
LQR-Trees: Feedback Motion Planning

via Sums-of-Squares Verification∗

Russ Tedrake, Ian R. Manchester, Mark Tobenkin, John W. Roberts
Computer Science and Artificial Intelligence Lab

Massachusetts Institute of Technology
Cambridge, MA, 02139

Email: {russt,irm,mmt,jwr}@mit.edu

February 27, 2010

Abstract

Advances in the direct computation of Lyapunov functions using con-
vex optimization make it possible to efficiently evaluate regions of attrac-
tion for smooth nonlinear systems. Here we present a feedback motion
planning algorithm which uses rigorously computed stability regions to
build a sparse tree of LQR-stabilized trajectories. The region of attrac-
tion of this nonlinear feedback policy “probabilistically covers” the entire
controllable subset of the state space, verifying that all initial conditions
that are capable of reaching the goal will reach the goal. We numerically
investigate the properties of this systematic nonlinear feedback design al-
gorithm on simple nonlinear systems, prove the property of probabilistic
coverage, and discuss extensions and implementation details of the basic
algorithm.

1 Introduction

This paper aims to build on advances from systems theory and from randomized
motion planning to design efficient and general algorithms for nonlinear feedback
control synthesis in constrained nonlinear systems. Specifically, the controls
verification community has developed a number of efficient algorithms for direct
computation of Lyapunov functions for smooth nonlinear systems using convex
optimization[12, 25]. These tools can be used to estimate conservative regions of
attraction around a planned and stabilized trajectory for even very complicated
dynamical systems. Combinations of this formal control verification with ideas
from randomized motion planning open up a number of interesting possibilities

∗A preliminary version of this paper was presented at the 2009 Robotics: Science and
Systems Conference [35].
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for algorithm development. In particular, we present the LQR-Tree algorithm,
which uses locally optimal linear feedback control policies to stabilize planned
trajectories computed by local trajectory optimizers, and verification based on
a sums-of-squares method to estimate the local regions of stability.

Specifically, the LQR-Tree algorithm operates by growing a tree of stabilized
and verified trajectories backwards from a goal state. At each step of the algo-
rithm, a random sample is drawn from a bounded distribution over state space.
If that point is already inside the region of attraction of one of the trajectories,
then it is discarded. If it is outside, then a local trajectory optimizer attempts to
find a new trajectory which connects this random sample to the tree (and there-
fore to the goal). This new trajectory is stabilized and verified, and then the
process repeats. We demonstrate that this algorithm has an important notion
of completeness - it provably covers the controllable subset of state space with
a stabilizing controller. We call this property “probabilistic feedback coverage”.

The aim of this work is to generate a class of algorithms capable of comput-
ing verified feedback policies for complicated1 nonlinear systems which are not
amenable to feedback linearization and with dimensionality beyond what might
be accessible to grid-based algorithms like dynamic programming. The use of
local trajectory optimizers and local feedback stabilization scales well to higher-
dimensions, and reasoning about the feedback regions allows the algorithm to
cover a bounded subset of state space which is controllable to the a goal with a
relatively sparse set of trajectories. In addition, the algorithms operate directly
on the continuous state and action spaces and perform verification algebraically,
and thus are not subject to the pitfalls of discretization which limit accuracy
and scalability. By considering feedback during the planning process, the re-
sulting plans are robust to disturbances and quite suitable for implementation
on real robots.

The following sections introduce the details of the LQR-Tree algorithm. Af-
ter a review of related work in Section 2, Section 3 starts by describing the
design, stabilization, and local verification of a single feasible trajectory. Sec-
tion 4 then introduces the method for growing the tree backwards from the goal,
yielding a nonlinear feedback policy over the state space. Section 5 demonstrates
the algorithm on a few model robotic control problems. Section 6 contains the
proof of probabilstic feedback coverage. In the final sections, we discuss a few
of the more subtle implementation details, and discuss possibilities for future
extensions.

2 Background

2.1 Feedback motion planning

The last decade has seen rapid progress in motion planning algorithms, spurred
by advances in sample-based, randomized algorithms like the probabilistic

1E.g., systems subject to underactuation constraints, input saturations, and/or other kin-
odynamic constraints
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Figure 1: Cartoon of motion planning with funnels in the spirit of [5].

roadmaps (PRMs) [13] and the rapidly-exploring random trees (RRTs)[16].
These algorithms have demonstrated the ability to produce feasible open-loop
trajectories from an initial condition to a goal state in impressively high-
dimensional and convincingly non-convex search problems [15, 8, 32].

For implementation on real robots, open-loop trajectories generated by a
motion planning system are typically stabilized by a trajectory stabilizing feed-
back system2. While this decoupled approach works for most problems, it is
possible that a planned trajectory is not stabilizable, or very costly to stabilize
compared to other, more desirable trajectories. Feedback-motion-planning algo-
rithms, which explicitly consider the feedback stabilization during the planning
process, can avoid this pitfall, and as we will see, can potentially use a local
understanding of the capabilities of the feedback system to guide and optimize
the search in a continuous state space.

Mason popularized the metaphor of a “funnel” (see Figure 1) for a feedback
policy which collapses a large set of initial conditions into a smaller set of final
conditions [18]. In [26] this concept was formalized as “nested Lyapunov func-
tions” and used to analyze the time convergence of nonlinear systems in which
the equations of dynamics could be represented as Fourier series. Burridge,
Rizzi, and Koditschek then painted a beautiful picture of feedback motion plan-
ning as a sequential composition of locally valid feedback policies, or funnels,
which take a broad set of initial conditions to a goal region [5]. At the time,
the weakness of this approach was the difficulty in computing, or estimating by
trial-and-error, the region of applicability - the mouth of the funnel, or preimage
- for each local controller in a nonlinear system. Consequently, besides the par-
ticular solution in [5], these ideas have mostly been limited to reasoning about
vector-fields on systems without dynamics [17].

2Note that an increasingly plausible alternative is real-time, dynamic re-planning.
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2.2 Direct computation of Lyapunov functions

Burridge et al. also pointed out the strong connection between Lyapunov func-
tions and these motion planning funnels [5]. For a dynamical system, ẋ = f(x)
with f(0) = 0, a Lyapunov function is a differentiable positive-definite output
function, V (x), for which ∂V

∂x f(x) is negative-definite. If these conditions are
met over some ball in state space, Br, containing the origin, then the origin is
asymptotically stable. The ball, Br, can then be interpreted as the preimage of
the funnel. Lyapunov functions have played a central role in nonlinear control
theory, since they allow verification of a system’s stability without ever comput-
ing solutions of the system [14]. Indeed, if a dynamical system is asymptotically
stable within a region of attraction, then there exists a Lyapunov function cer-
tifying that fact. However, computing such a Lyapunov function for nonlinear
systems is a challenging problem, and has been the focus of much of the history
of nonlinear control theory.

