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n  Value iteration with function approximation 

n  Linear programming with function approximation 

Outline 



Value Iteration 
n  Algorithm: 

n  Start with        for all s. 

n  For i=1, … , H 
 For all states s 2 S:  

 

 

n               = the expected sum of rewards accumulated when 
starting from state s and acting optimally for a horizon of i steps 

n               = the optimal action when in state s and getting to act 
for a horizon of i steps 

Impractical for 
large state spaces 



n  state: board configuration + shape of the falling piece ~2200 states! 

n  action: rotation and translation applied to the falling piece 

n  22 features aka basis functions Ái 

n  Ten basis functions, 0, . . . , 9, mapping the state to the height h[k] of each of the ten 
columns. 

n  Nine basis functions, 10, . . . , 18, each mapping the state to the absolute difference 
between heights of successive columns: |h[k+1] − h[k]|, k = 1, . . . , 9. 

n  One basis function, 19, that maps state to the maximum column height: maxk h
[k] 

n  One basis function, 20, that maps state to the number of ’holes’ in the board. 

n  One basis function, 21, that is equal to 1 in every state. 

Example: tetris 

[Bertsekas & Ioffe, 1996 (TD); Bertsekas & Tsitsiklis 1996 (TD);Kakade 2002 (policy gradient); Farias & Van Roy, 2006 (approximate LP)] 

V̂θ(s) =
21�

i=0

θiφi(s) = θ�φ(s)



Function Approximation 

V(s) =           +      “distance to closest ghost”                      
  +      “distance to closest power pellet”                     
  +      “in dead-end”      
  +      “closer to power pellet than ghost is”   
  + … 

       =   

θ0 θ1
θ2
θ3

n�

i=0

θiφi(s) = θ�φ(s)

θ4



n  0’th order approximation (1-nearest neighbor): 

Function Approximation 

. . . . 

. . . . 

. . . . 

x1 x2 x3 x4 

x5 x6 x7 x8 

x9 x10 x11 x12 

. s 

V̂ (s) = V̂ (x4) = θ4

Only store values for x1, x2, …, x12  
 – call these values  

Assign other states value of nearest “x” state 
θ1, θ2, . . . , θ12

φ(s) =





0
0
0
1
0
. . .
0





V̂ (s) = θ�φ(s)



n  1’th order approximation (k-nearest neighbor interpolation): 

Function Approximation 

. . . . 

. . . . 

. . . . 

x1 x2 x3 x4 

x5 x6 x7 x8 

x9 x10 x11 x12 

. s 

Only store values for x1, x2, …, x12  
 – call these values  

Assign other states interpolated value of nearest 4 “x” states 
θ1, θ2, . . . , θ12

V̂ (s) = θ�φ(s)

V̂ (s) = φ1(s)θ1 + φ2(s)θ2 + φ5(s)θ5 + φ6(s)θ6

φ(s) =





0.2
0.6
0
0

0.05
0.15
0
. . .
0







n  Examples: 

n     

n    

n     

n     

     

S = R, V̂ (s) = θ1 + θ2s

S = R, V̂ (s) = θ1 + θ2s+ θ3s
2

S = R, V̂ (s) =
n�

i=0

θis
i

Function Approximation 

S, V̂ (s) = log(
1

1 + exp(θ�φ(s))
)



n  Main idea: 

n  Use approximation         of the true value function      , 
n       is a free parameter to be chosen from its domain         

n  Representation size:          à downto: 

 + : less parameters to estimate 

 - : less expressiveness, typically there exist many V for which there 
 is no     such that      

 

   

Function Approximation 

V

|S| |Θ|

Θθ

θ V̂θ = V

V̂θ



n  Given: 

n  set of examples 

n  Asked for: 

n  “best”  

n  Representative approach: find      through least squares: 

Supervised Learning 

(s(1), V (s(1))), , (s(2), V (s(2))), . . . , (s(m), V (s(m)))

V̂θ

min
θ∈Θ

m�

i=1

(V̂θ(s
(i))− V (s(i)))2

θ



n  Linear regression 

Supervised Learning Example 

0 20 0 

Error or “residual” 

Prediction 

Observation 

min
θ0,θ1

n�

i=1

(θ0 + θ1x
(i) − y(i))2



n  To avoid overfitting: reduce number of features used 

n  Practical approach: leave-out validation 

n  Perform fitting for different choices of feature sets using 
just 70% of the data 

n  Pick feature set that led to highest quality of fit on the 
remaining 30% of data 

Overfitting 



n  Function approximation through supervised learning 

 

BUT:  where do the supervised examples come from? 

