#### **Inverse Reinforcement Learning**

Pieter Abbeel
UC Berkeley EECS

#### **Inverse Reinforcement Learning**

# [equally good titles: Inverse Optimal Control, Inverse Optimal Planning]

Pieter Abbeel
UC Berkeley EECS

#### High-level picture



#### Inverse RL:

Given  $\pi^*$  and T, can we recover R? More generally, given execution traces, can we recover R?

## Motivation for inverse RL

- Scientific inquiry
  - Model animal and human behavior
    - E.g., bee foraging, songbird vocalization. [See intro of Ng and Russell, 2000 for a brief overview.]
- Apprenticeship learning/Imitation learning through inverse RL
  - Presupposition: reward function provides the most succinct and transferable definition of the task
  - Has enabled advancing the state of the art in various robotic domains
- Modeling of other agents, both adversarial and cooperative

#### Lecture outline

- Example applications
- Inverse RL vs. behavioral cloning
- Historical sketch of inverse RL
- Mathematical formulations for inverse RL
- Case studies

#### Examples

- Simulated highway driving
  - Abbeel and Ng, ICML 2004,
  - Syed and Schapire, NIPS 2007



- Ratliff, Bagnell and Zinkevich, ICML 2006
- Parking lot navigation
  - Abbeel, Dolgov, Ng and Thrun, IROS 2008
- Urban navigation
  - Ziebart, Maas, Bagnell and Dey, AAAI 2008









#### Examples (ctd)

- Human path planning
  - Mombaur, Truong and Laumond, AURO 2009



- Human goal inference
  - Baker, Saxe and Tenenbaum, Cognition 2009





- Quadruped locomotion
  - Ratliff, Bradley, Bagnell and Chestnutt, NIPS 2007
  - Kolter, Abbeel and Ng, NIPS 2008



#### Urban navigation

Reward function for urban navigation?



→ destination prediction

#### Lecture outline

- Example applications
- Inverse RL vs. behavioral cloning
- Historical sketch of inverse RL
- Mathematical formulations for inverse RL
- Case studies

### Problem setup

#### Input:

- State space, action space
- Transition model  $P_{sa}(s_{t+1} \mid s_t, a_t)$
- No reward function
- Teacher's demonstration:  $s_0$ ,  $a_0$ ,  $s_1$ ,  $a_1$ ,  $s_2$ ,  $a_2$ , ... (= trace of the teacher's policy  $\pi^*$ )

#### Inverse RL:

- Can we recover R?
- Apprenticeship learning via inverse RL
  - Can we then use this R to find a good policy ?
- Behavioral cloning
  - Can we directly learn the teacher's policy using supervised learning?

#### Behavioral cloning

- Formulate as standard machine learning problem
  - Fix a policy class
    - E.g., support vector machine, neural network, decision tree, deep belief net, ...
  - Estimate a policy (=mapping from states to actions) from the training examples  $(s_0, a_0), (s_1, a_1), (s_2, a_2), ...$

- Two of the most notable success stories:
  - Pomerleau, NIPS 1989: ALVINN
  - Sammut et al., ICML 1992: Learning to fly (flight sim)

# Inverse RL vs. behavioral cloning

• Which has the most succinct description:  $\pi^*$  vs.  $R^*$ ?

 Especially in planning oriented tasks, the reward function is often much more succinct than the optimal policy.

#### Lecture outline

- Example applications
- Inverse RL vs. behavioral cloning
- Historical sketch of inverse RL
- Mathematical formulations for inverse RL
- Case studies

## Inverse RL history

- 1964, Kalman posed the inverse optimal control problem and solved it in the 1D input case
- 1994, Boyd+al.: a linear matrix inequality (LMI)
   characterization for the general linear quadratic setting
- 2000, Ng and Russell: first MDP formulation, reward function ambiguity pointed out and a few solutions suggested
- 2004, Abbeel and Ng: inverse RL for apprenticeship learning---reward feature matching
- 2006, Ratliff+al: max margin formulation

#### Inverse RL history

- 2007, Ratliff+al: max margin with boosting---enables large vocabulary of reward features
- 2007, Ramachandran and Amir [R&A], and Neu and Szepesvari: reward function as characterization of policy class
- 2008, Kolter, Abbeel and Ng: hierarchical max-margin
- 2008, Syed and Schapire: feature matching + game theoretic formulation
- 2008, Ziebart+al: feature matching + max entropy
- 2008, Abbeel+al: feature matching -- application to learning parking lot navigation style
- 2009, Baker, Saxe, Tenenbaum: same formulation as [R&A], investigation of understanding of human inverse planning inference
- 2009, Mombaur, Truong, Laumond: human path planning
- Active inverse RL? Inverse RL w.r.t. minmax control, partial observability, learning stage (rather than observing optimal policy), ...?