A number of computational approaches to computing Lyapunov functions
for nonlinear systems have emerged in the last decade, often based on convex
optimization (e.g., [12, 25]). One of these techniques, which forms the basis
of the results reported here, is based on the realization that one can check the
uniform positive-definiteness of a polynomial expression using a sums-of-squares
(SOS) optimization program [25].

The main idea of SOS is quite straightforward. Suppose we want to check if
the following polynomial inequality is true:

x4 + 2x3 + 3x2 − 2x+ 2 ≥ 0 ∀x ∈ R. (1)

One way to verify that this is in fact true is to notice that

x4 + 2x3 + 3x2 − 2x+ 2 =

 1
x
x2

T  2 −1 0
−1 3 1
0 1 1

 1
x
x2


which can be checked by matching coefficients. Now, the matrix on the right is
positive definite (its eigenvalues are approximately 3.88, 1.65, and 0.47) which
implies that for any value of x the polynomial (1) is positive.

However, this is not the only way to represent (1) as a quadratic form in the
“monomials” 1, x, x2. In general, we could have a matrix of the following form:

x4 + 2x3 + 3x2 − 2x+ 2 =

 1
x
x2

T a b c
b d e
c e f

 1
x
x2


where by matching coefficients we have a = 2, 2b = −2, d + 2c = 3, 2e = 2, f =
1. Notice that one can trade off the affine constraint between d and c and
still represent the same polynomial. This same approach can be extended to
multivariable polynomials, and sums-of-squares programming refers to checking
non-negativity of a polynomial by searching for a positive semidefinite matrix
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that satisfies a set of affine constraints that match coefficients. Furthermore,
one can perform this optimization when the polynomial coefficients are free
(decision) parameters. This results in a semidefinite program and can be solved
efficiently using interior point methods [22].

Freely available libraries including SOSTOOLS [28] and the Systems Poly-
nomial Optimization Toolbox [19] make it quite accessible to perform these
computations in MATLAB. As we will see, the ability to check uniform posi-
tive (or negative) definiteness will offer the ability to verify candidate Lyapunov
functions over a region of state space for smooth nonlinear systems.

2.3 Feedback Synthesis by Sums-of-Squares Optimization

The compatibility of sums-of-squares methods with semidefinite programming,
and the associated interior-point method solvers, has had a notable impact on
stability verification (see, e.g., [25, 30, 24, 29, 34, 37, 23] and many others).
However, an open and active area of research is focused on extending these
approaches to controller synthesis. Given a system, ẋ = f(x) + g(x)u, we wish
to simultaneously generate a feedback, u = π(x) and a Lyapunov function,
V (x), such that ∂V

∂x [f(x) + g(x)π(x)] is negative definite. This has proven to be
a difficult problem because the set of V (x) and π(x) satisfying these conditions
may not be convex or even connected [30]. To combat this, a number of solutions
have been proposed based on density functions [27], and iterative algorithms for
model-predictive control design [7].

This paper takes a different approach to control synthesis. Rather than
designing a nonlinear feedback controller directly in the optimization, we rely
on classical linear quadratic regulator (LQR) synthesis [1] to design a series
of locally-valid controllers and compose these controllers using feedback mo-
tion planning. This has the advantage that it may work for hopelessly non-
convex control problems, such as navigation through a complicated obstacle
field, robotic manipulation, or legged locomotion over rough terrain, where the
randomized motion planning algorithms have demonstrated success. We prove
in Section 6 that, under some mild assumptions, the feedback synthesis will
eventually stabilize effectively every point that is controllable to the goal for a
class of smooth nonlinear system.

2.4 Other related work

In other related work, Atkenson and Stephens [2] used local trajectory opti-
mizers and LQR stabilizers with randomized starting points to try to cover the
space, with the hope of verifying global optimality (in the infinite resolution
case) by having consistent locally quadratic estimates of the value function on
neighboring trajectories. The conditions for adding nodes in that work were
based on the magnitude of the value function (not the region of guaranteed
stability). In the work described here, we sacrifice direct attempts at obtain-
ing optimal feedback policies in favor of computing good-enough policies which
probabilistically cover the controllable subset of state space with a region of
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attraction. As a result, we have stronger guarantees of getting to the goal and
considerably sparser collections of sample paths.

Region-of-attraction verification for polynomial systems has recently been
explored as a search for Lyapunov functions using sums-of-squares techniques
[34]. The optimization required is bilinear in the decision variables, and so
optimization methods will only find a local solution. Simulation of the sys-
tem dynamics can help find good initial guesses for the Lyapunov function [37].
Tomlin et al. have a series of work exploring verification and control of non-
linear systems using reachable set computations and hybrid automata[36]. In
general this requires computing level sets of a Hamilton-Jacobi-Bellman-Isaacs
partial differential equation, which must be approached numerically for all but
the simplest systems[21]. A recent approach to control design which has some
philosophical connections to the method we propose is that of “patchy Lyapunov
functions”, in which a a system is stabilized by covering the state space with
an ordered family of locally valid control Lyapunov functions and stabilization
ensured via a switching feedback control [10].

3 Linear Feedback Design and Verification

The LQR-Tree algorithm is based on the ability to efficiently design trajecto-
ries of the robot through state space, to stabilize those trajectories using linear
quadratic regulator (LQR) feedback design, and to estimate the region of at-
traction of the feedback controller. In this section, we develop that procedure
first for a stabilizable point and then for a single stabilizable trajectory.

3.1 Stabilizing a Goal State

Consider a smooth nonlinear system:

ẋ = f(x,u). (2)

where x ∈ Rn is the state of the system and u ∈ Rm is the control input. We
first examine stabilizing a goal-state with an infinite horizon LQR controller,
and approximating the closed loop region of attraction. Consider a goal state,
xG, with uG defined so that f(xG,uG) = 0. Define

x̄ = x− xG, ū = u− uG. (3)

Now, linearize the system around (xG,uG) to yield the dynamics:

x̄(t) ≈ Ax̄(t) + Bū(t). (4)

We assume that this linearization of f about the goal is controllable. Define the
quadratic regulator cost-to-go function as

J(x̄′) =
∫ ∞

0

[
x̄T (t)Qx̄(t) + ūT (t)Rū(t)

]
dt, (5)

Q = QT ≥ 0,R = RT > 0, x̄(0) = x̄′.
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The optimal cost-to-go function for the linear system is given by

J∗(x̄) = x̄TSx̄, (6)

where S is the positive-definite solution to the equation:

0 = Q− SBR−1BTS + SA + ATS (7)

(given by the MATLAB lqr function). The optimal feedback policy for the
linear system is given by

ū∗ = −R−1BTSx̄ = −Kx̄. (8)

3.1.1 Time-Invariant LQR Verification

We acquire an estimate of the region of attraction of the LQR controller by con-
structing a function, V (x), which is a valid Lyapunov function for the nonlinear
system over some sub-level set:

BG(ρ) = {x|0 ≤ V (x) ≤ ρ}. (9)

To demonstrate asymptotic stability, we require:

• V (x) is positive definite in BG(ρ),

• V̇ (x) is negative definite in BG(ρ).

