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High-level picture

Dynamics 
Model T

Reinforcement

Probability 
distribution over next 
states given current 

state and actionDescribes desirability 
of being in a state.  

Reward 
Function R

Reinforcement

Learning / 

Optimal Control

Controller/

Policy π∗

Prescribes action to 
take for each state

Inverse RL: 
Given π*and T, can we recover R?
More generally, given execution traces, can we recover R?



� Scientific inquiry

� Model animal and human behavior

� E.g., bee foraging, songbird vocalization.  [See intro of Ng 
and Russell, 2000 for a brief overview.]

� Apprenticeship learning/Imitation learning through 

Motivation for inverse RL

Apprenticeship learning/Imitation learning through 
inverse RL

� Presupposition: reward function provides the most 
succinct and transferable definition of the task

� Has enabled advancing the state of the art in various 
robotic domains

� Modeling of other agents, both adversarial and 
cooperative



� Example applications

� Inverse RL vs. behavioral cloning

� Historical sketch of inverse RL

� Mathematical formulations for inverse RL

Lecture outline

� Case studies



� Simulated highway driving

� Abbeel and Ng, ICML 2004,

� Syed and Schapire, NIPS 2007

� Aerial imagery based navigation 

Examples

� Ratliff, Bagnell and Zinkevich, ICML 2006

� Parking lot navigation

� Abbeel, Dolgov, Ng and Thrun, IROS 2008

� Urban navigation

� Ziebart, Maas, Bagnell and Dey, AAAI 2008



� Human path planning

� Mombaur, Truong and Laumond, AURO 2009

� Human goal inference

� Baker, Saxe and Tenenbaum, Cognition 2009

Examples (ctd)

� Baker, Saxe and Tenenbaum, Cognition 2009

� Quadruped locomotion

� Ratliff, Bradley, Bagnell and Chestnutt, NIPS 2007

� Kolter, Abbeel and Ng, NIPS 2008



Urban navigation

� Reward function for urban navigation?

Ziebart, Maas, Bagnell and Dey AAAI 2008

� destination prediction



� Example applications

� Inverse RL vs. behavioral cloning
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� Input: 

� State space, action space

� Transition model   Psa(st+1 | st, at)

� No reward function

� Teacher’s demonstration: s0, a0, s1, a1, s2, a2, …

(= trace of the teacher’s policy π*)

Problem setup

(= trace of the teacher’s policy π*)

� Inverse RL: 

� Can we recover R ?

� Apprenticeship learning via inverse RL

� Can we then use this R to find a good policy ?

� Behavioral cloning

� Can we directly learn the teacher’s policy using supervised learning?



� Formulate as standard machine learning problem

� Fix a policy class

� E.g., support vector machine, neural network, decision tree, 
deep belief net, … 

� Estimate a policy (=mapping from states to actions) 
from the training examples  (s , a ), (s , a ), (s , a ), …

Behavioral cloning

from the training examples  (s0, a0), (s1, a1), (s2, a2), …

� Two of the most notable success stories:

� Pomerleau,  NIPS 1989: ALVINN 

� Sammut et al., ICML 1992: Learning to fly (flight sim)



� Which has the most succinct description: ππππ* vs. RRRR*?

� Especially in planning oriented tasks, the reward function 
is often much more succinct than the optimal policy.

Inverse RL vs. behavioral cloning

is often much more succinct than the optimal policy.
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� Historical sketch of inverse RL

� Mathematical formulations for inverse RL

Lecture outline

� Case studies



� 1964, Kalman posed the inverse optimal control problem 
and solved it in the 1D input case

� 1994, Boyd+al.: a linear matrix inequality (LMI) 
characterization for the general linear quadratic setting 

� 2000, Ng and Russell: first MDP formulation, reward 

Inverse RL history

� 2000, Ng and Russell: first MDP formulation, reward 
function ambiguity pointed out and a few solutions 
suggested

� 2004, Abbeel and Ng: inverse RL for apprenticeship 
learning---reward feature matching

� 2006, Ratliff+al: max margin formulation



� 2007, Ratliff+al: max margin with boosting---enables large vocabulary 
of reward features

� 2007, Ramachandran and Amir [R&A], and Neu and Szepesvari: reward 
function as characterization of policy class

� 2008, Kolter, Abbeel and Ng: hierarchical max-margin

� 2008, Syed and Schapire: feature matching + game theoretic 
formulation

Inverse RL history

formulation

� 2008, Ziebart+al: feature matching + max entropy

� 2008, Abbeel+al: feature matching -- application to learning parking lot 
navigation style

� 2009, Baker, Saxe, Tenenbaum: same formulation as [R&A], 
investigation of understanding of human inverse planning inference

� 2009, Mombaur, Truong, Laumond: human path planning

� Active inverse RL? Inverse RL w.r.t. minmax control, partial 
observability, learning stage (rather than observing optimal policy), … ?