Status 



Value Iteration with Function Approximation 

n  Pick some                            (typically                          ) 

n  Initialize by choosing some setting for  

n  Iterate for i = 0, 1, 2, …, H: 

n  Step 1: Bellman back-ups 

n  Step 2: Supervised learning 

    find             as the solution of: 

S� ⊆ S |S�| << |S|
θ(0)

min
θ

�

s∈S�

�
V̂θ(i+1)(s)− V̄i+1(s)

�2

θ(i+1)

∀s ∈ S� : V̄i+1(s) ← max
a

�

s�

T (s, a, s�)
�
R(s, a, s�) + γV̂θ(i)(s�)

�



n  Mini-tetris: two types of blocks, can only choose translation 
(not rotation) 

n  Example state: 

n  Reward = 1  for placing a block 

n  Sink state / Game over is reached when block is placed 
such that part of it extends above the red rectangle 

n  If you have a complete row, it gets cleared 

Value Iteration with Function 
Approximation --- Example 



 

 

S’ = {       ,     , 

 

 

 

 

       ,     }  

Value Iteration with Function 
Approximation --- Example 



S’ = {   ,    ,       ,   } 

 

Value Iteration with Function 
Approximation --- Example 

n  10 features aka basis functions Ái 

n  Four basis functions, 0, . . . , 3, mapping the state to the height h[k] of each of 
the four columns. 

n  Three basis functions, 4, . . . , 6, each mapping the state to the absolute 
difference between heights of successive columns: |h[k+1] － h[k]|, k = 1, . . . , 
3. 

n  One basis function, 7, that maps state to the maximum column height: maxk 
h[k] 

n  One basis function, 8, that maps state to the number of ’holes’ in the board. 

n  One basis function, 9, that is equal to 1 in every state. 

n  Init \theta^{(0)} = ( -1, -1, -1, -1, -2, -2, -2, -3, -2, 10) 



n  Bellman back-ups for the states in S’: 

 

Value Iteration with Function 
Approximation --- Example 

V(          ) = max {0.5 *(1+° V(       ))+0.5*(1 +° V(       ) ) ,   

           0.5 *(1+° V(       ))+0.5*(1 +° V(       ) ) ,   

           0.5 *(1+° V(       ))+0.5*(1 +° V(       ) ) ,   

           0.5 *(1+° V(       ))+0.5*(1 +° V(       ) ) ,   



n  Bellman back-ups for the states in S’: 

 

Value Iteration with Function 
Approximation --- Example 

V(          ) = max {0.5 *(1+° V(       ))+0.5*(1 +° V(       ) ) ,   

           0.5 *(1+° V(       ))+0.5*(1 +° V(       ) ) ,   

           0.5 *(1+° V(       ))+0.5*(1 +° V(       ) ) ,   

           0.5 *(1+° V(       ))+0.5*(1 +° V(       ) ) ,   



S’ = {   ,    ,       ,   } 

 

Value Iteration with Function 
Approximation --- Example 

n  10 features aka basis functions Ái 

n  Four basis functions, 0, . . . , 3, mapping the state to the height h[k] of each of 
the four columns. 

n  Three basis functions, 4, . . . , 6, each mapping the state to the absolute 
difference between heights of successive columns: |h[k+1] － h[k]|, k = 1, . . . , 
3. 

n  One basis function, 7, that maps state to the maximum column height: maxk 
h[k] 

n  One basis function, 8, that maps state to the number of ’holes’ in the board. 

n  One basis function, 9, that is equal to 1 in every state. 

n  Init θ(0) = (−1,−1,−1,−1,−2,−2,−2,−3,−2, 20)



n  Bellman back-ups for the states in S’: 

 