Such a function demonstrates the goal state is stabilized, and furthermore, all
initial conditions in BG(ρ) will converge to xG [33].

Here we use V (x) = J∗(x̄), the linear optimal cost-to-go function, which is
a Lyapunov function for the linear system and hence serves well as a local Lya-
punov function candidate for the nonlinear system. By construction, this choice
satisfies the positive definite constraint on V (x). For the second condition, first
observe that

V̇ (x) = J̇(x̄) = 2x̄TSf(xG + x̄,uG −Kx̄). (10)

SOS programs certify the global non-negativity (or non-positivity) of a poly-
nomial, however our condition on J̇∗ is:

J̇∗(x̄) < 0 ∀ x̄ 6= 0 ∈ BG(ρ), J̇∗(0) = 0. (11)

We take two steps to make our condition compatible with SOS, which are com-
mon in the SOS literature [25]. First, we transform the negativity constraint
into a non-positivity constraint by requiring:

J̇∗(x̄) ≤ −ε‖x̄‖22 ∀ x̄ ∈ BG(ρ), (12)

for some small positive constant ε. Next, we remove the restriction of x̄ ∈
BG(ρ) using a Lagrange multiplier. Take any non-negative polynomial h(x̄).
We examine the inequality:

J̇∗(x̄) + h(x̄)(ρ− J∗(x̄)) ≤ −ε‖x̄‖22. (13)
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Note that the sign of (ρ − J∗(x̄)) is positive for all x̄ ∈ BG(ρ) by definition,
and negative outside this ball. As a result, if (13) holds for any h(x̄) ≥ 0 it
immediately implies (12). This allows us to search for such an h(x̄):

find h(x̄), (14)
subject to J̇∗(x̄) + h(x̄) (ρ− J∗(x̄)) ≤ −ε‖x̄‖22,

h(x̄) ≥ 0.

The polynomial h must be of sufficiently large order to counteract higher order
terms in J̇∗(x̄) . We will make frequent use of Lagrange multipliers such as h(·)
to handle regional non-negativity conditions throughout this paper. In the case
where f is polynomial in x and u, demonstrating a feasible h(·) is sufficient to
provide an exact verification of our desired condition, though it is important to
note that not all non-negative polynomials are SOS[25].

For the case where f is not polynomial, we can approximate this condition
using a Taylor expansion of f , with order > 1. Let us denote the closed-loop
dynamics as

f (cl)(x) = f(x,uG −K(x− xG)). (15)

We denote the truncated Taylor expansion of f (cl) to order Nf > 1:

f (cl)(xG + x̄) ≈ f̂ (cl)(x̄). (16)

For example, when Nf = 2, the k-th component of the closed-loop dynamics is
approximated by:

f̂ (cl)
k (x̄) =

∑
i

x̄i

[
∂f (cl)
k (x)
∂xi

]
x=xG

+
1
2

∑
i,j

x̄ix̄j

[
∂2f (cl)

k (x)
∂xi∂xj

]
x=xG

, (17)

where we also have that f (cl)
k (xG) = 0. When the polynomial approximation

of the dynamics is used, we replace the J̇∗(x̄) in the SOS program above with
ˆ̇J∗(x̄):

ˆ̇J(x̄) = 2x̄TSf̂ (cl)(x̄). (18)

Figure 2 presents a numerical exploration of the estimated region of attrac-
tion for the simple pendulum. For increasing values of ρ, the maximum value
of ˆ̇J∗(x̄) in BG is plotted. Also plotted is the maximum value achieved by ˆ̇J(x̄)
sampling the boundary of this ellipse, and the maximum value of the true (non-
polynomial) J̇∗(x̄) sampled similarly. One cannot generally rely on the Taylor
expansion to be conservative as in Figure 2. Since we are interested in the Tay-
lor expansion over a bounded region (BG(ρ)), one can bound the error of the
expansion if desired and ensure the region of attraction estimate is conservative,
as in [6].

8



0 5 10 15 20
−50

0

50

100

150

200

ρ

m
ax

J̇

 

 
nonlinear (via sampling)
polynomial (via sampling)
polynomial (via sums of squares)

Figure 2: Polynomial verification of LTI feedback on the damped simple pendu-
lum (m = 1 kg,l = 0.5 m, b = 0.1 m2 kg s−1, g = 9.8 m s−2, Q = diag([10, 1]),
R = 15, Nf = 3, Nm = 2)

Finally, we formulate a convex optimization to find the largest region BG(ρ)
for which we can verify the second condition is also satisfied:

maximize ρ, (19)

subject to ˆ̇J∗(x̄) + h(x̄)
(
ρ− Ĵ∗(x̄)

)
≤ −ε‖x‖22,

ρ > 0,
h(x̄) ≥ 0.

This optimization can be performed via a line-search on ρ. At each step of the
line-search the SOS program (14) is executed. If the program is feasible then ρ
can be increased, otherwise it must be decreased. Thus, the maximal ρ which
can be verified is approached by a sequence of SOS programs.

3.2 Trajectory Optimization

In order to increase the set of states which can reach the goal beyond the time-
invariant LQR design, we will design and stabilize a feasible trajectory for the
system with an initial condition outside of the verified region of attraction of
the time-invariant controller. Trajectory design can be accomplished readily by
trajectory optimization algorithms including shooting methods, multiple shoot-
ing methods, and direct collocation methods [3], all of which are quite mature,
and can perform well on even very complicated nonlinear systems. Given the
nonlinear system ẋ = f(x,u), we solve for a feasible trajectory of the system
x0(t), u0(t) over the finite time interval [t0, tf ] which (locally) optimizes a cost
function of the form

J =
∫ tf

t0

[
1 + uT0 Ru0

]
dt, (20)

often subject to a final value constraint (for instance, x0(tf ) = xG). Throughout
the paper, we perform trajectory optimization with a multiple shooting method
with the intial trajectory specified by a random duration “tape” of random
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control actions; this constrained nonlinear optimization is implemented with
sequential quadratic programming (SQP), using SNOPT [9].