#### Lecture outline

- Example applications
- Inverse RL vs. behavioral cloning
- Historical sketch of inverse RL
- Mathematical formulations for inverse RL
- Case studies

## Three broad categories of formalizations

Max margin

Feature expectation matching

Interpret reward function as parameterization of a policy class

#### Basic principle

- Find a reward function  $R^*$  which explains the expert behaviour.
- Find R\* such that

$$E\left[\sum_{t=0}^{\infty} \gamma^t R^*(s_t) | \pi^*\right] \ge E\left[\sum_{t=0}^{\infty} \gamma^t R^*(s_t) | \pi\right] \quad \forall \pi$$

- In fact a convex feasibility problem, but many challenges:
  - R=0 is a solution, more generally: reward function ambiguity
  - We typically only observe expert traces rather than the entire expert policy  $\pi^*$  --- how to compute left-hand side?
  - Assumes the expert is indeed optimal --- otherwise infeasible
  - Computationally: assumes we can enumerate all policies

## Feature based reward function

Let  $R(s) = w^{\top} \phi(s)$ , where  $w \in \Re^n$ , and  $\phi: S \to \Re^n$ .

$$E\left[\sum_{t=0}^{\infty} \gamma^{t} R(s_{t}) | \pi\right] = E\left[\sum_{t=0}^{\infty} \gamma^{t} w^{\top} \phi(s_{t}) | \pi\right]$$
$$= w^{\top} E\left[\sum_{t=0}^{\infty} \gamma^{t} \phi(s_{t}) | \pi\right]$$
$$= w^{\top} \mu(\pi)$$

Expected cumulative discounted sum of feature values or "feature expectations"

Subbing into  $\mathrm{E}[\sum_{t=0}^{\infty} \gamma^t R^*(s_t) | \pi^*] \geq \mathrm{E}[\sum_{t=0}^{\infty} \gamma^t R^*(s_t) | \pi] \quad \forall \pi$  gives us:

Find 
$$w^*$$
 such that  $w^{*\top}\mu(\pi^*) \ge w^{*\top}\mu(\pi)$   $\forall \pi$ 

#### Feature based reward function

$$E\left[\sum_{t=0}^{\infty} \gamma^t R^*(s_t) | \pi^*\right] \ge E\left[\sum_{t=0}^{\infty} \gamma^t R^*(s_t) | \pi\right] \quad \forall \pi$$



Let  $R(s) = w^{\top} \phi(s)$ , where  $w \in \mathbb{R}^n$ , and  $\phi : S \to \mathbb{R}^n$ .

Find  $w^*$  such that  $w^{*\top}\mu^(\pi^*) \ge w^{*\top}\mu(\pi) \quad \forall \pi$ 

- Feature expectations can be readily estimated from sample trajectories.
- The number of expert demonstrations required scales with the number of features in the reward function.
- The number of expert demonstration required does not depend on
  - Complexity of the expert's optimal policy  $\pi^*$
  - Size of the state space

### Recap of challenges

Let 
$$R(s) = w^{\top} \phi(s)$$
, where  $w \in \Re^n$ , and  $\phi : S \to \Re^n$ .  
Find  $w^*$  such that  $w^{*\top} \mu(\pi^*) \ge w^{*\top} \mu(\pi) \quad \forall \pi$ 

#### Challenges:

- Assumes we know the entire expert policy  $\pi^*$   $\rightarrow$  assumes we can estimate expert feature expectations
- R=0 is a solution (now: w=0), more generally: reward function ambiguity
- Assumes the expert is indeed optimal---became even more of an issue with the more limited reward function expressiveness!
- Computationally: assumes we can enumerate all policies