Value Iteration with Function 
Approximation --- Example 

V(          )=max {0.5 *(1+°     (       ))+0.5*(1 +°     (       ) ) ,   

           0.5 *(1+°     (       ))+0.5*(1 +°     (       ) ) ,   

           0.5 *(1+°     (       ))+0.5*(1 +°     (       ) ) ,   

           0.5 *(1+°     (       ))+0.5*(1 +°     (       ) )}   

θ�φ

θ�φ

θ�φ

θ�φ

θ�φ

θ�φ

θ�φ

θ�φ

(6,2,4,0, 4, 2, 4, 6, 0, 1) (6,2,4,0, 4, 2, 4, 6, 0, 1) 

(2,6,4,0, 4, 2, 4, 6, 0, 1) (2,6,4,0, 4, 2, 4, 6, 0, 1) 

(sink-state, V=0) (sink-state, V=0) 

(0,0,2,2, 0,2,0, 2, 0, 1) (0,0,2,2, 0,2,0, 2, 0, 1) 



n  Bellman back-ups for the states in S’: 

 

Value Iteration with Function 
Approximation --- Example 

V(          )=max {0.5 *(1+°      -30      )+0.5*(1 +°    -30       ),   

           0.5 *(1+°      -30      )+0.5*(1 +°   -30       ),   

           0.5 *(1+°       0      )+0.5*(1 +°       0      ),   

           0.5 *(1+°       6    )+0.5*(1 +°        6      ),   

= 6.4   (for ° = 0.9)  



n  Bellman back-ups for the second state in S’: 

 

Value Iteration with Function 
Approximation --- Example 

V(          )=max {0.5 *(1+°     (       ))+0.5*(1 +°     (       ) ) ,   

           0.5 *(1+°     (       ))+0.5*(1 +°     (       ) ) ,   

           0.5 *(1+°     (       ))+0.5*(1 +°     (       ) ) ,   

           0.5 *(1+°     (       ))+0.5*(1 +°     (       ) )}   

θ�φ

θ�φ

θ�φ

θ�φ

θ�φ

θ�φ

θ�φ

θ�φ

(0,0,0,0, 0,0,0, 0, 0, 1) 

(sink-state, V=0) (sink-state, V=0) 

(sink-state, V=0) (sink-state, V=0) 

(sink-state, V=0) (sink-state, V=0) 

θ(0) = (−1,−1,−1,−1,−2,−2,−2,−3,−2, 20)

(0,0,0,0, 0,0,0, 0, 0, 1) 
-> V = 20 -> V = 20 = 19 



n  Bellman back-ups for the third state in S’: 

 

Value Iteration with Function 
Approximation --- Example 

V(          )=max {0.5 *(1+°     (       ))+0.5*(1 +°     (       ) ) ,   

           0.5 *(1+°     (       ))+0.5*(1 +°     (       ) ) ,   

           0.5 *(1+°     (       ))+0.5*(1 +°     (       ) ) ,   

θ�φ

θ�φ

θ�φ

θ�φ

θ�φ

θ�φ
(0,0,0,0, 0,0,0, 0, 0, 1) 

θ(0) = (−1,−1,−1,−1,−2,−2,−2,−3,−2, 20)

(0,0,0,0, 0,0,0, 0, 0, 1) 
-> V = 20 -> V = 20 

= 19 

(2,4,4,0, 2,0,4, 4, 0, 1) (2,4,4,0, 2,0,4, 4, 0, 1) 
-> V = -14 -> V = -14 

(4,4,0,0, 0,4,0, 4, 0, 1) (4,4,0,0, 0,4,0, 4, 0, 1) 
-> V = -8 -> V = -8 



n  Bellman back-ups for the fourth state in S’: 

 

Value Iteration with Function 
Approximation --- Example 

V(          )=max {0.5 *(1+°     (       ))+0.5*(1 +°     (       ) ) ,   

           0.5 *(1+°     (       ))+0.5*(1 +°     (       ) ) ,   

           0.5 *(1+°     (       ))+0.5*(1 +°     (       ) ) ,   

θ�φ

θ�φ

θ�φ

θ�φ

θ�φ

θ�φ
(4,0,6,6, 4,6,0, 6, 4, 1) 

θ(0) = (−1,−1,−1,−1,−2,−2,−2,−3,−2, 20)