3.3 Time-Varying LQR

Given a nominal trajectory, x0(t), u0(t), (a solution of equation 2) over a finite
time interval, t ∈ [t0, tf ], we stabilize the trajectory using a time-varying LQR
controller. Linearizing the system around the trajectory, we obtain:

x̄(t) = x(t)− x0(t), ū(t) = u(t)− u0(t), (21)
˙̄x(t) ≈ A(t)x̄(t) + B(t)ū(t). (22)

and define a quadratic regulator (tracking) cost function:

J(x̄′, t′) = x̄T (tf )Qf x̄(tf ) +
∫ tf

t′

[
x̄T (t)Qx̄(t) + ūT (t)Rū(t)

]
dt, (23)

Qf = QT
f > 0,Q = QT ≥ 0,R = RT > 0, x̄(t′) = x̄′.

In general, Q and R could easily be made a function of time as well. With time-
varying dynamics, the resulting cost-to-go is time-varying. It can be shown that
the optimal cost-to-go, J∗, is given by

J∗(x̄, t) = x̄TS(t)x̄, S(t) = ST (t) > 0. (24)

where S(t) is the solution to

−Ṡ =Q− SBR−1BTS + SA + ATS, S(tf ) = Qf , (25)

and the optimal feedback policy is given by

ū∗(t) = −R−1BT (t)S(t)x̄(t) = −K(t)x̄(t). (26)

3.3.1 Time-Varying LQR Verification

In order to describe the stabilization of a finite-length nominal trajectory, rather
than asymptotic stability, we specify a bounded goal region of state space, Bf ,
and search for a time-varying region, B(ρ(·), t), for which the closed-loop system
obeys:

x(t) ∈ B(ρ(·), t) =⇒ x(tf ) ∈ BG ∀ t ∈ [t0, tf ]. (27)

We search for such a region in terms of a (now time-varying) positive definite,
differentiable, radially unbounded function V (x, t). At a moment in time, the
region is determined as a sublevel set:

B(ρ(·), t) = {x|0 ≤ V (x, t) ≤ ρ(t)}. (28)

Where ρ(t) is chosen to ensure (27) holds. We also define the goal region simi-
larly:

Bf = {x|0 ≤ V (x, tf ) ≤ ρf}. (29)

To ensure (27), we choose the function ρ(t) : [t0, tf ] 7→ R+ with the following
conservative properties:
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• ρ(tf ) ≤ ρf .

• ρ(t) is discontinuous at finitely many points, τ1, . . . , τM , and:

lim
t↑τm

ρ(t) ≤ lim
t↓τm

ρ(t). (30)

• The right derivative, d
dt+

ρ(t), exists and:

V (x, t) = ρ(t) =⇒ V̇ (x, t) ≤ d

dt+
ρ(t). (31)

This ensures that the value V (x, t) decreases faster along trajectories than our
level-set ρ(t). It is useful to note that given two such functions, ρ1(t) and
ρ2(t), their point-wise maximum ρ(t) = max{ρ1(t), ρ2(t)} also satisfies these
conditions, which verifies that B(ρ1(·), t) ∪ B(ρ2(·), t) satisfies (27).

Again, we choose here to use V (x, t) = J∗(x, t), which is positive definite
as the LQR derivation ensures S(t) is uniformly positive definite. In particular,
this gives us:

Bf = {x|0 ≤ x̄TQf x̄ ≤ ρf}. (32)

When x(tf ) = xG, a stabilizable goal, one can choose Qf = S(lti) and ρf =
ρ(lti) to ensure trajectories land in an infinite-horizon LQR controller’s region
of attraction.

Now we have:

J̇∗(x̄, t) = x̄T Ṡ(t)x̄ + 2x̄TS(t)f (x̂0(t) + x̄, û0(t)−K(t)x̄) . (33)

Here, even if f is polynomial in x and u and the input tape uo(t) was polynomial,
our analysis must make use of x0(t), S(t), and K(t) which are the result of
numerical integration (e.g., with ode45 in Matlab). We will approximate this
temporal dependence with (elementwise) piecewise polynomials using splines
of order Nt, where Nt is often chosen to be 3 (cubic splines), with the knot
points at the timesteps output by the variable step integration, which we denote
t0, t1, ..., tN , with tN = tf , e.g.:

∀t ∈ [tk, tk + 1], Sij(t) ≈
Nt∑
m=0

αijm(t− tk)m = Ŝij(t), (34)

Ĵ∗(x̄, t) =
∑
i

∑
j

x̄ix̄jŜij(t). (35)

If f is non-polynomial, we approximate J̇∗(x̄, t) by first taking the Taylor ex-
pansion in x̄ to arrive at a polynomial at each knot, tk, and then interpolate
these coefficients of the resulting polynomials as piecewise polynomials of time.
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3.3.2 Optimizing for ρ(t)

In general, we would desire the largest possible ρ(t), perhaps measured by the
volume of state-space included in B(ρ(·), t). However, searching over a suitably
parameterized ρ(t) over all time-segments while verifying invariance appears
intractable. Instead, we find a piecewise-linear3 ρ(t) over the intervals [tk, tk+1):

ρk(t) = β1kt+ β0k, (36)

ρ(t) =

{
ρk(t), ∀t ∈ [tk, tk+1),
ρf , t = tf .

(37)

which we construct backwards in time, starting with k = N −1. For a given ρk,
it is is easy to test if ρk(tk+1) = β1ktk+1 +β0k ≤ ρ(tk+1). The more complicated
step of verification requires:

Ĵ∗(x̄, t) = ρk(t) =⇒ ˆ̇J∗(x̄, t) ≤ ρ̇k(t) = β1k ∀t ∈ [tk, tk+1). (38)

which can be tested by the SOS feasibility program:

find h1(x̄), h2(x̄), h3(x̄),

subject to ˆ̇J∗(x̄, t)− ρ̇k(t) + h1(x̄, t)(ρk(t)− Ĵ∗(x̄, t))
+ h2(x̄, t)(t− tk) + h3(x̄, t)(tk+1 − t) ≤ 0,

h2(x̄, t) ≥ 0,
h3(x̄, t) ≥ 0.

(39)

Choosing the three Lagrange multipliers, h1, h2, h3 to be polynomials of suf-
ficient order. Note that h1(x̄) is used to restrict our attention to an equality
constraint, and thus does not need to be non-negative. This feasibility test en-
ables a search for β·k. The feasible region is generally non-convex, but there are
some guarantees as to the local minima.

Our assumptions about the system dynamics ensure that, if the polynomial
approximations of x0(t) and J̇∗(x̄, t) are sufficiently close to true solutions of
the dynamics and Riccati equations:

∃ εk > 0 s.t. ∀ t ∈ [tk, tk+1) J∗(x̄, t) ≤ εk =⇒ ˆ̇J∗(x̄, t) ≤ 0. (40)

We formulate the optimization:

maximize
αk

ρk(t) = αk, (41)

subject to αk ≤ ρ(tk+1),
SOS Program (39).