## Ambiguity

Standard max margin:

$$\min_{w} \|w\|_{2}^{2}$$
  
s.t.  $w^{\top} \mu(\pi^{*}) \ge w^{\top} \mu(\pi) + 1 \quad \forall \pi$ 

"Structured prediction" max margin:

$$\min_{w} \|w\|_{2}^{2}$$
s.t.  $w^{\top} \mu^{(\pi^{*})} \ge w^{\top} \mu(\pi) + m(\pi^{*}, \pi) \quad \forall \pi$ 

- Justification: margin should be larger for policies that are very different from  $\pi^*$ .
- Example:  $m(\pi, \pi^*)$  = number of states in which  $\pi^*$  was observed and in which  $\pi$  and  $\pi^*$  disagree

# Expert suboptimality

Structured prediction max margin with slack variables:

$$\min_{w,\xi} ||w||_2^2 + C\xi$$
  
s.t.  $w^{\top} \mu(\pi^*) \ge w^{\top} \mu(\pi) + m(\pi^*, \pi) - \xi \quad \forall \pi$ 

 Can be generalized to multiple MDPs (could also be same MDP with different initial state)

$$\min_{w,\xi^{(i)}} \|w\|_2^2 + C \sum_{i} \xi^{(i)}$$
s.t.  $w^{\top} \mu(\pi^{(i)*}) \ge w^{\top} \mu(\pi^{(i)}) + m(\pi^{(i)*}, \pi^{(i)}) - \xi^{(i)} \quad \forall i, \pi^{(i)}$ 

# Complete max-margin formulation

$$\min_{w} \|w\|_{2}^{2} + C \sum_{i} \xi^{(i)}$$
s.t.  $w^{\top} \mu(\pi^{(i)*}) \ge w^{\top} \mu(\pi^{(i)}) + m(\pi^{(i)*}, \pi^{(i)}) - \xi^{(i)} \quad \forall i, \pi^{(i)}$ 

[Ratliff, Zinkevich and Bagnell, 2006]

- Resolved: access to  $\pi^*$ , ambiguity, expert suboptimality
- One challenge remains: very large number of constraints
  - Ratliff+al use subgradient methods.
  - In this lecture: constraint generation

## Constraint generation

İnitialize  $\Pi^{(i)} = \{\}$  for all i and then iterate

Solve

$$\min_{w} \|w\|_{2}^{2} + C \sum_{i} \xi^{(i)}$$
s.t.  $w^{\top} \mu(\pi^{(i)*}) \ge w^{\top} \mu(\pi^{(i)}) + m(\pi^{(i)*}, \pi^{(i)}) - \xi^{(i)} \quad \forall i, \forall \pi^{(i)} \in \Pi^{(i)}$ 

For current value of w, find the most violated constraint for all i by solving:

$$\max_{\pi^{(i)}} w^{\top} \mu(\pi^{(i)}) + m(\pi^{(i)*}, \pi^{(i)})$$

- = find the optimal policy for the current estimate of the reward function (+ loss augmentation m)
- For all i add  $\pi^{(i)}$  to  $\Pi^{(i)}$
- If no constraint violations were found, we are done.

#### Visualization in feature expectation space

• Every policy  $\pi$  has a corresponding feature expectation vector  $\mu(\pi)$ , which for visualization purposes we assume to be 2D



#### Constraint generation

• Every policy  $\pi$  has a corresponding feature expectation vector  $\mu(\pi)$ , which for visualization purposes we assume to be 2D



#### Three broad categories of formalizations

- Max margin (Ratliff+al, 2006)
  - Feature boosting [Ratliff+al, 2007]
  - Hierarchical formulation [Kolter+al, 2008]

- Feature expectation matching (Abbeel+Ng, 2004)
  - Two player game formulation of feature matching (Syed+Schapire, 2008)
  - Max entropy formulation of feature matching (Ziebart+al, 2008)
- Interpret reward function as parameterization of a policy class.
   (Neu+Szepesvari, 2007; Ramachandran+Amir, 2007; Baker, Saxe, Tenenbaum, 2009; Mombaur, Truong, Laumond, 2009)

## Feature matching

 Inverse RL starting point: find a reward function such that the expert outperforms other policies

Let 
$$R(s) = w^{\top} \phi(s)$$
, where  $w \in \Re^n$ , and  $\phi: S \to \Re^n$ .

