
Function Approximation

Pieter Abbeel
UC Berkeley EECS

TexPoint fonts used in EMF.
Read the TexPoint manual before you delete this box.:
AAAAAAAAAAAA

n  Value iteration with function approximation

n  Linear programming with function approximation

Outline

Value Iteration
n  Algorithm:

n  Start with for all s.

n  For i=1, … , H
 For all states s 2 S:

n  = the expected sum of rewards accumulated when
starting from state s and acting optimally for a horizon of i steps

n  = the optimal action when in state s and getting to act
for a horizon of i steps

Impractical for
large state spaces

n  state: board configuration + shape of the falling piece ~2200 states!

n  action: rotation and translation applied to the falling piece

n  22 features aka basis functions Ái

n  Ten basis functions, 0, . . . , 9, mapping the state to the height h[k] of each of the ten
columns.

n  Nine basis functions, 10, . . . , 18, each mapping the state to the absolute difference
between heights of successive columns: |h[k+1] − h[k]|, k = 1, . . . , 9.

n  One basis function, 19, that maps state to the maximum column height: maxk h
[k]

n  One basis function, 20, that maps state to the number of ’holes’ in the board.

n  One basis function, 21, that is equal to 1 in every state.

Example: tetris

[Bertsekas & Ioffe, 1996 (TD); Bertsekas & Tsitsiklis 1996 (TD);Kakade 2002 (policy gradient); Farias & Van Roy, 2006 (approximate LP)]

V̂θ(s) =
21�

i=0

θiφi(s) = θ�φ(s)

Function Approximation

V(s) = + “distance to closest ghost”
 + “distance to closest power pellet”
 + “in dead-end”
 + “closer to power pellet than ghost is”
 + …

 =

θ0 θ1
θ2
θ3

n�

i=0

θiφi(s) = θ�φ(s)

θ4

n  0’th order approximation (1-nearest neighbor):

Function Approximation

. . . .

. . . .

. . . .

x1 x2 x3 x4

x5 x6 x7 x8

x9 x10 x11 x12

. s

V̂ (s) = V̂ (x4) = θ4

Only store values for x1, x2, …, x12
 – call these values

Assign other states value of nearest “x” state
θ1, θ2, . . . , θ12

φ(s) =

0
0
0
1
0
. . .
0

V̂ (s) = θ�φ(s)

n  1’th order approximation (k-nearest neighbor interpolation):

Function Approximation

. . . .

. . . .

. . . .

x1 x2 x3 x4

x5 x6 x7 x8

x9 x10 x11 x12

. s

Only store values for x1, x2, …, x12
 – call these values

Assign other states interpolated value of nearest 4 “x” states
θ1, θ2, . . . , θ12

V̂ (s) = θ�φ(s)

V̂ (s) = φ1(s)θ1 + φ2(s)θ2 + φ5(s)θ5 + φ6(s)θ6

φ(s) =

0.2
0.6
0
0

0.05
0.15
0
. . .
0

n  Examples:

n 

n 

n 

n 

S = R, V̂ (s) = θ1 + θ2s

S = R, V̂ (s) = θ1 + θ2s+ θ3s
2

S = R, V̂ (s) =
n�

i=0

θis
i

Function Approximation

S, V̂ (s) = log(
1

1 + exp(θ�φ(s))
)

n  Main idea:

n  Use approximation of the true value function ,
n  is a free parameter to be chosen from its domain

n  Representation size: à downto:

 + : less parameters to estimate

 - : less expressiveness, typically there exist many V for which there
 is no such that

Function Approximation

V

|S| |Θ|

Θθ

θ V̂θ = V

V̂θ

n  Given:

n  set of examples

n  Asked for:

n  “best”

n  Representative approach: find through least squares:

Supervised Learning

(s(1), V (s(1))), , (s(2), V (s(2))), . . . , (s(m), V (s(m)))

V̂θ

min
θ∈Θ

m�

i=1

(V̂θ(s
(i))− V (s(i)))2

θ

n  Linear regression

Supervised Learning Example

0 20 0

Error or “residual”

Prediction

Observation

min
θ0,θ1

n�

i=1

(θ0 + θ1x
(i) − y(i))2

n  To avoid overfitting: reduce number of features used

n  Practical approach: leave-out validation

n  Perform fitting for different choices of feature sets using
just 70% of the data

n  Pick feature set that led to highest quality of fit on the
remaining 30% of data

Overfitting

n  Function approximation through supervised learning

BUT: where do the supervised examples come from?