3Higher order polynomials are of course possible, but for small time-steps, piecewise linear
appears to perform well.
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This program is amenable to line-search, similar to the LTI region of attrac-
tion. A piecewise constant ρ(t) would be defined by these values, but has the
disadvantage that ρ(t) will monotonically increasing.

This value obtained by (39), α∗k, can be used as an initial guess to optimizing
ρk(t) over a class of polynomials. A particularly successful optimization strategy
has been the following optimization:

maximize
β·k

ρk(tk) = β1ktk + β0k, (42)

subject to ρk(tk+1) ≤ ρ(tk+1),
SOS Program (39).

Provides coefficients β∗ such that:

ρk(t) = max {α∗k, β1kt+ β0k} k = N − 1, . . . , 1. (43)

form a valid, piecewise linear certificate, which avoids locally maximizing ρk at
the expense of later steps.

3.4 Verification with Input Saturation

This section describes a modified condition for certificates covering systems
with saturated inputs. We examine the single-input case where the control law
u(t) = u0(t)−K(t)x̄(t) is mapped through:

g(u(t)) =


u+ u(t) ≥ u+,

u− u(t) ≤ u−,
u(t) o.w.

We begin by calculating the smallest level-set ρ for which either constraint
becomes active. e.g.:

minimize
x̄′

J∗(x̄′) (44)

subject to u+ = u0 −Kx̄′ (45)

Let ρmax be the solution to this convex quadratic program. Similarly, ρmin can
be computed as the smallest level-set for which u∗(t) = u−. These values allow
for a case-wise analysis of the saturation.

We then compute a separate SOS condition for each active constraint, and
choose the largest ρ which satisfies all. Let

J̇−(x̄) =
∂

∂x̄
J(x̄)f(x̄,u−) +

∂

∂t
J(x̄), (46)

J̇K(x̄) =
∂

∂x̄
J(x̄)f(x̄,u0 −Kx̄) +

∂

∂t
J(x̄), (47)

J̇+(x̄) =
∂

∂x̄
J(x̄)f(x̄,u+) +

∂

∂t
J(x̄). (48)
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Then the verification inequality (14) can be replaced by

J̇−(x̄) + h1(x̄)(ρ− J(x̄)) + h2(x̄)(u− − u0 + Kx̄) ≤ −ε‖x̄‖22, (49)
J̇K(x̄) + h3(x̄)(ρ− J(x̄)) + h4(x̄)(u0 −Kx̄− u−)

+h5(x̄)(u+ − u0 + Kx̄) ≤ −ε‖x̄‖22, (50)
J̇+(x̄) + h6(x̄)(ρ− J(x̄)) + h7(x̄)(u0 −Kx̄− u+) ≤ −ε‖x̄‖22, (51)

with each hi(x̄) sum of squares. Again, these Lagrange multipliers serve to
restrict the verification to the regions of interest. Note that (50) is always
evaluated, as it corresponds to the unsaturated region. Inequalities (49) and
(51) verify stability with u saturated at its minimum and maximum value,
respectively, and need only be evaluated if ρ > ρmin and ρ > ρmax, respectively.

Analogous additions can be made to the LTV verification inequality (39). It
is straightforward to extend this for higher input dimensions, however in general
there will be 3m different combinations of saturated and unsaturated inputs,
where m is the control dimension, which could quickly become computationally
prohibitive for systems with many inputs.

4 The LQR-Tree Algorithm

Given the ability to design, stabilize, and verify a trajectory from an initial
condition to the goal, the LQR-Tree algorithm proceeds by growing a random-
ized tree of stabilizing controllers to reach the goal. Because both the feedback
design and verification work backwards in time, we grow the tree backwards,
starting from the goal. The result is that the tree becomes a large web of
stabilizing controllers which grab initial conditions and pull them towards the
goal (with formal certificates of stability for the nonlinear, continuous state and
action system).

The goal of the algorithm is to cover an entire region of interest, the set of
points from which the goal state is reachable, or a specified bounded subset of
this region, with this stabilizing controller. In Section 6, we define this property
as “probabilistic feedback coverage”. To achieve this, we grow our tree in the
fashion of an RRT, where new subgoals are chosen at random from a uniform
distribution over the state space. Unlike the RRTs, we have additional informa-
tion from the estimated regions of stability (funnel), and we can immediately
discard sample points which are sampled inside the previously verified region.
Define Ck as the estimated region of stability for the entire tree after k itera-
tions of the algorithm. Discarding random samples from Ck occurs rapidly, due
in part to our choice of a simple ellipsoidal estimate for the funnels, and causes
a dramatic improvement in the sparsity of the randomized tree.

One consequence of this sampling strategy is that the algorithm which at-
tempts to connect the random sample back to the goal must be capable of
establishing this connection over some finite distance through state space. For
this reason, we use the trajectory optimization algorithms described briefly in
Section 3.2 to grow a trajectory from the sampled point forward until it connects
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to the existing tree. These algorithms are local, and are subject to local minima,
but we prove in Section 6 that they are sufficient to obtain the desired coverage
property of the algorithm. If the trajectory optimization fails to connect to the
tree, the sampled point is discarded in order to allow for the possibility that the
tree is not reachable from that sampled point; if the tree is reachable then this
region will be sampled again in the future with a more extensive tree available
to connect to. The trajectory optimization is set to timeout with a failure after
some relatively small number of major iterations of the SQP algorithm in order
to facilitate fast sampling and discarding of new samples.

The most important component of the trajectory optimization which at-
tempts to connect to the tree is the “final tree constraint”, which specifies that
the optimized trajectory must connect back to the tree, but is free to connect to
any part of the continuous manifold of points which form the tree. On the kth
iteration of the algorithm, given a candidate trajectory terminating in x0(tf ),
we enforce the vector constraint that

min
x′∈Tk−1

||x0(tf )− x′||2 = 0, (52)

where Tk is the set of all points in the tree after k iterations of the algorithm. A
well implemented optimization algorithm can satisfy this constraint by designing
a trajectory which connects to the tree, then continuing to “walk” the terminal
condition along the constraint manifold of the tree to maximize the objective.

4.1 The Algorithm

The algorithm proceeds by producing a tree, T , with nodes containing the tu-
ples, {x,u,S,K, ρc, i}, where J∗(x̄, t) = x̄TSx̄ is the local quadratic approxima-
tion of the value function, ū∗ = −Kx̄ is the feedback controller, J∗(x̄, t) ≤ ρ(t)
is the funnel where ρ(t) is described by the vector of polynomial coefficients ρc,
and i is a pointer to the parent node.