Find 
$$w^*$$
 such that  $w^{*\top}\mu^(\pi^*) \ge w^{*\top}\mu(\pi) \quad \forall \pi$ 

• Observation in Abbeel and Ng, 2004: for a policy  $\pi$  to be guaranteed to perform as well as the expert policy  $\pi^*$ , it suffices that the feature expectations match:

$$\|\mu(\pi) - \mu(\pi^*)\|_1 \le \epsilon$$

implies that for all w with  $||w||_{\infty} \le 1$ :

$$|w^{*\top}\mu(\pi) - w^{*\top}\mu(\pi^*)| \le \epsilon$$

#### Theoretical guarantees

#### Theorem.

To ensure with probability at least  $1-\delta$  that our algorithm returns a policy  $\pi$  such that

$$E[\frac{1}{T}\sum_{t}R_{w}^{*}(s_{t})|\pi] \geq E[\frac{1}{T}\sum_{t}R_{w}^{*}(s_{t})|\pi^{*}] - \epsilon.$$

it suffices that we run for  $\frac{4n}{\epsilon^2}$  iterations, we have  $m \geq \frac{2n}{\epsilon^2}\log\frac{2n}{\delta}$  demonstrations.

- Guarantee w.r.t. unrecoverable reward function of teacher.
- Sample complexity does *not* depend on complexity of teacher's policy  $\pi^*$ .

# Apprenticeship learning [Abbeel & Ng, 2004]

- Assume  $R_w(s) = w^{\top} \phi(s)$  for a feature map  $\phi : S \to \Re^n$ .
- Initialize: pick some controller  $\pi_0$ .
- Iterate for i = 1, 2, ...:
  - "Guess" the reward function:

Find a reward function such that the teacher maximally outperforms all previously found controllers.

$$\max_{\gamma,w:||w||_2 \le 1} \gamma$$

$$s.t. \quad w^\top \mu(\pi^*) \ge w^\top \mu(\pi) + \gamma \quad \forall \pi \in \{\pi_0, \pi_1, \dots, \pi_{i-1}\}$$

- Find optimal control policy  $\pi_i$  for the current guess of the reward function  $R_w$ .
- If  $\gamma \leq \varepsilon/2$  exit the algorithm.

## Algorithm example run



#### Suboptimal expert case



### Feature expectation matching

 If expert suboptimal then the resulting policy is a mixture of somewhat arbitrary policies which have expert in their convex hull.

 In practice: pick the best one of this set and pick the corresponding reward function.

#### Next:

- Syed and Schapire, 2008.
- Ziebart+al, 2008.

# Min-Max feature expectation matching Syed and Schapire (2008)

Additional assumption:  $w \ge 0$ ,  $\sum_i w_i = 1$ .



# Min-Max feature expectation matching Syed and Schapire (2008)

Additional assumption:  $w \ge 0$ ,  $\sum_i w_i = 1$ .



### Min max games

Example of standard min-max game setting:

rock-paper-scissors pay-off matrix:

maximizer

rock
paper
scissors

| rock | paper | scissors |
|------|-------|----------|
| 0    | 1     | -1       |
| -1   | 0     | 1        |
| 1    | -1    | 0        |
|      |       |          |

pay-off matrix G

$$\min_{w_m:w_m \ge 0, ||w_m||_1 = 1} \max_{w_M:w_M \ge 0, ||w_M||_1 = 1} w_m^\top G w_M$$

Nash equilibrium solution is mixed strategy: (1/3,1/3,1/3) for both players

# Min-Max feature expectation matching Syed and Schapire (2008)

Standard min-max game:

$$\min_{w_m:w_m \ge 0, \|w_m\|_1 = 1} \max_{w_M:w_M \ge 0, \|w_M\|_1 = 1} w_m^\top G w_M$$

Min-max inverse RL:

$$\min_{w:\|w\|_1=1, w\geq 0} \max_{\pi} w^{\top} (\mu(\pi) - \mu(\pi^*))$$

- Solution: maximize over weights  $\lambda$  which weigh the contribution of all policies  $\pi_1$ ,  $\pi_2$ , ...,  $\pi_N$  to the mixed policy.
- Formally:

$$\min_{w} \max_{\lambda} w^{\top} G \lambda \qquad G_{ij} = (\mu(\pi_j) - \mu(\pi^*))_i$$

 Remaining challenge: G very large! See paper for algorithm that only uses relevant parts of G. [Strong similarity with constraint generation schemes we have seen.]

