Perception for Robotics: Instance Detection

Pieter Abbeel
UC Berkeley EECS

Overview

= 'Perception for robotics

SUDO MAKE ME
A SANDW)CH.

Page 1

Overview

. IPerception for robotics

Overview

|
= Perception for robotics

= Accurately localizing (specific) objects of interest in
unstructured environments quickly using multiple sensor
modalities.

Page 2

Overview

1
= Perception for robotics

= Accurately localizing (specific) objects of interest in
unstructured environments quickly using multiple
sensor modalities.

Non-robotic: Robotic:

’\l/'/‘—g?i/‘\, Wr“(‘m

Overview

n IPerception for robotics

= Accurately localizing (SPeCifiC) objects of interest in
unstructured environments quickly using multiple
sensor modalities.

Non-robotic: Robotic:

Page 3

Outline

|
m Point clouds

= Pose detection for known object

= Pose scoring function: points and local features
= Optimization and initialization: ICP and RANSAC

= Object instance + pose detection
= Brute force enumeration

= Faster: Local feature based voting

= |mages
= Local image features: SIFT

= Global features

= A full instance detection pipeline

Problem Setting

|
= Given:

= |. From training phase: Point cloud representation of
object, with attached coordinate frame

= 2. At test time: Point cloud of scene containing same
object

= Asked for: localize object in the scene (position and
orientation)

Page 4

Individual Points Based Scoring Function

Different point clouds.

Red: test point cloud

Blue: attempted match of model

Score of this match: compute distance from each blue
point to closest Red point and sum the squared distances

Optimizing the Pose with lterated

| Closest Points (ICP)

= |dea: to find the optimal pose iterate over:

= Keep pose fixed, for each (blue) point find closest match
amongst (red) points

= Keep matches fixed (aka “known correspondences”), find
the rigid transformation (translation + rotation) that
minimizes the sum of the squared distances between each
(blue) point and its matched (red) point

nnnnnnnnnnnnnnnnn

Page 5

Known Correspondences
|

= Given: two corresponding point sets:
X =A{x1,...,zn}
P = {p17 7p7’L}

¢ Wanted: translation t and rotation R that minimizes the
sum of the squared error:

N,
1 p
E(R,t) =~ 3 |lwi = Rpi — t]°

Where x;and p; are corresponding points.

11

Key Idea

= |f the correct correspondences are known, the correct
relative rotation/translation can be calculated in closed form.

12

Page 6

‘ Center of Mass

He = —— T and Up = —— Di

are the centers of mass of the two point sets.
Idea:

e Subtract the corresponding center of mass from every
point in the two point sets before calculating the
transformation.

e The resulting point sets are:

X' = {xz - M$} — {@"é} and
P' = {p; — up} = {p}}

13

SVD

N,
lee W =37 aipl

denote the singular value decomposition (SVD) of W by:

cp O O
W=U| 0 oo 0 |VT
O O o3

where U,V € R3X3 are unitary, and
01 > 0o > o3 are the singular values of W.

14

Page 7

SVD

Theorem (without proof):

If rank(WV) = 3, the optimal solution of E(R,t) is unique and is
given by:

R=UVT
The minimal value of error function at (Rt) is:
Np
E(R,t) = Y (llz}lI* + [[4}l[*) - 2(o1 + 02 + 03)
i=1

15

Closest-Point Matching

» Find closest point in other point set

\

The matching point is not a great match even though
distance-wise close.

16

Page 8

Local Features

» Local features characterize geometry around a point

= Examples:

= All pairwise distances between points within certain

radius of current point

Spin Image

3D Shape Context

= Heat Kernel Signature

Point Feature Histogram (PFH), Fast PFH (FPFH)

‘ Example: Spin Images

2-D points

spin-image

AB

Page 9

Feature Based Closest Point Matching

Now distance between two points

Euclidean distance (as before)

+

distance in feature space

Remaining Issue: ICP only finds local
optimum -> initialization?

= RANSAC:

= Amongst points on the test model that have distinguished
local features (i.e., very few reasonable matches on the
training model)

= Pick a few points at random, as well as randomly pick amongst
their reasonable feature matches on the training model

= Initialize pose estimate by lining up these few points as well as
possible

= Then start ICP

= Also allows to handle outliers, see next slides

Page 10

RANSAC

RANdom Sample Consensus

Approach: we want to avoid the impact of outliers,
so let’s look for “inliers”, and use those only.

Intuition: if an outlier is chosen to compute the
current fit, then the resulting line won’t have much
support from rest of the points.

RANSAC

RANSAC loop:

Randomly select a seed group of points on which to base
transformation estimate (e.g., a group of matches)

Compute transformation from seed group
Find inliers to this transformation

If the number of inliers is sufficiently large, re-compute least-
squares estimate of transformation on all of the inliers

Keep the transformation with the largest number of inliers

Page 11

RANSAC Line Fitting Example

)
)
()
®)
@
® e ®
@
Task:
@ ()
® Estimate best line

Slide credit: Jinxiang Chai, CMU

@
@
°
® @
®
e ° o
@
mpl in
° ° Sample two points

Page 12

\ RANSAC Line Fitting Example

Fit Line

RANSAC Line Fitting Example

Total number of points
within a threshold of line.