Status

Value Iteration with Function Approximation

n  Pick some (typically)

n  Initialize by choosing some setting for

n  Iterate for i = 0, 1, 2, …, H:

n  Step 1: Bellman back-ups

n  Step 2: Supervised learning

 find as the solution of:

S� ⊆ S |S�| << |S|
θ(0)

min
θ

�

s∈S�

�
V̂θ(i+1)(s)− V̄i+1(s)

�2

θ(i+1)

∀s ∈ S� : V̄i+1(s) ← max
a

�

s�

T (s, a, s�)
�
R(s, a, s�) + γV̂θ(i)(s�)

�

n  Mini-tetris: two types of blocks, can only choose translation
(not rotation)

n  Example state:

n  Reward = 1 for placing a block

n  Sink state / Game over is reached when block is placed
such that part of it extends above the red rectangle

n  If you have a complete row, it gets cleared

Value Iteration with Function
Approximation --- Example

S’ = { , ,

 , }

Value Iteration with Function
Approximation --- Example

S’ = { , , , }

Value Iteration with Function
Approximation --- Example

n  10 features aka basis functions Ái

n  Four basis functions, 0, . . . , 3, mapping the state to the height h[k] of each of
the four columns.

n  Three basis functions, 4, . . . , 6, each mapping the state to the absolute
difference between heights of successive columns: |h[k+1] － h[k]|, k = 1, . . . ,
3.

n  One basis function, 7, that maps state to the maximum column height: maxk
h[k]

n  One basis function, 8, that maps state to the number of ’holes’ in the board.

n  One basis function, 9, that is equal to 1 in every state.

n  Init \theta^{(0)} = (-1, -1, -1, -1, -2, -2, -2, -3, -2, 10)

n  Bellman back-ups for the states in S’:

Value Iteration with Function
Approximation --- Example

V() = max {0.5 *(1+° V())+0.5*(1 +° V()) ,

 0.5 *(1+° V())+0.5*(1 +° V()) ,

 0.5 *(1+° V())+0.5*(1 +° V()) ,

 0.5 *(1+° V())+0.5*(1 +° V()) ,

n  Bellman back-ups for the states in S’:

Value Iteration with Function
Approximation --- Example

V() = max {0.5 *(1+° V())+0.5*(1 +° V()) ,

 0.5 *(1+° V())+0.5*(1 +° V()) ,

 0.5 *(1+° V())+0.5*(1 +° V()) ,

 0.5 *(1+° V())+0.5*(1 +° V()) ,

S’ = { , , , }

Value Iteration with Function
Approximation --- Example

n  10 features aka basis functions Ái

n  Four basis functions, 0, . . . , 3, mapping the state to the height h[k] of each of
the four columns.

n  Three basis functions, 4, . . . , 6, each mapping the state to the absolute
difference between heights of successive columns: |h[k+1] － h[k]|, k = 1, . . . ,
3.

n  One basis function, 7, that maps state to the maximum column height: maxk
h[k]

n  One basis function, 8, that maps state to the number of ’holes’ in the board.

n  One basis function, 9, that is equal to 1 in every state.

n  Init θ(0) = (−1,−1,−1,−1,−2,−2,−2,−3,−2, 20)

n  Bellman back-ups for the states in S’:

Value Iteration with Function
Approximation --- Example

V()=max {0.5 *(1+° ())+0.5*(1 +° ()) ,

 0.5 *(1+° ())+0.5*(1 +° ()) ,

 0.5 *(1+° ())+0.5*(1 +° ()) ,

 0.5 *(1+° ())+0.5*(1 +° ())}

θ�φ

θ�φ

θ�φ

θ�φ

θ�φ

θ�φ

θ�φ

θ�φ

(6,2,4,0, 4, 2, 4, 6, 0, 1) (6,2,4,0, 4, 2, 4, 6, 0, 1)

(2,6,4,0, 4, 2, 4, 6, 0, 1) (2,6,4,0, 4, 2, 4, 6, 0, 1)

(sink-state, V=0) (sink-state, V=0)

(0,0,2,2, 0,2,0, 2, 0, 1) (0,0,2,2, 0,2,0, 2, 0, 1)

n  Bellman back-ups for the states in S’:

Value Iteration with Function
Approximation --- Example

V()=max {0.5 *(1+° -30)+0.5*(1 +° -30),

 0.5 *(1+° -30)+0.5*(1 +° -30),

 0.5 *(1+° 0)+0.5*(1 +° 0),

 0.5 *(1+° 6)+0.5*(1 +° 6),

= 6.4 (for ° = 0.9)

n  Bellman back-ups for the second state in S’:

Value Iteration with Function
Approximation --- Example

V()=max {0.5 *(1+° ())+0.5*(1 +° ()) ,

 0.5 *(1+° ())+0.5*(1 +° ()) ,

 0.5 *(1+° ())+0.5*(1 +° ()) ,

 0.5 *(1+° ())+0.5*(1 +° ())}

θ�φ

θ�φ

θ�φ

θ�φ

θ�φ

θ�φ

θ�φ

θ�φ

(0,0,0,0, 0,0,0, 0, 0, 1)

(sink-state, V=0) (sink-state, V=0)

(sink-state, V=0) (sink-state, V=0)

(sink-state, V=0) (sink-state, V=0)

θ(0) = (−1,−1,−1,−1,−2,−2,−2,−3,−2, 20)

(0,0,0,0, 0,0,0, 0, 0, 1)
-> V = 20 -> V = 20 = 19

n  Bellman back-ups for the third state in S’:

Value Iteration with Function
Approximation --- Example

V()=max {0.5 *(1+° ())+0.5*(1 +° ()) ,

 0.5 *(1+° ())+0.5*(1 +° ()) ,

 0.5 *(1+° ())+0.5*(1 +° ()) ,

θ�φ

θ�φ

θ�φ

θ�φ

θ�φ

θ�φ
(0,0,0,0, 0,0,0, 0, 0, 1)

θ(0) = (−1,−1,−1,−1,−2,−2,−2,−3,−2, 20)

(0,0,0,0, 0,0,0, 0, 0, 1)
-> V = 20 -> V = 20

= 19

(2,4,4,0, 2,0,4, 4, 0, 1) (2,4,4,0, 2,0,4, 4, 0, 1)
-> V = -14 -> V = -14

(4,4,0,0, 0,4,0, 4, 0, 1) (4,4,0,0, 0,4,0, 4, 0, 1)
-> V = -8 -> V = -8

n  Bellman back-ups for the fourth state in S’:

Value Iteration with Function
Approximation --- Example

V()=max {0.5 *(1+° ())+0.5*(1 +° ()) ,

 0.5 *(1+° ())+0.5*(1 +° ()) ,

 0.5 *(1+° ())+0.5*(1 +° ()) ,

θ�φ

θ�φ

θ�φ

θ�φ

θ�φ

θ�φ
(4,0,6,6, 4,6,0, 6, 4, 1)

θ(0) = (−1,−1,−1,−1,−2,−2,−2,−3,−2, 20)

(4,0,6,6, 4,6,0, 6, 4, 1)
-> V = -42 -> V = -42

= -29.6

(4,6,6,0, 2,0,6, 6, 4, 1) (4,6.6,0, 2,0,6, 6, 4, 1)
-> V = -38 -> V = -38

(6,6,4,0, 0,2,4, 6, 4, 1) (6,6,4,0, 0,2,4, 6, 4, 1)
-> V = -34 -> V = -34

n  After running the Bellman
back-ups for all 4 states in
S’ we have:

Value Iteration with Function
Approximation --- Example

V()= 6.4

V()= -29.6

V()= 19

V()= 19

n  We now run supervised learning
on these 4 examples to find a new
µ:

à Running least squares gives new µ

min
θ

(6.4− θ�φ())2

+(19− θ�φ())2

+(19− θ�φ())2

+((−29.6)− θ�φ())2

(2,2,4,0, 0,2,4, 4, 0, 1)

(4,4,4,0, 0,0,4, 4, 0, 1)

(2,2,0,0, 0,2,0, 2, 0, 1)

(4,0,4,0, 4,4,4, 4, 0, 1)

θ(1) = (0.195, 6.24,−2.11, 0,−6.05, 0.13,−2.11, 2.13, 0, 1.59)

Potential guarantees?

Simple example**

Function approximator: [1 2] * µ

µ 2µ

Simple example**

n  Definition. An operator G is a non-expansion with respect
to a norm || . || if

n  Fact. If the operator F is a ° contraction with respect to a
norm || . || and the operator G is a non-expansion with
respect to the same norm, then the sequential application of
the operators G and F is a °-contraction, i.e.,

n  Corollary. If the supervised learning step is a non-
expansion, then iteration in value iteration with function
approximation is a °-contraction, and in this case we have a
convergence guarantee.

Composing operators**

n  Examples:

n  nearest neighbor (aka state aggregation)

n  linear interpolation over triangles (tetrahedrons, …)

Averager function approximators
are non-expansions**

Averager function approximators
are non-expansions**

[Example taken from Gordon, 1995.]

Linear regression L **

n  I.e., if we pick a non-expansion function approximator which
can approximate J* well, then we obtain a good value
function estimate.

n  To apply to discretization: use continuity assumptions to
show that J* can be approximated well by chosen
discretization scheme

Guarantees for fixed point**

n  Value iteration with function approximation

n  Linear programming with function approximation

Outline

µ0 is a probability distribution over S, with µ0(s)> 0 for all s 2 S.

Infinite Horizon Linear Program

Theorem. V* is the solution to the above LP.

min
V

�

s∈S

µ0(s)V (s)

s.t. V (s) ≥
�

s�

T (s, a, s�) [R(s, a, s�) + γV (s�)] , ∀s ∈ S, a ∈ A

n  Let: , and consider S’ rather than S:

à Linear program that finds

Infinite Horizon Linear Program

V (s) = θ�φ(s)

min
V

�

s∈S

µ0(s)V (s)

s.t. V (s) ≥
�

s�

T (s, a, s�) [R(s, a, s�) + γV (s�)] , ∀s ∈ S, a ∈ A

min
θ

�

s∈S�

µ0(s)θ
�φ(s)

s.t. θ�φ(s) ≥
�

s�

T (s, a, s�)
�
R(s, a, s�) + γθ�φ(s�)

�
, ∀s ∈ S�, a ∈ A

V̂θ(s) = θ�φ(s)

n  LP solver will converge

n  Solution quality: [de Farias and Van Roy, 2002]

Assuming one of the features is the feature that is equal to
one for all states, and assuming S’=S we have that:

(slightly weaker, probabilistic guarantees hold for S’ not
equal to S, these guarantees require size of S’ to grow as the
number of features grows)

Approximate Linear Program –
Guarantees**

min
θ

�

s∈S�

µ0(s)θ
�φ(s)

s.t. θ�φ(s) ≥
�

s�

T (s, a, s�)
�
R(s, a, s�) + γθ�φ(s�)

�
, ∀s ∈ S�, a ∈ A

�V ∗ − Φθ�1,µ0 ≤ 2

1− γ
min
θ

�V ∗ − Φθ�∞