# Maximum-entropy feature expectation matching --- Ziebart+al, 2008

Recall feature matching in suboptimal expert case:



# Maximum-entropy feature expectation matching --- Ziebart+al, 2008

 Maximize entropy of distributions over paths followed while satisfying the constraint of feature expectation matching:

$$\max_{P} -\sum_{\zeta} P(\zeta) \log P(\zeta)$$
  
s.t. 
$$\sum_{\zeta} P(\zeta) \mu(\zeta) = \mu(\pi^{*})$$

This turns out to imply that P is of the form:

$$P(\zeta) = \frac{1}{Z(w)} \exp(w^{\top} \mu(\zeta))$$

See paper for algorithmic details.

## Feature expectation matching

- If expert suboptimal:
  - Abbeel and Ng, 2004: resulting policy is a mixture of policies which have expert in their convex hull---In practice: pick the best one of this set and pick the corresponding reward function.
  - Syed and Schapire, 2008 recast the same problem in game theoretic form which, at cost of adding in some prior knowledge, results in having a unique solution for policy and reward function.
  - Ziebart+al, 2008 assume the expert stochastically chooses between paths where each path's log probability is given by its expected sum of rewards.

### Lecture outline

- Example applications
- Inverse RL vs. behavioral cloning
- Historical sketch of inverse RL
- Mathematical formulations for inverse RL
  - Max-margin
  - Feature matching
  - Reward function parameterizing the policy class
- Case studies

# Reward function parameterizing the policy class

Recall:

$$V^{*}(s;R) = R(s) + \gamma \max_{a} \sum_{s'} P(s'|s,a)V^{*}(s;R)$$

$$Q^{*}(s,a;R) = R(s) + \gamma \sum_{s'} P(s'|s,a)V^{*}(s;R)$$

Let's assume our expert acts according to:

$$\pi(a|s;R,\alpha) = \frac{1}{Z(s;R,\alpha)} \exp(\alpha Q^*(s,a;R))$$

• Then for any R and  $\alpha$ , we can evaluate the likelihood of seeing a set of state-action pairs as follows:

$$P((s_1, a_1)) \dots P((s_m, a_m)) = \frac{1}{Z(s_1; R, \alpha)} \exp(\alpha Q^*(s_1, a_1; R)) \dots \frac{1}{Z(s_m; R, \alpha)} \exp(\alpha Q^*(s_m, a_m; R))$$

# Reward function parameterizing the policy class

Assume our expert acts according to:

$$\pi(a|s;R,\alpha) = \frac{1}{Z(s;R,\alpha)} \exp(\alpha Q^*(s,a;R))$$

Then for any R and α, we can evaluate the likelihood of seeing a set of state-action pairs as follows:

$$P((s_1, a_1)) \dots P((s_m, a_m)) = \frac{1}{Z(s_1; R, \alpha)} \exp(\alpha Q^*(s_1, a_1; R)) \dots \frac{1}{Z(s_m; R, \alpha)} \exp(\alpha Q^*(s_m, a_m; R))$$

- Ramachandran and Amir, AAAI2007: MCMC method to sample from this distribution
- Neu and Szepesvari, UAI2007: gradient method to optimize the likelihood [MAP]
- Baker, Saxe and Tenenbaum, Cognition 2009: only 3 possible reward functions → tractable exact Bayesian inference

# Reward function parameterizing the policy class --- deterministic systems

Assume deterministic system  $x_{t+1} = f(x_t, u_t)$  and an observed trajectory  $(x_0^*, x_1^*, ..., x_T^*)$ 