� Example applications

� Inverse RL vs. behavioral cloning

� Historical sketch of inverse RL

� Mathematical formulations for inverse RL

Lecture outline

� Case studies



Three broad categories of formalizations

� Max margin 

� Feature expectation matching 

� Interpret reward function as parameterization of a policy class



� Find a reward function R* which explains the expert 

behaviour.

� Find R* such that

In fact a convex feasibility problem, but many challenges:

Basic principle

E[
∑∞

t=0 γtR∗(st)|π
∗] ≥ E[

∑∞
t=0 γtR∗(st)|π] ∀π

� In fact a convex feasibility problem, but many challenges:

� R=0 is a solution, more generally: reward function ambiguity

� We typically only observe expert traces rather than the entire expert 
policy π* --- how to compute left-hand side?

� Assumes the expert is indeed optimal --- otherwise infeasible

� Computationally: assumes we can enumerate all policies



� ff

Feature based reward function

Let R(s) = w⊤φ(s), where w ∈ ℜn, and φ : S → ℜn.

E[

∞∑

t=0

γtR(st)|π] = E[

∞∑

t=0

γtw⊤φ(st)|π]

= w⊤E[
∞∑

t=0

γtφ(st)|π]

� Subbing into

gives us:  

∑

t=0

|

= w⊤µ(π)

Expected cumulative discounted sum of 
feature values or “feature expectations”

E[
∑∞

t=0 γtR∗(st)|π
∗] ≥ E[

∑∞
t=0 γtR∗(st)|π] ∀π

Find w∗ such that w∗⊤µ(π∗) ≥ w∗⊤µ(π) ∀π



Feature based reward function

Let R(s) = w⊤φ(s), where w ∈ ℜn, and φ : S → ℜn.

Find w∗ such that w∗⊤µ(π∗) ≥ w∗⊤µ(π) ∀π

E[
∑∞

t=0 γtR∗(st)|π
∗] ≥ E[

∑∞
t=0 γtR∗(st)|π] ∀π

� Feature expectations can be readily estimated from sample trajectories.

� The number of expert demonstrations required scales with the number 
of features in the reward function.

� The number of expert demonstration required does not depend on

� Complexity of the expert’s optimal policy π*

� Size of the state space



� Challenges:

Assumes we know the entire expert policy π*  �

Recap of challenges

Let R(s) = w⊤φ(s), where w ∈ ℜn, and φ : S → ℜn.

Find w∗ such that w∗⊤µ(π∗) ≥ w∗⊤µ(π) ∀π

� Assumes we know the entire expert policy π*  �

assumes we can estimate expert feature expectations

� R=0 is a solution (now: w=0), more generally: reward 
function ambiguity

� Assumes the expert is indeed optimal---became even 
more of an issue with the more limited reward function 
expressiveness!

� Computationally: assumes we can enumerate all policies



� Standard max margin:

� “Structured prediction” max margin: 

Ambiguity

min
w
‖w‖22

s.t. w⊤µ(π∗) ≥ w⊤µ(π) + 1 ∀π

� “Structured prediction” max margin: 

� Justification: margin should be larger for policies that are 
very different from π*.

� Example: m(π, π*) = number of states in which π* was 
observed and in which π and π* disagree

min
w
‖w‖22

s.t. w⊤µ(π∗) ≥ w⊤µ(π) + m(π∗, π) ∀π



� Structured prediction max margin with slack variables:

Expert suboptimality

min
w,ξ

‖w‖22 + Cξ

s.t. w⊤µ(π∗) ≥ w⊤µ(π) + m(π∗, π)− ξ ∀π

� Can be generalized to multiple MDPs (could also be same 
MDP with different initial state)

min
w,ξ(i)

‖w‖22 + C
∑

i

ξ(i)

s.t. w⊤µ(π(i)∗) ≥ w⊤µ(π(i)) + m(π(i)∗, π(i))− ξ(i) ∀i, π(i)



Complete max-margin formulation

[Ratliff, Zinkevich and Bagnell, 2006]

min
w
‖w‖22 + C

∑

i

ξ(i)

s.t. w⊤µ(π(i)∗) ≥ w⊤µ(π(i)) + m(π(i)∗, π(i))− ξ(i) ∀i, π(i)

� Resolved: access to π*, ambiguity, expert suboptimality

� One challenge remains: very large number of 
constraints

� Ratliff+al use subgradient methods.