4.2 Executing LQR-Tree feedback

The resulting LQR-Tree policy is a function,

u = πT (x, tT , b), (53)

with internal controller state tT - the time corresponding to the current execu-
tion - and b - a unique identifier to the currently active branch of the tree. At
the onset of control from an initial condition xi, these controller variables are
initialized as

[tT , b] = argmax
b∈T,t∈[tb0,t

b
f ]

c(xi, t, b), (54)

c(x, t, b) = ρb(t)−
(
xi − xb0(t)

)T
Sb(t)

(
x− xb0(t)

)
, (55)
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Algorithm 1 LQR-Tree (f ,xG,uG,Q,R)
1: [A,B]⇐ linearization of f(x,u) around xG,uG
2: [K,S]⇐ LQR(A,B,Q,R)
3: ρc ⇐ level-set computed as described in section 3.1.1
4: T.init({xg,ug,S,K, ρc, NULL})
5: for k = 1 to K do
6: xrand ⇐ random sample
7: if xrand ∈ Ck then
8: continue
9: end if

10: [t,x0(t),u0(t)] from trajectory optimization with a “final tree constraint”
11: if x0(tf ) /∈ Tk then
12: continue
13: end if
14: [K(t),S(t)] from time-varying LQR
15: ρc ⇐ level-set computed as in section 3.3.1
16: i⇐ pointer to branch in T containing x0(tf )
17: T.add-branch(x0(t),u0(t),S(t),K(t), ρc, i)
18: end for

where superscript b denotes the nominal times, trajectories, and funnels on
branch b of the tree (where b is from an index set of branches). We refer to
the quantity, c(t), as the confidence. A positive value of c(t) corresponds to a
verification of stability to the goal and larger values of c(t) mean the current
state is further inside the region of attraction. Although it is tempting to
continually search over tT as the policy is executed to maximize c(t), this can
lead to undesirable properties such as chattering. Therefore, in practice, we
execute the policy with time evolving naturally (ṫT = 1) unless a disturbance
occurs which takes the state outside of the funnel, in which case we re-evaluate
tT and b. Similarly, branch index b is held constant until the end of its tape, at
which point b is set to the parent trajectory of the previous branch, closer to
the goal.

5 Simulations

We illustrate the operation of the algorithm on a two-dimensional toy problem,
for which we can carefully plot the entire state space and covered set, Ck, on
each iteration of the algorithm. Here we use the swing-up task for a torque-
limited simple pendulum, Iθ̈+ bθ̇+mgl sin θ = τ, with m = 1, l = .5, b = .1, I =
ml2, g = 9.8, |τ | ≤ 3. Here x = [θ, θ̇]T and u = τ . The parameters of the LQR-
tree algorithm were xG = [π, 0]T , uG = 0, Q = diag([10, 1]), R = 20, Nf = 3,
Nt = 3.

Figure 3(a) shows the region of attraction (gray shaded region) after comput-
ing the linear time-invariant (LTI) LQR solution around the unstable equilib-
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Figure 3: An LQR-tree for the simple pendulum. The x-axis is θ ∈ [−π/2, 3π/2]
(note that the state wraps around this axis), and the y-axis is θ̇ ∈ [−10, 10]. The
gray shaded region represents the covered set, Ck, (aka, the “funnels”), after k
branches have been added to the tree.

rium. Figure 3(b) shows the entire nominal trajectory (blue) to the first random
sample point, and the funnels that have been computed for this trajectory. Note
that the state-space of the pendulum lives on a cylinder, and that the trajectory
(and region of attraction) wraps around from the left to the right. Plots (c-d)
show the region of attraction as it grows to fill the state space, with the black
ellipses denoting the inlet and outlet of each funnel in the tree.

In this example, the entire space is probabilistically covered (1000 random
points chosen sequentially were all in the region of attraction) after the tree
contained just 13 branches. On average, the algorithm terminates after 13.25
branches have been added for the simple pendulum with these parameters. For
contrast, [4] shows a well-tuned single-directional RRT for the simple pendulum
which has 5600 nodes. However the cost of adding each node is considerably
greater here than in the traditional RRT, dominated by the line search used to
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maximize the estimated region of stability.

6 LQR-Trees achieve “Probabilistic Feedback
Coverage”

Consider a smooth system

ẋ(t) = f(x(t),u(t)), (56)

with x(t) ∈ X and u(t) ∈ U where X and U are open subsets of Rn
and Rm, respectively. We assume that for all piecewise continuous functions
u : [0,∞) → U , a unique solution of (56) exists, and solutions have continuous
dependence on controls and initial conditions. Note that there are many polyno-
mial differential equations for which this is not true, however for well-modelled
physically-motivated systems these are natural assumptions.

We wish to consider the performance of an iterative algorithm for the task
of planning motions to a particular goal state xG ∈ X .

We define the following sets:

• R(xG): the set of points from which a state xG is reachable, possibly
in infinite time. I.e. x0 ∈ R(xG) if and only if there exists a piecewise
continuous control signal u? : [0,∞)→ U such that the system (56) with
initial condition x0 and input u? asymptotically approaches xG.

• Ck: The set of points covered (e.g., inside the region of attraction of some
trajectory) by the feedback motion planning algorithm after k iterations.
This is the union of all funnels so far added, so we have Ck ⊆ Ck+1.

• C∞: the limit set of the coverage sets Ck:

C∞ = lim
k→∞

Ck. (57)

That is, x ∈ C∞ if and only if there exists a k0 such that ∀ k > k0 . x ∈ Ck.

Note that the limit C∞ is well-defined since Ck ⊆ Ck+1 for all k, which implies
that lim sup Ck = lim inf Ck.

We will be interested in proving the following property, which plays an
analagous role in feedback-motion-planning as probabilistic completeness does
in open-loop motion planning [16]:

Definition 1 A feedback motion planning algorithm achieves probabilistic feed-
back coverage for the goal state xG if cl(C∞) = cl(R(xG)) with probability one4.

The LQR-Trees algorithm works by randomly sampling states, and attempt-
ing to link them back to the tree. We make the following assumption:

4Here cl(·) denotes the closure of a set.
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Assumption 1 Each new state to be linked back to the tree is sampled from a
distribution with non-zero probability density everywhere on X .

For bounded X a uniform probability density is adequate, however for un-
bounded X more care will need to be taken to ensure the density is integrable.

Assumption 2 (a) For the goal point xG, the LTI system is completely con-
trollable, (b) for any feasible trajectory (x?,u?) of (56), the associated LTV
Riccati differential equation has a positive-definite stabilizing solution from any
positive-definite final-time condition.

Assumption 2(b) is an assumption on local exponential stabilizability of the
system dynamics by linear feedback. Taken together, these imply that Ck has
non-empty interior for every k and hence R(xG) has non-empty interior, since
each Ck ⊂ R(xG).

