
CS287 Problem Set #2 1

CS 287, Fall 2012
Problem Set #2 : Nonlinear Optimization for Con-
trol, Time-Varying LQR for Nonlinear Systems,
Feasible Newton Step Interior Point Methods

Deliverable: pdf write-up by Monday October 29th, 23:59pm to be emailed to
pabbeel@cs.berkeley.edu, with subject: PS2. Some of the starter code will gener-
ate plots. Don’t include all of them, include whatever is sufficient to show that
you correctly solved the problem. Whenever including a figure, make sure it is
accompanied by a discussion of that figure. Ball-park figure for number of pages: 6.

Refer to the class webpage for the homework policy.

Various starter files are provided on the course website.

You are free to use any convex programming solver of your choice for this assignment. If you
don’t have in-depth experience with a particular solver already, I recommend you try out CVX.
CVX can solve a broad class of convex optimization problems, including linear programs, but
also quadratic programs (which you will need for future assignments!).

1. Nonlinear Optimization for Control and Time-Varying LQR for Nonlinear Sys-
tems

In this question you get to design a controller for helicopter aerobatics! The starter file provides
a tentative trajectory for the helicopter to fly: for the first 2 seconds the helicopter is kept in
place, for the next 2 seconds the helicopter is made to perform half of a forward flip, and for the
last 2 seconds the helicopter is hovering upside down.

(a) Nonlinear Optimization for Control. The first step is to turn this crude guess of an aer-
obatic trajectory for the helicopter, which is physically not realizable for the helicopter, into
a reasonable target trajectory to control around. Do so by solving the following optimization
problem:

minx,u

T∑
t=1

(xt − x̄t)
>Q(xt − x̄t) +

T∑
t=1

(ut − ūt)
>R(ut − ūt)

s.t. ∀t ∈ 1, . . . , T : xt+1 = f(xt, ut)

∀t ∈ 1, . . . , t : ut ∈ Ut

where x̄ is the tentative trajectory provided to you. To solve this problem, use sequential
convex optimization by iteratively linearizing the dynamics model (f), and repeatedly solving
problems of the type:



CS287 Problem Set #2 2

minx,u,s

T∑
t=1

(xt − x̄t)
>Q(xt − x̄t) +

T∑
t=1

(ut − ūt)
>R(ut − ūt) + C

T∑
t=1

s>t st

s.t. ∀t ∈ 1, . . . , T : xt+1 = At(xt − x̂t) + Bt(ut − ût) + ct + st

∀t ∈ 1, . . . , T : ‖xt − x̂t‖2 ≤ εx

∀t ∈ 1, . . . , T : ‖ut − ût‖2 ≤ εu

∀t ∈ 1, . . . , t : ut ∈ Ut

where x̄, ū are the tentative target trajectory you are provided with, x̂, û are the current
points of linearization, which are taken from the solution of the previous iteration (i.e.,
use collocation). A couple of noteworthy additional variables that were introduced above:
(i) εx, εu define the trust regions within which the optimization is constrained such as to
stay within a region where the linearization is a reasonable approximation, (ii) st are slack
variables, they allow for the dynamics constraint to be violated, which can be necessary to
make these intermediate, linearized problems feasible, especially for underactuated systems
like helicopters, (iii) C scales the penalty on the slack variables deviation from zero and is
in initially set to a small value, but gets increased in the next iteration. In my own solution,
I used eight outer iterations, and had C take on the values 10k/2, with i being the outer
iteration index.

Report plots of the trajectory your SCP implementation found.

(b) Time-Varying LQR for Nonlinear Systems. The second step is to design the feedback
controller to keep the helicopter on the target trajectory. First run the open loop sequence
of controls you found from part (a). Report on whether it succeeds at executing the aero-
batic trajectory accurately? Next, implement a finite-horizon, time-varying LQR controller
that provides a sequence of linear feedback controllers that attempt to stay on the target
trajectory. Report plots of the trajectories executed by this feedback controller.

2. Feasible Newton Step Interior Point Methods

For these questions report the data requested in the starter file, and a paragraph ot wo about
your implementation.

(a) Unconstrained. Implement Newton’s method with backtracking line search for uncon-
strained optimization.

(b) Equality Constrained. Implement the feasible Newton step method (method 2 from the
slides) with backtracking line search for equality constrained optimization.

(c) Equality and Inequality Constrained. Implement the feasible Newton step method
(method 2 from the slides) with backtracking line search for equality and inequality con-
strained optimization. Use the log-barrier method to handle the inequalities.


