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n  Problem statement: 

n  Given a scan and a map, or a scan and a scan, or a map and a map, find the rigid-body 
transformation (translation+rotation) that aligns them best 

n  Benefits: 

n  Improved proposal distribution (e.g., gMapping) 

n  Scan-matching objectives, even when not meaningful probabilities, can be used in graphSLAM / 
pose-graph SLAM (see later) 

n  Approaches: 

n  Optimize over x: p(z | x, m), with: 
n  1. p(z | x, m)  = beam sensor model --- sensor beam full readings <-> map 
n  2. p(z | x, m)  = likelihood field model --- sensor beam endpoints <-> likelihood field 
n  3. p(mlocal | x, m) = map matching model --- local map <-> global map 

n  Reduce both entities to a set of points, align the point clouds through the Iterative Closest Points 
(ICP) 

n  4. cloud of points <-> cloud of points    --- sensor beam endpoints <-> sensor beam endpoints 

n  Other popular use (outside of SLAM): pose estimation and verification of presence for objects detected 
in point cloud data 

Scan Matching Overview 



n  1. Beam Sensor Model 
n  2. Likelihood Field Model 

n  3. Map Matching 

n  4. Iterated Closest Points (ICP) 

Outline 
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Beam-based Proximity Model 

Measurement noise 
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Beam-based Proximity Model 

Random measurement Max range 
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Resulting Mixture Density 
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How can we determine the model parameters? 
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Approximation Results 

Sonar 

Laser 

300cm 400cm 
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Summary Beam Sensor Model 

n  Assumes independence between beams. 
n  Justification? 

n  Overconfident! 

n  Models physical causes for measurements. 
n  Mixture of densities for these causes. 

n  Assumes independence between causes. Problem? 

n  Implementation 
n  Learn parameters based on real data. 

n  Different models should be learned for different angles at which the 
sensor beam hits the obstacle. 

n  Determine expected distances by ray-tracing. 

n  Expected distances can be pre-processed. 



n  Lack of smoothness 

n  P(z | x_t, m) is not smooth in x_t 

n  Problematic consequences: 
n  For sampling based methods: nearby points have very different 

likelihoods, which could result in requiring large numbers of 
samples to hit some “reasonably likely” states 

n  Hill-climbing methods that try to find the locally most likely x_t 
have limited abilities per many local optima 

n  Computationally expensive 

n  Need to ray-cast for every sensor reading 

n  Could pre-compute over discrete set of states (and then 
interpolate), but table is large per covering a 3-D space 
and in SLAM the map (and hence table) change over time 

Drawbacks Beam Sensor Model 



n  1. Beam Sensor Model 

n  2. Likelihood Field Model 
n  3. Map Matching 

n  4. Iterated Closest Points (ICP) 

Outline 



n  Overcomes lack-of-smoothness and computational limitations 
of Sensor Beam Model 

n  Ad-hoc algorithm: not considering a conditional probability 
relative to any meaningful generative model of the physics of 
sensors 

n  Works well in practice. 

n  Idea: Instead of following along the beam (which is expensive!) 
just check the end-point.  The likelihood p(z | xt, m) is given by: 

 with d = distance from end-point to nearest obstacle. 

Likelihood Field Model 
aka Beam Endpoint Model aka Scan-based Model 
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Algorithm: likelihood_field_range_finder_model(zt, xt, m) 

In practice: pre-compute “likelihood field” over (2-D) grid. 
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Example 

P(z|x,m) 

Map m 

Likelihood field 

Note: “p(z|x,m)” is not really a density, as it does not normalize to one when integrating over all z 
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San Jose Tech Museum 

Occupancy grid map Likelihood field 



Drawbacks of Likelihood Field Model 

n  No explicit modeling of people and other dynamics 

that might cause short readings 

n  No modeling of the beam --- treats sensor as if it 

can see through walls 

n  Cannot handle unexplored areas 

n  Fix: when endpoint in unexplored area,  

 have p(zt | xt, m) = 1 / zmax 
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Scan Matching 

n  As usual, maximize over xt  the likelihood p(zt | xt, m) 

n  The objective p(zt | xt, m) now corresponds to the likelihood 
field based score 
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Scan Matching 

n  Can also match two scans: for first scan extract likelihood 
field (treating each beam endpoint as occupied space) and use 
it to match the next scan.  [can also symmetrize this] 
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Properties of Scan-based Model 

n  Highly efficient, uses 2D tables only. 

n  Smooth w.r.t. to small changes in robot position. 

n  Allows gradient descent, scan matching. 

n  Ignores physical properties of beams. 



n  1. Beam Sensor Model 

n  2. Likelihood Field Model 

n  3. Map Matching 
n  4. Iterated Closest Points (ICP) 

Outline 



n  Generate small, local maps from sensor data and match local 
maps against global model.   

n  Correlation score: 

  with 

 

n  Likelihood interpretation: 

n  To obtain smoothness: convolve the map m with a Gaussian, 
and run map matching on the smoothed map 

 

Map Matching 



n  1. Beam Sensor Model 

n  2. Likelihood Field Model 

n  3. Map Matching 

n  4. Iterated Closest Points (ICP) 

Outline 
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Motivation 
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Known Correspondences 

n  Given: two corresponding point sets: 

•  Wanted: translation t and rotation R that minimizes the 
sum of the squared error:   

 Where
    

are corresponding points. and
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Key Idea 

n  If the correct correspondences are known, the correct 
relative rotation/translation can be calculated in closed form. 
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Center of Mass 

and 

are the centers of mass of the two point sets. 
Idea: 
•  Subtract the corresponding center of mass from every 

point in the two point sets before calculating the 
transformation. 

