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gMapping Overview

= gMapping is probably most used SLAM algorithm

= Implementation available on openslam.org (which has many
more resources)

= Currently the standard algorithm on the PR2




Problem Formulation

= Given

= observationsz,,=2,...,7Z

= odometry measurements U, = U,, ..., U,
= Find

= Posterior p(X,, m|Z,, U,..)

= With m a grid map



Key Ideas

m |Rao-Blackwellized Particle Filter

= Each particle = sample of history of robot poses + posterior over maps given the
sample pose history; approximate posterior over maps by distribution with all
probability mass on the most likely map whenever posterior is needed

= Proposal distribution 7

= Approximate the optimal sequential proposal distribution p*(X.) = p(X, | X'\...;» Z.c
u I:t) X P(Zt | mit_l, Xt ) P(Xt | Xit-l’ Ut) [note integral over all maps > most likely map only]
. find the local optimum argmax, p*(x)

2. sample Xk around the local optimum, with weights Wk = p*(x)
= 3. fit a Gaussian over the weighted samples

= 4. this Gaussian is an approximation of the optimal sequential proposal p*

= Sample from (approximately) optimal sequential proposal

s Weight update for optimal sequential proposal is p(Z, | X|..;» Z;...;» U;..) = P(Z, |

mi . Xi U I), which is efficiently approximated from the same samples as
above b

= Resampling based on the effective sample size S



Algorithm 1 Improved RBPF for Map Learning

Require:
Si—1, the sample set of the previous time step
z¢, the most recent laser scan
uy—1, the most recent odometry measurement
Ensure:
S, the new sample set
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Motion Model

= Gaussian (EKF) approximation of odometry model from
Probabilistic Robotics, pp. 121-123 [fix slide: for my edition
of the book those pages describe the velocity motion model,
not the odometry motion model]

= Discrete time steps (=when updates happen) correspond to
whenever the robot has traveled about 0.5m

= From paper: “In general, there are more sophisticated techniques
estimating the motion of the robot. However, we use that model to
estimate a movement between two filter updates which is performed
after the robot traveled around 0.5 m. In this case, this approximation
works well and we did not observed a significant difference between the
EKF-like model and the in general more accurate sample- based velocity
motion model [41]”



Scan-Matching

= Find argmaxx_t P(Zt | mit-l’ Xt) P(Xt | Xit-l’ ut)

= p(X.| X, U) : Gaussian approximation of motion model,
see previous slide

= p(z, | M, Xt) : “any scan-matching technique [...] can be
used”

= Used by gMapping: “beam endpoint model” = likelihood
field

More on scan-matching in separate set of slides



Experiments

= “Most maps generated can be magnified up to a resolution of
| cm without observing considerable inconsistencies”

= “Even in big real world datasets covering [...] 250m by 250m,

[..] never required more than 80 particles to build accurate
maps.”
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Fig. 7. Success rate of our algorithm in different environments depending
on the number of particles. Each success rate was determined using 20 runs.
For the experiment MIT-2 we disabled the adaptive resampling.

Correctness evaluated through visual inspection by non-authors



Effect of Proposal Distribution
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Fig. 11. Different mapping results for the same data set obtained using
the proposal distribution which ignores the odometry (left image) and which
considers the odometry when drawing the next generation of particles (right