� In this lecture: constraint generation



Initialize Π(i) = {} for all i and then iterate

� Solve

Constraint generation

min
w
‖w‖22 + C

∑

i

ξ(i)

s.t. w⊤µ(π(i)∗) ≥ w⊤µ(π(i)) + m(π(i)∗, π(i))− ξ(i) ∀i, ∀π(i) ∈ Π(i)

� For current value of w, find the most violated constraint 
for all i by solving:

= find the optimal policy for the current estimate of the 
reward function (+ loss augmentation m)

� For all i add π(i) to Π(i)

� If no constraint violations were found, we are done.

max
π(i)

w⊤µ(π(i)) + m(π(i)∗, π(i))



� Every policy π has a corresponding feature expectation vector µ(π), 

which for visualization purposes we assume to be 2D

Visualization in feature expectation space

µ2

µ(π*)

E[

∞∑

t=0

γtR(st)|π] = w⊤µ(π)

max margin

structured max margin (?)

µ1

µ(π*)

wmm

wsmm



� Every policy π has a corresponding feature expectation vector µ(π), 

which for visualization purposes we assume to be 2D

Constraint generation

µ(π2)

µ2

µ(π*)

max
π

E[

∞∑

t=0

γtRw(st)|π] = max
π

w⊤µ(π)

constraint generation:

µ1

µ(π0)

µ(π2) µ(π*)

µ(π1)
w(2)

w(3) = wmm



Three broad categories of formalizations

� Max margin (Ratliff+al, 2006)

� Feature boosting [Ratliff+al, 2007]

� Hierarchical formulation [Kolter+al, 2008]

� Feature expectation matching (Abbeel+Ng, 2004)� Feature expectation matching (Abbeel+Ng, 2004)

� Two player game formulation of feature matching 
(Syed+Schapire, 2008)

� Max entropy formulation of feature matching (Ziebart+al,2008)

� Interpret reward function as parameterization of a policy class. 
(Neu+Szepesvari, 2007; Ramachandran+Amir, 2007; Baker, Saxe, 
Tenenbaum, 2009; Mombaur, Truong, Laumond, 2009)



� Inverse RL starting point: find a reward function such 
that the expert outperforms other policies

Feature matching

Let R(s) = w⊤φ(s), where w ∈ ℜn, and φ : S → ℜn.

Find w∗ such that w∗⊤µ(π∗) ≥ w∗⊤µ(π) ∀π

� Observation in Abbeel and Ng, 2004: for a policy π to be 
guaranteed to perform as well as the expert policy π*, it 

suffices that the feature expectations match:

implies that for all w with        

‖µ(π)− µ(π∗)‖1 ≤ ǫ

‖w‖∞ ≤ 1:

|w∗⊤µ(π)− w∗⊤µ(π∗)| ≤ ǫ



Theoretical guarantees

� Guarantee w.r.t. unrecoverable reward function of teacher.

� Sample complexity does not depend on complexity of 
teacher’s policy π*.



Apprenticeship learning [Abbeel & Ng, 2004]

� Assume 

� Initialize: pick some controller π0.

� Iterate for i = 1, 2, … :

� “Guess” the reward function:  

Find a reward function such that the teacher maximally outperforms  Find a reward function such that the teacher maximally outperforms  
all previously found controllers.  

� Find optimal control policy πi for the current guess of the reward 
function Rw.

� If          , exit the algorithm.



Algorithm example run

µ(π1)

µ(π2)

µ2

w(3)

µ(πE)

µ1

µ(π0)

w(1)

w(2)
µ(π1)



Suboptimal expert case

µ(π )

µ2

� Can match expert by stochastically mixing between 
3 policies

� In practice: for any w* one of π, π, π outperforms 
π* � pick one of them.

� Generally: for k-dimensional feature space the user 
picks between k+1 policies

µ1

µ(π0)

µ(π1)

µ(π2)
µ(π*)

picks between k+1 policies



� If expert suboptimal then the resulting policy is a 
mixture of somewhat arbitrary policies which have 
expert in their convex hull.

� In practice: pick the best one of this set and pick the 

Feature expectation matching

� In practice: pick the best one of this set and pick the 
corresponding reward function.

� Next:

� Syed and Schapire, 2008.

� Ziebart+al, 2008.



Min-Max feature expectation matching 
Syed and Schapire (2008)

µ2

Additional assumption: w ≥ 0,
∑

i wi = 1.

Any policy in this area performs at least 
as well as expert.

How to find policy on pareto optimal 
curve in this area + corresponding 

µ1

µ(π*)

E[

∞∑

t=0

γtR(st)|π] = w⊤µ(π)

curve in this area + corresponding 
reward function?



