Gaussians

Pieter Abbeel
UC Berkeley EECS

Many slides adapted from Thrun, Burgard and Fox, Probabilistic Robotics

Outline

Univariate Gaussian

Multivariate Gaussian

= Law of Total Probability

Conditioning (Bayes’ rule)

Disclaimer: lots of linear algebra in next few lectures. See course
homepage for pointers for brushing up your linear algebra.

In fact, pretty much all computations with Gaussians will be reduced
to linear algebra!
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Univariate Gaussian

|
= Gaussian distribution with mean u, and standard deviation o:

X ~ N (u,0?)
T — 2
p(w;u,02)=m/lﬂexp(—( 205) )
p(x; p,0%)
. . X ~ N (n,02)
Properties of Gaussians )2

1
. 2

x; = exp(—
Pl@ip o) oV 2m p( 202

I
= Densities integrate to one:

Sl NS Sl HCETD SN
./_oop(x,uva )dx—./_ooomexp( 552 Yz =1
e 2
s Mean: Ex[X] = / zp(z; p,0c°)dx
—00
1 (z — )2
= exp(— d
/—oowa 27 p( 202 )do
= n

= Variance: Ex[(X —p)? = /_O:o(x — 1)?p(z; p, 02)dx

%) _ 2
= /_oo(w_”)Qa\}Zexp(_(mzag) )z
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Central limit theorem (CLT)

m Classical CLT:

= Let X, X,, ... be an infinite sequence of independent
random variables with E X, = u, E(X, - u)? = o2

» DefineZ = (X, +...+X)-nuw)/(on'?)

= Then for the limit of n going to infinity we have that Z_ is
distributed according to N(0,1)

= Crude statement: things that are the result of the addition of
lots of small effects tend to become Gaussian.

Multi-variate Gaussians

_ B 1 1 —
P D) = e e (5w T )

/ (27r)n/12|z|1/2 exP (‘%(x )= @ - u)) de =1

For a matrix A € R"*", |A| denotes the determinant of A.

For a matrix A € R"*", A~! denotes the inverse of A, which satisfies A~1A =
I = AA~! with I € R™*" the identity matrix with all diagonal entries equal to
one, and all off-diagonal entries equal to zero.

Hint: often when trying to understand matrix equations, it’s easier to first
consider the special case of the dimensions of the matrices being one-by-one.
Once parsing them that way makes sense, a good second step can be to parse|
them assuming all matrices are diagonal matrices. Once parsing them that way|
makes sense, usually it is only a small step to understand the general case.
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‘ Multi-variate Gaussians

Ex[X;] = /ﬂﬁip(w;ﬂ,z)dw = p;

Ex[X] = /:Cp(:l:; 1, )dr = p (integral of vector = vector

of integrals of each entry)

Ex[(X; — i) (X —py)] = /(ﬂﬁi — wi)(xj — p)p(x; p, X)de = ;5

Ex((X = (X =0T = [[(X = (X = ) p(wip, E)do = =

(integral of matrix = matrix
of integrals of each entry)

Multi-variate Gaussians: examples

w=[1; 0] w = [-.5; 0] w=[-1; -1.5]
¥=[10;0 1] ¥=[10;0 1] ¥=[10;0 1]
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Multi-variate Gaussians: examples

= u=[0:0] u = [0; 0] u = [0; 0]

Multi-variate Gaussians: examples

[0; 0]
=[10;0 1]

= [0; 0] u
=[1 05051] - 3

M=
|
M=
| |
I

[1 0.8; 0.8 1]
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Multi-variate Gaussians: examples

[\

=[o 0] =[0 0] =[0 0]
=[1 -0.5;-0.5 1] =[1 -0.8;-0.8 1] =[3 0.8;0.8 1]
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‘ Partitioned Multivariate Gaussian

= Consider a multi-variate Gaussian and partition
random vector into (X,Y).

N (%) = N([Mx] 7 {zxx zxy])

py | [ Zyx  Xyy

(RSN ER)

T 1 1
p(y) ) = Gyt o (_5

px = Exy)anvs)[X]
py = Exy)ns[Y]
Exx = Exy)wnvs)[(X —px)(X —px) ']
Syy = Exvyenus (Y — )Y = py) ']
Sxy = Exwnenuol(X —px)(Y —py) ] =Sy«
Syx = Exwnnn(Y —py)(X —px)'] = Sxy

Partitioned Multivariate Gaussian: Dual
Representation
|

-1
m Precision matrix r=x-!= [EXX EXY]

)

p( m i, E) =

Yyx Xyy

1
w27 P (_5

= Straightforward to verify from (1) that:

Yxx
Yyy
Yxy

Yyx

(Pxx — FXYr}_/i/FYX)71

(Tyy — Fyxr}l)(rxy)71

— — -1
= I Txy (Dyy —TyxTxkTxy)  =Eyx

_ — —1
Iy Tyx (Cxx = TxylyyTyx) =Sy

= And swapping the roles of I'and X:

Ixx
Cyy
Ixy

Iyx

(Zxx — nyzy_&zyx)_l
(Byy — EYXE;(IXEXY)_I
~SkExy (Syy - Sya Sk Sxy) T =TTy

— _ —1
23y Syx (Exx - SxyEyyEyx) =Ty

'xx TI'xy
I'yvyx Tyy

-l ey 2@

(1)

)
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Marginalization: p(x) = ?

