SEIF, EnKF, EKF SLAM

Pieter Abbeel UC Berkeley EECS

Information Filter

- From an analytical point of view == Kalman filter
- Difference: keep track of the inverse covariance rather than the covariance matrix [matter of some linear algebra manipulations to get into this form]
- Why interesting?
 - Inverse covariance matrix = 0 is easier to work with than covariance matrix = infinity (case of complete uncertainty)
 - Inverse covariance matrix is often sparser than the covariance matrix --for the "insiders": inverse covariance matrix entry (i,j) = 0 if X_i is
 conditionally independent of X_i given some set {X_k, X_i, ...}
 - Downside: when extended to non-linear setting, need to solve a linear system to find the mean (around which one can then linearize)
 - See Probabilistic Robotics pp. 78-79 for more in-depth pros/cons and Probabilistic Robotics Chapter 12 for its relevance to SLAM (then often referred to as the "sparse extended information filter (SEIF)")

Ensemble Kalman filter (enKF)

- Represent the Gaussian distribution by samples
 - Empirically: even 40 samples can track the atmospheric state with high accuracy with enKF
 - <-> UKF: 2 * n sigma-points, n = 10⁶ + then still forms covariance matrices for updates
- The intellectual innovation:
 - Transforming the Kalman filter updates into updates which can be computed based upon samples and which produce samples while never explicitly representing the covariance matrix

KF

enKF

Keep track of μ , Σ

Prediction:

$$\overline{\mu}_{t} = A_{t}\mu_{t-1} + B_{t}u_{t}$$
$$\overline{\Sigma}_{t} = A_{t}\Sigma_{t-1}A_{t}^{T} + R_{t}$$

Correction:

$$K_{t} = \overline{\Sigma}_{t} C_{t}^{T} (C_{t} \overline{\Sigma}_{t} C_{t}^{T} + Q_{t})^{-1}$$
$$\mu_{t} = \overline{\mu}_{t} + K_{t} (z_{t} - C_{t} \overline{\mu}_{t})$$
$$\Sigma_{t} = (I - K_{t} C_{t}) \overline{\Sigma}_{t}$$

Return $\mu_v \Sigma_t$

Keep track of ensemble $[x_1, ..., x_N]$

Can update the ensemble by simply propagating through the dynamics model + adding sampled noise

enKF correction step

• KF:

$$K_{t} = \overline{\Sigma}_{t} C_{t}^{T} (C_{t} \overline{\Sigma}_{t} C_{t}^{T} + Q_{t})^{-1}$$

$$\mu_{t} = \mu_{t} + K_{t} (z_{t} - C_{t} \overline{\mu}_{t})$$

$$\Sigma_{t} = (I - K_{t} C_{t}) \overline{\Sigma}_{t}$$

- Current ensemble $X = [x_1, ..., x_N]$
- Build observations matrix $Z = [Z_t + V_1 \dots Z_t + V_N]$ where V_i are sampled according to the observation noise model
- Then the columns of

 $X + K_t(Z - C_t X)$

form a set of random samples from the posterior

Note: when computing K_t , leave Σ_t in the format

$$\Sigma_{t} = [\mathbf{x}_{1} - \mu_{t} \dots \mathbf{x}_{N} - \mu_{t}] [\mathbf{x}_{1} - \mu_{t} \dots \mathbf{x}_{N} - \mu_{t}]^{\mathsf{T}}$$

How about C?

- Indeed, would be expensive to build up C.
- However: careful inspection shows that C only appears as in:
 - C X
 - C \(\Sigma\) C^T = C X X^T C^T
- \rightarrow can simply compute h(x) for all columns x of X and compute the empirical covariance matrices required

[details left as exercise]

Are the columns of
$$Y + k_{E}(2-(E \times))$$
 really samples from $N(\mu_{E}, \overline{z}_{+})$?
The column $H^{E} = X^{El} + k_{E}(z_{E} + v^{El} - C_{E} \times X^{El})$
where $\chi^{El} \sim N'(\overline{p_{E}}, \overline{z}_{E})$ $\pi^{El} \sim N'(\sigma, B_{E})$

$$0 \quad E[\chi^{El}] = \overline{p_{E}} + k_{E}(z_{E} + \sigma - C_{E}, \overline{p_{E}})$$