Let Tk be the set of states on the branches of the LQR-tree after k nodes
have been added. We make the following assumption on the availability of an
open-loop motion-planning algorithm:

Assumption 3 The open-loop motion-planner used to reconnect to the tree has
the following property: given any point x0 ∈ R(xG), then the motion-planner
will, with non-zero probability, find a finite time tf and a control signal u?(t)
defined on [0, tf ] such that the solution of ẋ = f(x,u?) with x(0) = x0 achieves
x(tf ) ∈ Tk.

In Subsection 6.1 we will discuss this assumption, and how it can be satisfied in
practice.

We are now ready to state the main result of this section:

Theorem 1 For any system and goal state satisfying Assumptions 1, 2, 3, the
LQR-Trees algorithm achieves probabilistic feedback coverage.

Proof: For a particular instance of the randomized tree, define

F =
∞⋂
k=1

{R(xG)/Ck}, (58)

i.e. the set of all states from which the goal is reachable that fail to be added to
the tree. Note that F is the complement of C∞ relative to R(xG). Now, cl(C∞)
equals cl(R(xG)) if and only if F has empty interior. We will prove that this
must be the case by contradiction.

Suppose F has non-empty interior, with the interior denoted by int(F).
In this case the Lebesgue measure of int(F) > 0 and hence by Assumption
1, there is a non-zero probability of sampling from int(F). Furthermore, by
Assumption 3, for any such sample there is a non-zero probability that it can
be connected back to the tree. Since all the samplings and trajectory searches
are independent events, this implies that with probability one a sample xi will
eventually be found in int(F) which connects back to the tree with a feasibile
trajectory x?(t), i.e. x?(ti) = xi, x?(tf ) ∈ Tk for some ti, tf .
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Now, if such an xi were found, then by Assumption 2 the solution of Riccati
equation associated with x?(t) is positive-definite for all t ∈ [ti, tf ]. Since X
and U are open sets, and f(x,u) is smooth, this implies that around each
point on the trajectory x?(t) there is an ellipsoid of positive radius which will
be added to Ck+1. Since xi ∈ F , some of these ellipsoids will have non-zero
measure intersection with int(F). However, this would contradict the definition
F , hence there is zero probability that F has non-empty interior. Therefore
with probability one cl(C∞) equals cl(R(xG)).
�

Note that we have not assumed anywhere that X ,U , or R(xG) are bounded,
however unbounded sets will require careful selection of sampling density, and
in practice may be problematic for satisfaction of Assumption 3.

6.1 Discussion on the Motion Planning Assumption

We briefly argue that Assumption 3 is reasonable in practice. Firstly, due to
the smoothness of (56) and the complete controllability of the linearized system
about xG, if from a sampled point the system can be made to asymptotically
approach xG then it can be made to reach xG in finite time.

In the present implementation of LQR-Trees, a path back to the tree is
sought by randomly sampling a piecewise-constant control signal u, where the
time horizon tf is randomly sampled from a distribution which has non-zero
density everywhere on [0, T ] for some large T and the sampling interval is a ran-
dom variable with non-zero density on [0, tf ]. Therefore, for sufficiently large T ,
arbitrarily fine approximations of any finite-length piece-wise continuous control
signal can be sampled.

Using the sampled u as an initial guess, a search is performed using over
input signals with the cost function (20) subject to the constraints that x(t2) ∈
Tk and ẋ = f(x,u). The optimization is posed in direct collocation or multiple-
shooting form, and is solved numerically via an SQP method in which nonlinear
equality constraints are handled by l1 regularized elastic variables [9].

Now, suppose a sampled x0 ∈ R(xG), i.e., there exists a piecewise continuous
function u0 : [0, t1] → U which drives the state from x0 to a point on the tree
x(tf ) ∈ Tk. Since U is open and solutions of (56) are continuous with respect to
controls, there exists an open neighborhood of piecewise continuous functions
[0, t2]→ U , t2 > t1 containing u0, which is the region of convergence to a local
optimum for the optimization (20) considered over piecewise-continuous func-
tions. Since our sampling can produce arbitrarily fine approximations of such
functions, it can be argued that there is a non-zero probabilty of numerically
finding a feasible solution of (20).

In practice, if the optimization fails to find a solution given the initial seed,
the sampled point is discarded as temporarily uncontrollable, however after
the tree has grown a nearby point will eventually be sampled from which the
search is successful. Another choice for open-loop motion-planner could be a
randomized-sampling based planner such as the RRT [16], run for a finite (but
random) number of steps.

20



−4 −3 −2 −1 0 1 2 3 4
−5

−4

−3

−2

−1

0

1

2

3

4

5

 

 

Position

V
el

oc
ity

Goal
Nominal Trajectories
Basins
Constraint
Sampling Distribution

Figure 4: Controllability-limited example

6.2 Controllability-limited example

The performance of the algorithm when searching near a boundary of controlla-
bility in state space is an important consideration, particularly when applying it
to complicated, underactuated systems in which the location and form of such
boundaries is unknown. Figure 4 demonstrates the performance of the algorithm
when applied to the following second-order polynomial dynamic system:

ẍ = x+ u2 − u− 3/4. (59)

This system has a known controllable set defined by ẋ < 1−x (whose boundary
is shown as a red line in the figure). Intuitively, the force applied to the system is
bounded to be in the set [−1,∞). From this realization, energy considerations
clearly show that the boundary of the controllable set is defined by the line
ẋ = 1 − x. The algorithm will provably fill the sampled space (shown in light
blue) which is capable of reaching the goal. As the figure demonstrates, this is
achieved by placing ever smaller funnels closer and closer to the boundary, until
the boundary is approximated by the surfaces of the funnels.

7 Discussion

In this section, we briefly discuss the limitations of LQR-Trees, some possible
variations of the main algorithm, and some implementation details.
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7.1 Limitations of LQR-Trees

While LQR-Trees has broad applicability in the realm of nonlinear systems, it
does have limitations with respect to the dimension of the systems that can
be solved. Its scaling behavior can best be understood by considering the four
components that make up the algorithm: 1) a local motion planner (e.g., multi-
ple shooting) 2) a global motion planner which connects the local plans (RRTs)
3) local control design (time-varying LQR) and 4) local verification (SOS).

The local motion planner and the local control design (components 1 and
3) both scale well with dimension. The global motion planner (component 2)
has poor asymptotic behavior, but has been shown to work well on systems
with 30 or more dimensions [15], and, for particular tasks, on systems with
over a 1000 dimensions [32]. The bottleneck in addressing systems of increasing
dimensionality is component 4, verification using SOS. We have had success
applying LQR-Trees to systems with up to 5 dimensions, and the literature has
examples involving rigid body dynamics in 6 dimensions, e.g. [11].

The reliance on linearized controller synthesis means that LQR-Trees is not
directly applicable to nonlinear systems which are controllable but have uncon-
trollable linearizations, such as nonholonomic systems.