Page 13

RANSAC Line Fitting Example

@
(¢
@
® @
@
® ° ®
$
@
° ° Repeat, until get a good

result

RANSAC Line Fitting Example

Repeat, until get a good
result

Page 14

RANSAC Line Fitting Example

Repeat, until get a good
result

Outline

|
m Point clouds

= Pose detection for known object

= Pose scoring function: points and local features
= Optimization and initialization: ICP and RANSAC

= Object instance + pose detection
= Brute force enumeration
= Faster: Local feature based voting

= Images
= Local image features: SIFT

s Global features

= A full instance detection pipeline

Page 15

Object Instance + Pose Detection

= Setting: many training examples

= Naive approach:
= Collect point cloud representation for all

= At test time, test for all in parallel, return instance with
lowest error score

‘ Voting

| .. .
= At training time:

= Build nearest-neighbor data structure that stores all local
features for all objects

= At test time:

= For each point in test cloud:
= compute local feature
= look it up in nearest-neighbor data structure
= Vote for instance the nearest neighbor came from

= For instances receiving most votes, run RANSAC+|CP and

return winner (= now called “geometric verification”)

= Voting variants:
= Every object gets a vote between 0 and | according to nearest-feature distance

= Vote for object and pose of the object (Hough voting)

Page 16

Outline

|
m Point clouds

= Pose detection for known object

= Pose scoring function: points and local features
= Optimization and initialization: ICP and RANSAC

= Object instance + pose detection
= Brute force enumeration

= Faster: Local feature based voting

= Images
= Local image features: SIFT

= Global features

= A full instance detection pipeline

‘ Image / RGB Features

= Point cloud features only exploit shape

= |mage features can exploit color, texture on object surfaces

mn@mg-n

Page 17

Local descriptors

T
= Simplest descriptor: list of intensities within a patch.

= What is this going to be invariant to?

Write regions as vectors region A region B

B =L
b8

vector a vector b

Feature descriptors

I
= Disadvantage of patches as descriptors:

= Small shifts can affect matching score a lot

ERE

= Solution: histograms

Eﬁli...lﬂ b

Source: Lana Lazebnik

Page 18

Feature descriptors: SIFT

s Scale Invariant Feature Transform

= Descriptor computation:

= Divide patch into 4x4 sub-patches: 16 cells

= Compute histogram of gradient orientations (8 reference angles) for all pixels
inside each sub-patch

= Resulting descriptor: 4x4x8 = 128 dimensions
-~ ¥k

K>

% L

L N e

David G. Lowe.

"Distinctive image features from scale-invariant keypoints.”
IJCV 60 (2), pp. 91-110, 2004.

Source: Lana Lazebnik

Global Features

m Global feature we have used:

= Color histogram

= Added this to the voting scheme

Page 19

Outline

|
m Point clouds

= Pose detection for known object

= Pose scoring function: points and local features
= Optimization and initialization: ICP and RANSAC

= Object instance + pose detection
= Brute force enumeration

= Faster: Local feature based voting

= |mages
= Local image features: SIFT

= Global features

= A full instance detection pipeline

Solutions in Perception Challenge (ICRA 2011)

I
= 35 objects:

= Test examples:

Page 20

Our Pipeline

(Training Pipeline [

[

Point Merge Point bormal/SD 3D Mesh Extract Hue Color Image Mask Extract Reglster 3D Metnc
Clouds Cloud Data GBIy Model Histograms Profile Data Image S LIS Feature
Estimation features to 3D Model

EEuiﬁl

Testing Pipeline

Point :Ia:r:: Object Image
Clouds Erwom Segmentation Data

Feature
Hypothesis || | Scene
Extlactlon /H HwatheSIs H Verification verification

For all clusters

Rank of True Matches before Geometric Verification

= This tells us how much (luckily, how little) we are losing by
speeding things up through the voting scheme:

Rank of true matches before geometric verification
1.0 T

Percentage

Fig. 5. Cumulative histogram of the rank of the true object after global
and local feature matching but before geometric pose verification on the
Willow challenge dataset. The true object lies in the top 15 over 95% of
the time.

Page 21

Performance: Instance

PRECISION AND RECALL RESULTS FOR THE CURRENT PIPELINE AND

THE ICRA 2011 CONTEST ENTRY.

| Precision Recall

Willow (Current System) 88.75% 64.79%
Challenge (Current System) 98.73% 90.23%
NIST (Current System) 97.24% 97.70%

Challenge (ICRA 2011 Contest) 95.30% 84.10%

Performance: Pose Accuracy (if

detected correct instance)

Histogram of orientation errors Histogram of translation errors

5 10 15 20 25 30 35
Rotation Error (degrees)

Page 22