$$= \overline{p_{E}} + k_{E}(z_{E} + \sigma - C_{E}, \overline{p_{E}})$$

$$= \overline{p_{E}} + k_{E}(z_{E} + c_{E}, \overline{p_{E}})$$

$$= \mu_{E} \times$$

$$0 \quad E[(\chi^{El}) - E \chi^{Ell})(\chi^{Ell} - E \chi^{Ell})] - (\overline{p_{E}} + k_{E}(z_{E} - C_{E}, \overline{p_{E}}))]$$

$$= E[((\chi^{El}) + k_{E}(z_{E} + v^{Ell} - C_{E}, \chi^{Ell})] - (\overline{p_{E}} + k_{E}(z_{E} - C_{E}, \overline{p_{E}})])]$$

$$= E[((T - K_{E}C_{E})(\chi^{Ell} - \overline{p_{E}}) + K_{E} \nabla^{Ell})]$$

$$= E[(T - K_{E}C_{E})(\chi^{Ell} - \overline{p_{E}}) + K_{E} \nabla^{Ell})]$$

$$= E[(K_{E} \nabla^{Ell} - \overline{p_{E}})]^{T} (T - K_{E}C_{E})^{T}]$$

$$= E[(K_{E} \nabla^{Ell} - \overline{p_{E}})] + K_{E} \nabla^{Ell} - \overline{p_{E}}]^{T} (T - K_{E}C_{E})]$$

$$= \overline{z}_{E} + k_{E} C_{E} C_{E} C_{E} K_{E} - K_{E} C_{E} C_{E} K_{E} + k_{E} C_{E} C_{E} K_{E} + k_{E} C_{E} K_{E} + k_{E$$

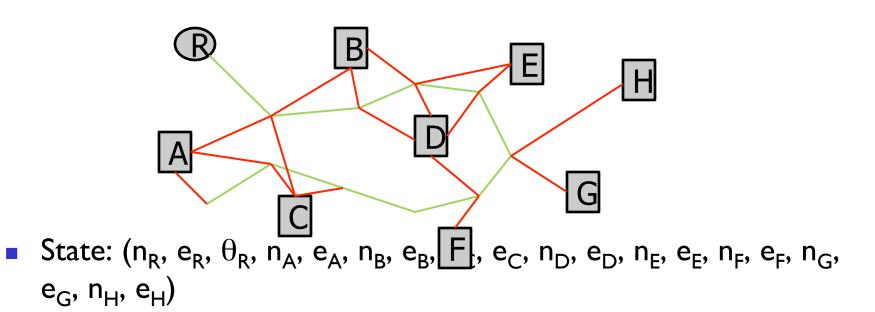
References for enKF

- Mandel, 2007 "A brief tutorial on the Ensemble Kalman Filter"
- Evensen, 2009, "The ensemble Kalman filter for combined state and parameter estimation"

KF Summary

- Kalman filter exact under linear Gaussian assumptions
- Extension to non-linear setting:
 - Extended Kalman filter
 - Unscented Kalman filter
- Extension to extremely large scale settings:
 - Ensemble Kalman filter
 - Sparse Information filter
- Main limitation: restricted to unimodal / Gaussian looking distributions
- Can alleviate by running multiple XKFs + keeping track of the likelihood; but this is still limited in terms of representational power unless we allow a very large number of them

EKF/UKF SLAM



Now map = location of landmarks (vs. gridmaps)

- Transition model:
 - Robot motion model; Landmarks stay in place

Simultaneous Localization and Mapping (SLAM)

- In practice: robot is not aware of all landmarks from the beginning
- Moreover: no use in keeping track of landmarks the robot has not received any measurements about
- → Incrementally grow the state when new landmarks get encountered.

Simultaneous Localization and Mapping (SLAM)

- Landmark measurement model: robot measures [x_k; y_k], the position of landmark k expressed in coordinate frame attached to the robot:
 - $h(n_R, e_R, \theta_R, n_k, e_k) = [x_k; y_k] = R(\theta) ([n_k; e_k] [n_R; e_R])$
- Often also some odometry measurements
 - E.g., wheel encoders
 - As they measure the control input being applied, they are often incorporated directly as control inputs (why?)