Find reward function by solving:

$$\min_{w} \sum_{t=0}^{T} \|x_{t}^{*} - x_{t}^{w}\|_{2}$$
s.t.  $x^{w}$  is the solution of:
$$\max_{x} \sum_{t=0}^{T} \sum_{i} w_{i} \phi_{i}(x_{t})$$
s.t. $x_{t+1} = f(x_{t}, u_{t})$ 

$$x_{0} = x_{0}^{*}, \quad x_{T} = x_{T}^{*}$$

[Mombaur, Truong, Laumond, 2009]

# Lecture outline

- Example applications
- Inverse RL vs. behavioral cloning
- History of inverse RL
- Mathematical formulations for inverse RL
- Case studies: (1) Highway driving, (2) Crusher, (3)
   Parking lot navigation, (4) Route inference, (5) Human path planning, (6) Human inverse planning, (7)
   Quadruped locomotion

# Simulated highway driving



Abbeel and Ng, ICML 2004; Syed and Schapire, NIPS 2007

#### [Abbeel and Ng 2004]

# Highway driving

Teacher in Training World

Learned Policy in Testing World





#### Input:

- Dynamics model / Simulator  $P_{sa}(s_{t+1} \mid s_t, a_t)$
- Teacher's demonstration: 1 minute in "training world"
- Note: R\* is unknown.
- Reward features: 5 features corresponding to lanes/shoulders; 10 features corresponding to presence of other car in current lane at different distances

# More driving examples [Abbeel and Ng 2004]



In each video, the left sub-panel shows a demonstration of a different driving "style", and the right sub-panel shows the behavior learned from watching the demonstration.





# Max margin



[Ratliff + al, 2006/7/8]

# Max-margin



[Ratliff + al, 2006/7/8]

## Parking lot navigation



#### Reward function trades off:

- Staying "on-road,"
- Forward vs. reverse driving,
- Amount of switching between forward and reverse,
- Lane keeping,
- On-road vs. off-road,
- Curvature of paths.

[Abbeel et al., IROS 08]

## Experimental setup

Demonstrate parking lot navigation on "train parking lots."









- Run our apprenticeship learning algorithm to find the reward function.
- Receive "test parking lot" map + starting point and destination.
- Find the trajectory that maximizes the *learned reward* function for navigating the test parking lot.

# Nice driving style



# Sloppy driving-style



# "Don't mind reverse" driving-style















#### **Data Collection**







**25 Taxi Drivers** 



Over 100,000 miles

Ziebart+al, 2007/8/9

# **Destination Prediction**



- Reward features:
  - Time to destination
  - (Forward acceleration)<sup>2</sup>
  - (Sideways acceleration)<sup>2</sup>
  - (Rotational acceleration)<sup>2</sup>
  - Integral (angular error)<sup>2</sup>





#### Result:

- Time to destination:
- (Forward acceleration)<sup>2</sup> 1.2
- (Sideways acceleration)<sup>2</sup>
   1.7
- (Rotational acceleration)<sup>2</sup> 0.7
- Integral (angular error)<sup>2</sup> 5.2



[Mombaur, Truong, Laumond, 2009]



[Mombaur, Truong, Laumond, 2009]

### Goal inference

- Observe partial paths, predict goal. Goal could be either A, B, or C.
- + HMM-like extension: goal can change (with some probability over time).



### Goal inference



# Quadruped



Reward function trades off 25 features.

# Experimental setup

Demonstrate path across the "training terrain"



- Run our apprenticeship learning algorithm to find the reward function
- Receive "testing terrain"---height map.



• Find the optimal policy with respect to the *learned reward function* for crossing the testing terrain.

# Without learning



# With learned reward function



# Quadruped: Ratliff + al, 2007

- Run footstep planner as expert (slow!)
- Run boosted max margin to find a reward function that explains the center of gravity path of the robot (smaller state space)

 At control time: use the learned reward function as a heuristic for A\* search when performing footstep-level planning

# Summary

- Example applications
- Inverse RL vs. behavioral cloning
- Sketch of history of inverse RL
- Mathematical formulations for inverse RL
- Case studies

 Open directions: Active inverse RL, Inverse RL w.r.t. minmax control, partial observability, learning stage (rather than observing optimal policy), ... ?