•  The resulting point sets are: 

and 
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SVD 

Let  

denote the singular value decomposition (SVD) of W by: 
 

where  are unitary, and 

are the singular values of W.  
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SVD 
Theorem (without proof): 
 
If rank(W) = 3, the optimal solution of E(R,t) is unique and is 
given by: 
 

The minimal value of error function at (R,t) is: 
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Unknown Data Association 

n  If correct correspondences are not known, it is generally 
impossible to determine the optimal relative rotation/
translation in one step 



30 

ICP-Algorithm 

n  Idea: iterate to find alignment 

n  Iterated Closest Points (ICP)  
[Besl & McKay 92] 

n  Converges if starting positions are  
“close enough” 
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ICP-Variants 

n  Variants on the following stages of ICP have been proposed: 

1. Point subsets (from one or both point 
sets) 

2. Weighting the correspondences  
3. Data association  
4. Rejecting certain (outlier) point pairs 
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Performance of Variants 

n  Various aspects of performance: 

n  Speed 

n  Stability (local minima) 

n  Tolerance wrt. noise and/or outliers 

n  Basin of convergence  
(maximum initial misalignment) 

n  Here: properties of  these variants 
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ICP Variants 

1. Point subsets (from one or both point 
sets) 

2. Weighting the correspondences 
3. Data association 
4. Rejecting certain (outlier) point pairs 
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Selecting Source Points 

n  Use all points 

n  Uniform sub-sampling 

n  Random sampling 

n  Feature based Sampling 

n  Normal-space sampling 

n  Ensure that samples have normals distributed as uniformly 
as possible 
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Normal-Space Sampling 

uniform sampling normal-space sampling 
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Comparison 

n  Normal-space sampling better for mostly-smooth areas with 
sparse features [Rusinkiewicz et al.] 

Random sampling Normal-space sampling 
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Feature-Based Sampling 

3D Scan (~200.000 Points) Extracted Features (~5.000 Points) 

•  try to find “important” points 
•  decrease the number of correspondences  
•  higher efficiency and higher accuracy  
•  requires preprocessing 
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Application 

[Nuechter et al., 04] 
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ICP Variants 

1. Point subsets (from one or both point 
sets) 

2. Weighting the correspondences 
3. Data association  
4. Rejecting certain (outlier) point pairs 
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Selection vs. Weighting 

n  Could achieve same effect with weighting 

n  Hard to guarantee that enough samples of important features 
except at high sampling rates 

n  Weighting strategies turned out to be dependent on the 
data. 

n  Preprocessing / run-time cost tradeoff (how to find the 
correct weights?) 
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ICP Variants 

1. Point subsets (from one or both point 
sets) 

2. Weighting the correspondences 
3. Data association  
4. Rejecting certain (outlier) point pairs 
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Data Association 

n  has greatest effect on convergence and speed 

n  Closest point 

n  Normal shooting 

n  Closest compatible point 

n  Projection 

n  Using kd-trees or oc-trees 
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Closest-Point Matching 

n  Find closest point in other the point set 

Closest-point matching generally stable, 
but slow and requires preprocessing 
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Normal Shooting 

n  Project along normal, intersect other point set 

Slightly better than closest point for smooth structures, 
worse for noisy or complex structures 
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Point-to-Plane Error Metric 

n  Using point-to-plane distance instead of point-to-point lets 
flat regions slide along each other [Chen & Medioni 91] 
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Projection 

n  Finding the closest point is the most expensive stage of the 
ICP algorithm 

n  Idea: simplified nearest neighbor search 

n  For range images, one can project the points according to 
the view-point [Blais 95] 
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Projection-Based Matching 

n  Slightly worse alignments per iteration 

n  Each iteration is one to two orders of magnitude faster than 
closest-point 

n  Requires point-to-plane error metric 
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Closest Compatible Point 

n  Improves the  previous two variants by considering the 
compatibility of the points 

n  Compatibility can be based on normals, colors, etc. 

n  In the limit, degenerates to feature matching 
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ICP Variants 

1. Point subsets (from one or both point 
sets) 

2. Weighting the correspondences 
3. Nearest neighbor search  
4. Rejecting certain (outlier) point pairs 
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Rejecting (outlier) point pairs 

n  sorting all correspondences with respect to there error and 
deleting  the worst t%, Trimmed ICP (TrICP) [Chetverikov et 
al. 2002] 

n  t is to Estimate with respect to the Overlap 

Problem: Knowledge about the overlap is 
necessary or has to be estimated 
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ICP-Summary 

n  ICP is a powerful algorithm for calculating the displacement 
between scans. 

n  The major problem is to determine the correct data 
associations. 

n  Given the correct data associations, the transformation can 
be computed efficiently using SVD. 