W) = e (3 (] - () [x B] (G- )

We integrate out over y to find the marginal:

pa) = /,,\H wE)dy

1 .
5 (@ = ux) " Txx(@ = pux) + (v = y) "Dyy (v — y) + 20y — v) Ty x(@ /ul))dv

1 T . TP, PoLT, ., r U PoLT, .
p (5 (@ = 1x) Txx(@ = px) + (= y) Tyy (v = iy) +2(y — ) Ty Ty Tyx (@ — px) + (2 = ix) l\,l‘{lnl‘{l\\[r—;l\)—u—/l\}‘l\,l”‘lnlﬁl\\(:—;1\)))rh/

(&= 1x) " Txx (@ = ix) = (2 = px) Txy TRy Tyy Ty Ty x (x —un)) /l‘\p (—3) ((v=my) " Tyy(y = py) +2(y — i) Tyy Ty Tyx (@ — px) + (2 = nx) Txy TR Tyy T3 Ty x (@ —mz))d«
(=) Tocxte = ) = ) v T (e =) ) fesp (= (= 4 T4 Tyt =) Tyl =+ T3 Pyx(e = ) ) do

3 wun’ﬂu«fmfufmﬂrnr;;r»mw\n)rzry" Iy

3 (@ = ) (e =) = = ) T T Tyate = )

i :
(=m0 (Cxx ~ Ty Ty Ty \)(r*/n\!))

Hence we have:
X ~N(ux, Txx —TxyI'yy Ty x) ™) = N(ux, Exx)

Note: if we had known beforehand that p(x) would be a Gaussian distribution, then we
could have found the result more quickly. We would have just needed to find ux = E[X]
and Sy x = E[(X — ux)(X — ux)T] which we had available through A (y, X)

Marginalization Recap

(X,Y) ~ N (1,2) = N ([ﬂx} | [Exx 2XYD

wy |7 [ Zyx Yyy
Then

X ~ N(pux,Exx)
Y ~ N(py,Zyy)
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!Self—quiz

Test your understanding of the completion of
squares trick! Let A € R"*™ be a positive def-
inite matrix, b € R", and ¢ € R. Prove that

1 2 n/2
/ exp <—£ETA:17 — 2Ty - c) dr = (2m) I .
zeRM 2 |A[1/2 exp(c — $bT A~1b)

Conditioning: p(X | Y = y,) = ?
o= e (3 (- 0) v w21 (E1- D)

We have

HelY =) p(H )
_L
2
_L
2
1 . -
= ew( 3@ nx) TTxx (@ = pix) = (@ = i) TxxTx XDy (90 = iy f5(%*M)Fyxl“xégl“mFxlxl“xv(yuf/wH
L
2
L
2

- -
(-

(2 — px) T (@ — px) = (2 = px) Ty (o — pov)

1

— 5w py) Ty (o — MJ>

o« exp (2 — ux) T (2 = px) = (& = pix) Doy (9o — >

1 - -

30 =)y YF_)(l}"rAerl/\(r,K\’(yﬂ’/“’))

1 - -
(= px + TR Txv (9o — o) TToxx(z = px + T Ty (o = iy J)‘XIB<*(.1/n*/LV)FVXFX‘XFXXF‘(‘XFxv(l/u’MV))

2
(2= px + T Dy (o — pv) l'xx(l*;1\'+1‘}‘Xl‘xv(ynfuy)>

Hence we have:

XY =y0 ~ N(ux —Tx%Txy(¥o —py),Txx)
= N(ux +ExvEyy o — #y): Exx — ExySyy Eyx)

Mean moved according to correlation and variance on measurement
Covariance Xyy |y-,o does not depend on Y,
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Conditioning Recap

If

(X,Y) ~ N (1,%) :NQM] , [Exx EXYD

Ky 2:YX Zyy

Then

XY=y ~ Nux+ZxyEyy %o — ay), Exx — ExyEyy Sy x)
Y X =20 ~ N +ZyxE¥kx (@0 — 1x), Zyy — SyxExxExvy)
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