7.2 Variations of the algorithm

• Discrete-time formulation. Although the presentation here focused on
the continuous time case, the approach has a natural discrete-time formu-
lation. In many ways, the discrete time formulation is simpler, mitigating
many of the numerical subtleties to be described in Section 7.3, and may in
fact be preferable for implementation on a sampled-data control system.
The primary drawbacks are that (1) it is more difficult to do a careful
time-discretization of a polynomial system than a linear one, and (2) the
tree will now consist of a collection of points instead of a smooth manifold,
complicating any efforts to create a final value constraint which can “walk
along the tree”.

• Compatible with optimal trajectories. The LQR-tree algorithm pro-
vides a relatively efficient way to fill the controllable state space with
funnels, but does not make any claim on the optimality of the resulting
trajectories. If tracking particular trajectories, or optimal trajectories, is
important for a given problem, then it is quite natural to seed the LQR-
tree with one or more locally optimal trajectories, then use the random
exploration to fill in any missing regions.

• Early termination. For higher dimensional problems, covering the con-
trollable state space may be unnecessary or impractical. Based on the
RRTs, the LQR-trees can easily be steered towards a region of state space
(e.g., by sampling from that region with slightly higher probability) con-
taining important initial conditions. Termination could then occur when
some important subspace is covered by the tree.
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• Bidirectional trees. Although LQR-trees only grow backwards from the
goal, a partial covering tree (from an early termination) could also serve
as a powerful tool for real-time planning. Given a new initial condition, a
forward RRT simply has to grow until it intersects with the volume, Ck,
defined by the region of attraction of the backwards tree.

• Other local stabilizers. In this paper we have proposed using LQR
as a local stabilizer for points and trajectories. The main reason for this
choice is simplicity of computation, and the fact that the “cost-to-go”
automatically provides a reasonable candidate Lyapunov function. Other
popular control design techniques, such as H∞ or LMI-based methods also
supply candidate Lyapunov functions, and might be more approapriate for
certain systems. In particular, some information about the nonlinearities
could be encoded in an uncertainty structure. These methods require more
computational effort than LQR, but if they stabilize much larger regions
that may be a useful trade-off.

• Other regional stability verifiers. Similarly, in this paper we have pro-
posed SOS as a regional stability verifier. This allows a very large class
of smooth nonlinear systems to be handled under a single framework for
which reliable computational tools are available. However, for systems of
high dimension, SOS programs can result in very large semidefinite pro-
grams, which become a computational bottleneck. An alternative version
which approximates the verification stage via sampling can be performed
with much lower computational cost, at the expense of losing the rigorous
stability guarantees [31].

Many interesting systems in robotics can be decomposed into “easy” sub-
systems (e.g. actuated links with linear or nearly-linear dynamics) and
“hard” subsystems (e.g. unactuated links with highly nonlinear dynam-
ics). Taking advantage of this structure could reap large benefits in com-
putation of stability regions. Taking this line even further, there appear to
be deep connections between SOS methods and classical methods for non-
linear stability analysis such as integral quadratic constraints [20], which
we intend to investigate.

• Multi-query algorithms. Another very interesting question is the ques-
tion of reusing the previous computational work when the goal state is
changed. In the pendulum example, consider having a new goal state,
xG = [π + 0.1, 0]T - this would of course require a non-zero torque to sta-
bilize. To what extent could the tree generated for stabilizing xG = [π, 0]T

be used to stabilize this new fixed point? If one can find a trajectory to
connect up the new goal state near the root of the tree, then the geometry
of the tree can be preserved, but naively, one would think that all of the
stabilizing controllers and the verification would have to be re-calculated.
Interestingly, there is also a middle-road, in which the existing feedback
policy is kept for the original tree, and the estimated funnels are not re-
computed, but simply scaled down to make sure that the funnels from the
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old tree transition completely into the funnel for the new tree. This could
be accomplished very efficiently, by just propagating a new ρmax through
the tree, but might come at the cost of losing coverage.

7.3 Implementation details

The LQR-Tree algorithm presented here, which relies on a continuous time for-
mulation and optimization over polynomials, requires the practitioner to address
a number of potential numerical issues. We list a few of these here:

• Balancing coordinates. One drawback of working with polynomials is
that their associated optimization problems are often poorly conditioned
(high-order polynomials blow up quickly), and solutions to the Riccati dif-
ferential equation can easily have a large range of eigenvalues. An essential
step for getting good performance out of the semidefinite programming
was finding a coordinate transformation:

xb = Tx, (60)

where T was selected to numerically condition the problem by making the
matrices T′ST and T′

(
2S∂f(x0+x̄,u0−Kx̄)

∂x + Ṡ
)

T are as close as possible
to the identity matrix. Without this balancing, the semidefinite solvers
often return errors with infeasible programs.

• Piecewise polynomial approximations of numerical integration.
For the continuous time formulation, it was essential to carefully manage
the piecewise polynomial interpolations of solutions from trajectory opti-
mization and from the Riccati differential equation. Simple cubic spline
representations often caused even the nominal trajectory to appear to be
unstable. In the current implementation, we represent the output of the
trajectory optimization with a cubic piecewise polynomial that, for every
segment, matches the knot points and the derivatives of the knot points
which are known from the dynamics function. The Riccati differential
equation is solved using MATLAB ode45, interpolations of that solution
are done using deval, and calculations of Ṡ are done by explicitly re-
evaluating the Riccati equation.

• Time dependence on J̇ . Finally, one must be careful when performing
verification on the time-varying Lyapunov candidate. Naively, if one used
a cubic spline representation of the nominal trajectory and of S, then J̇
quickly becomes an unnaturally high order. Instead, we fit the best cubic
spline directly to J̇ .

7.4 A Software Distribution

Due to the potential complexity of getting a robust and high performance imple-
mentation of the LQR-Tree algorithm, the authors are making a MATLAB tool-
box available at http://groups.csail.mit.edu/locomotion/software.html
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8 Summary and Conclusions

Advances in direct computation of Lyapunov functions have enabled a new class
of feedback motion planning algorithms for complicated dynamical systems.
This paper presented the LQR-Tree algorithm which uses Lyapunov computa-
tions to evaluate the regions of attraction of randomized trees stabilized with
LQR feedback. We prove, and demonstrate through simulation examples, that
this algorithm has the property of “probabilistic feedback coverage”. Further-
more, initial experimental results suggest that this coverage occurs efficiently,
requiring only a small number of stabilized trajectories to cover the controllable
space.

Further investigation of this algorithm will likely result in a covering motion
planning strategy for underactuated systems with dimensionality greater than
what is accessible by discretization algorithms like dynamic programming, and
early termination strategies which provide targeted coverage of state space in
much higher dimensional systems. The resulting policies will have certificates
guaranteeing their performance on the system model.
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