(4,0,6,6, 4,6,0, 6, 4, 1) 
-> V = -42 -> V = -42 

= -29.6 

(4,6,6,0, 2,0,6, 6, 4, 1) (4,6.6,0, 2,0,6, 6, 4, 1) 
-> V = -38 -> V = -38 

(6,6,4,0, 0,2,4, 6, 4, 1) (6,6,4,0, 0,2,4, 6, 4, 1) 
-> V = -34 -> V = -34 



n  After running the Bellman 
back-ups for all 4 states in 
S’ we have: 

Value Iteration with Function 
Approximation --- Example 

V(          )= 6.4 

V(          )= -29.6 

V(          )= 19 

V(          )= 19 

n  We now run supervised learning 
on these 4 examples to find a new 
µ:  

 

à Running least squares gives new µ  

min
θ

(6.4− θ�φ( ))2

+(19− θ�φ( ))2

+(19− θ�φ( ))2

+((−29.6)− θ�φ( ))2

(2,2,4,0, 0,2,4, 4, 0, 1) 

(4,4,4,0, 0,0,4, 4, 0, 1) 

(2,2,0,0, 0,2,0, 2, 0, 1) 

(4,0,4,0, 4,4,4, 4, 0, 1) 

θ(1) = (0.195, 6.24,−2.11, 0,−6.05, 0.13,−2.11, 2.13, 0, 1.59)



 

Potential guarantees? 



Simple example** 

Function approximator:  [1 2] * µ 

µ 2µ 



Simple example** 



n  Definition.  An operator G is a non-expansion with respect 
to a norm || . ||  if 

n  Fact.  If the operator F is a ° contraction with respect to a 
norm || . || and the operator G is a non-expansion with 
respect to the same norm, then the sequential application of 
the operators G and F is a °-contraction, i.e.,  

n  Corollary.  If the supervised learning step is a non-
expansion, then iteration in value iteration with function 
approximation is a °-contraction, and in this case we have a 
convergence guarantee. 

Composing operators** 



n  Examples:  

n  nearest neighbor (aka state aggregation) 

n  linear interpolation over triangles (tetrahedrons, …) 

 

Averager function approximators 
are non-expansions** 



Averager function approximators 
are non-expansions** 



 

[Example taken from Gordon, 1995.] 

Linear regression L ** 



n  I.e., if we pick a non-expansion function approximator which 
can approximate J* well, then we obtain a good value 
function estimate. 

n  To apply to discretization: use continuity assumptions to 
show that J* can be approximated well by chosen 
discretization scheme 

Guarantees for fixed point** 



n  Value iteration with function approximation 

n  Linear programming with function approximation 

Outline 



 

µ0 is a probability distribution over S, with µ0(s)> 0 for all s 2 S. 

 

 

 

Infinite Horizon Linear Program 

Theorem.  V* is the solution to the above LP. 

min
V

�

s∈S

µ0(s)V (s)

s.t. V (s) ≥
�

s�

T (s, a, s�) [R(s, a, s�) + γV (s�)] , ∀s ∈ S, a ∈ A



   

n  Let:                                ,  and consider S’ rather than S: 

à Linear program that finds  

Infinite Horizon Linear Program 

V (s) = θ�φ(s)

min
V

�

s∈S

µ0(s)V (s)

s.t. V (s) ≥
�

s�

T (s, a, s�) [R(s, a, s�) + γV (s�)] , ∀s ∈ S, a ∈ A

min
θ

�

s∈S�

µ0(s)θ
�φ(s)

s.t. θ�φ(s) ≥
�

s�

T (s, a, s�)
�
R(s, a, s�) + γθ�φ(s�)

�
, ∀s ∈ S�, a ∈ A

V̂θ(s) = θ�φ(s)



n  LP solver will converge 

n  Solution quality: [de Farias and Van Roy, 2002] 

Assuming one of the features is the feature that is equal to 
one for all states, and assuming S’=S we have that: 

 

 

(slightly weaker, probabilistic guarantees hold for S’ not 
equal to S, these guarantees require size of S’ to grow as the 
number of features grows) 

Approximate Linear Program – 
Guarantees** 

min
θ

�

s∈S�

µ0(s)θ
�φ(s)

s.t. θ�φ(s) ≥
�

s�

T (s, a, s�)
�
R(s, a, s�) + γθ�φ(s�)

�
, ∀s ∈ S�, a ∈ A

�V ∗ − Φθ�1,µ0 ≤ 2

1− γ
min
θ

�V ∗ − Φθ�∞


