaneous localization and mapping problem 
(SLAM). 

n  Throughout this set of slides we will describe 
how to calculate a map given we know the 
pose of the robot. 
n  In future lectures we’ll build on top of this to 

achieve SLAM. 
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Types of SLAM-Problems 

n  Grid maps or scans 

  
 [Lu & Milios, 97; Gutmann, 98: Thrun 98; Burgard, 99; Konolige & Gutmann, 00; Thrun, 00; Arras, 99; Haehnel, 01;…] 

 

n  Landmark-based 

 

 

[Leonard et al., 98; Castelanos et al., 99: Dissanayake et al., 2001; Montemerlo et al., 2002;… 

This Lecture 

n  Occupancy grid maps 

n  For each grid cell represent whether occupied or not 

n  Reflection maps 

n  For each grid cell represent probability of reflecting a 
sensor beam 

Grid Maps   
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Occupancy Grid Maps 

n  Introduced by Moravec and Elfes in 1985 

n  Represent environment by a grid.  Each cell can be 
empty or occupied. 

n  E.g., 10m by 20m space, 5cm resolution à 80,000 
cells à 280,000 possible maps. 

n  à Can’t efficiently compute with general posterior 
over maps 

n  Key assumption: 
n  Occupancy of individual cells (m[xy]) is independent 

Bel(mt ) = P(mt | u1, z2…,ut!1, zt ) = Bel(mt
[ xy] )
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Updating Occupancy Grid Maps 
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n  Idea: Update each individual cell using a binary Bayes filter. 

n  Additional assumption: Map is static. 
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Updating Occupancy Grid Maps 

n  Per grid-cell update: 

n  BUT: how to obtain p(zt | mt[xy] = v) ? 

 

n  =  

n  This would require summation over all maps 

n  à  Heuristic approximation to update that works well in 
practice 

 

Bel(mt
[ xy] = v) =! p(zt |mt

[ xy] = v)Bel(mt!1
[ xy] )
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Key Parameters of the Model 
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z+d1 z+d2 

z+d3 z 

z-d1 

Occupancy Value Depending on the 
Measured Distance 

Recursive Update 
Assumption: measurements independent 
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Incremental Updating  
of Occupancy Grids (Example)  
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Resulting Map Obtainedwith Ultrasound 
Sensors 
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Resulting Occupancy and Maximum 
Likelihood Map 

The maximum likelihood map is obtained by clipping the 
occupancy grid map at a threshold of 0.5  

21 

Occupancy Grids: From scans to maps 
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Tech Museum, San Jose 

CAD map occupancy grid map 

n  Occupancy grid maps 

n  For each grid cell represent whether occupied or not 

n  Reflection maps 

n  For each grid cell represent probability of reflecting a 
sensor beam 

Grid Maps   
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Reflection Maps: Simple Counting 

n  For every cell count 
n  hits(x,y): number of cases where a beam ended at <x,y> 

n  misses(x,y): number of cases where a beam passed 
through <x,y> 

n  Value of interest: P(reflects(x,y)) 

n  Turns out we can give a formal Bayesian justification 
for this counting approach  
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The Measurement Model 
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Computing the Most Likely Map 
n  Compute values for m that maximize 

n  Assuming a uniform prior probability for p(m), this is equivalent 
to maximizing (applic. of Bayes rule) 
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Computing the Most Likely Map 
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Meaning of αj and βj 
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corresponds to the number of times a beam that is 
not a maximum range beam ended in cell j (hits(j)) 

corresponds to the number of times a beam 
intercepted cell j without ending in it (misses(j)). 
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Computing the Most Likely Reflection Map 
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Computing the most likely map amounts to counting 
how often a cell has reflected a measurement and how 
often it was intercepted. 
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Difference between Occupancy Grid 
Maps and Counting 

n  The counting model determines how often a cell reflects a 
beam. 

n  The occupancy model represents whether or not a cell is 
occupied by an object. 

n  Although a cell might be occupied by an object, the reflection 
probability of this object might be very small. 

31 

Example Occupancy Map 
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Example Reflection Map 

glass panes 
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Example 
n  Out of 1000 beams only 60% are reflected from a cell and 40% 

intercept it without ending in it. 

n  Accordingly, the reflection probability will be 0.6. 

n  Suppose p(occ | z) = 0.55 when a beam ends in a cell and p(occ | 
z) = 0.45 when a cell is intercepted by a beam that does not 
end in it. 

n  Accordingly, after n measurements we will have  

n  Whereas the reflection map yields a value of 0.6, the occupancy 
grid value converges to 1. 
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Summary 

n  Grid maps are a popular approach to represent the environment of a 
mobile robot given known poses. 

n  In this approach each cell is considered independently from all others. 

n  Occupancy grid maps 

n  store the posterior probability that the corresponding area in the 
environment is occupied. 

n  can be estimated efficiently using a probabilistic approach. 

n  Reflection maps are an alternative representation. 

n  store in each cell the probability that a beam is reflected by this cell.  

n  the counting procedure underlying reflection maps yield the optimal 
reflection map.  

Inverse_range_sensor_model(mi, xt, zt) 

n   ®: thickness of obstacles 

n   ¯: width of the sensor beam 
[Probabilistic Robotics, Table 9.2] 