Victoria Park Data Set

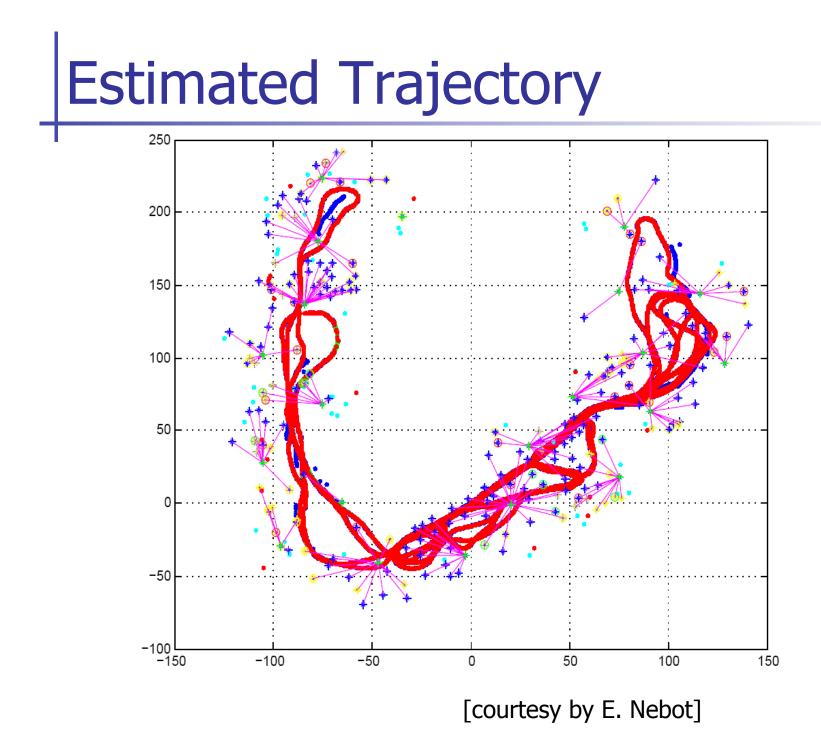
[courtesy by E. Nebot]

Victoria Park Data Set Vehicle

[courtesy by E. Nebot]

Data Acquisition

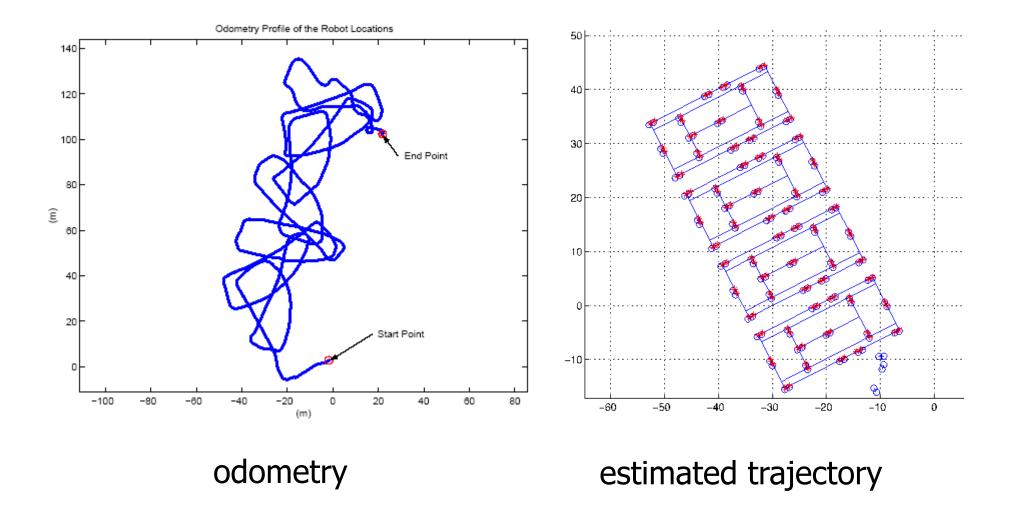
[courtesy by E. Nebot]



EKF SLAM Application

[courtesy by J. Leonard] 19

EKF SLAM Application



[courtesy by John Leonard] 20

Landmark-based Localization

EKF-SLAM: practical challenges

Defining landmarks

- Laser range finder: Distinct geometric features (e.g. use RANSAC to find lines, then use corners as features)
- Camera: "interest point detectors", textures, color, ...
- Often need to track multiple hypotheses
 - Data association/Correspondence problem: when seeing features that constitute a landmark --- Which landmark is it?
 - Closing the loop problem: how to know you are closing a loop?
 - → Can split off multiple EKFs whenever there is ambiguity;
 - Keep track of the likelihood score of each EKF and discard the ones with low likelihood score
- Computational complexity with large numbers of landmarks.