Min-Max feature expectation matching 
Syed and Schapire (2008)

µ2

Additional assumption: w ≥ 0,
∑

i wi = 1.

minwmaxπ w⊤(µ(π)− µ(π∗))

µ1

µ(π*)

E[

∞∑

t=0

γtR(st)|π] = w⊤µ(π)



� Example of standard min-max game setting:

rock-paper-scissors pay-off matrix:

maximizer

rock paper scissors

rock 0 1 -1

Min max games

rock 0 1 -1

paper -1 0 1

scissors 1 -1 0

Nash equilibrium solution is mixed strategy: (1/3,1/3,1/3) for both players

m
in

im
iz

e
r

pay-off matrix G

min
wm:wm≥0,‖wm‖1=1

max
wM :wM≥0,‖wM‖1=1

w⊤
mGwM



� Standard min-max game:

� Min-max inverse RL:

Min-Max feature expectation matching 
Syed and Schapire (2008)

min
w:‖w‖1=1,w≥0

max
π

w⊤(µ(π)− µ(π∗))

min
wm:wm≥0,‖wm‖1=1

max
wM :wM≥0,‖wM‖1=1

w⊤
mGwM

� Solution: maximize over weights λ which weigh the 
contribution of all policies π, π, …, πN to the mixed policy.

� Formally: 

� Remaining challenge: G very large!  See paper for algorithm 
that only uses relevant parts of G.  [Strong similarity with 
constraint generation schemes we have seen.]

min
w

max
λ

w⊤Gλ Gij = (µ(πj)− µ(π∗))i



� Recall feature matching in suboptimal expert case:

Maximum-entropy feature expectation 
matching --- Ziebart+al, 2008

µ(π )

µ2

µ(π3)

µ1

µ(π0)

µ(π1)

µ(π2)
µ(π*)

µ(π5)

µ(π4)



� Maximize entropy of distributions over paths followed 
while satisfying the constraint of feature expectation 
matching:

Maximum-entropy feature expectation 
matching --- Ziebart+al, 2008

maxP −
∑

ζ

P (ζ) logP (ζ)

s.t.
∑

P (ζ)µ(ζ) = µ(π∗)

� This turns out to imply that P is of the form:

� See paper for algorithmic details.

s.t.
∑

ζ

P (ζ)µ(ζ) = µ(π∗)

P (ζ) =
1

Z(w)
exp(w⊤µ(ζ))



� If expert suboptimal:

� Abbeel and Ng, 2004: resulting policy is a mixture of 
policies which have expert in their convex hull---In 
practice: pick the best one of this set and pick the 
corresponding reward function.

Feature expectation matching

� Syed and Schapire, 2008 recast the same problem in 
game theoretic form which, at cost of adding in some 
prior knowledge, results in having a unique solution 
for policy and reward function.

� Ziebart+al, 2008 assume the expert stochastically 
chooses between paths where each path’s log 
probability is given by its expected sum of rewards.



� Example applications

� Inverse RL vs. behavioral cloning

� Historical sketch of inverse RL

� Mathematical formulations for inverse RL

Max-margin

Lecture outline

� Max-margin

� Feature matching

� Reward function parameterizing the policy class

� Case studies



� Recall:

Reward function parameterizing the 
policy class

V ∗(s;R) = R(s) + γ max
a

∑

s′

P (s′|s, a)V ∗(s;R)

Q∗(s, a;R) = R(s) + γ
∑

s′

P (s′|s, a)V ∗(s;R)

� Let’s assume our expert acts according to:

� Then for any R and α, we can evaluate the likelihood of 

seeing a set of state-action pairs as follows:

π(a|s;R, α) =
1

Z(s;R, α)
exp(αQ∗(s, a;R))

P ((s1, a1)) . . . P ((sm, am)) =
1

Z(s1;R, α)
exp(αQ∗(s1, a1;R)) . . .

1

Z(sm;R, α)
exp(αQ∗(sm, am;R))



� Assume our expert acts according to:

� Then for any R and α, we can evaluate the likelihood of 

seeing a set of state-action pairs as follows:

Reward function parameterizing the 
policy class

π(a|s;R, α) =
1

Z(s;R, α)
exp(αQ∗(s, a;R))

P ((s , a )) . . . P ((s , a )) =
1

exp(αQ∗(s , a ;R)) . . .
1

exp(αQ∗(s , a ;R))

� Ramachandran and Amir, AAAI2007: MCMC method to sample 
from this distribution

� Neu and Szepesvari, UAI2007: gradient method to optimize 
the likelihood [MAP]

� Baker, Saxe and Tenenbaum, Cognition 2009: only 3 possible 
reward functions � tractable exact Bayesian inference

P ((s1, a1)) . . . P ((sm, am)) =
Z(s1;R, α)

exp(αQ∗(s1, a1;R)) . . .
Z(sm;R, α)

exp(αQ∗(sm, am;R))



� Assume deterministic system xt+1 = f(xt, ut) and an 
observed trajectory (x0*, x1*, …, xT*)

� Find reward function by solving:

Reward function parameterizing the policy 
class --- deterministic systems

minw
∑T

t=0 ‖x
∗
t − xwt ‖2

s.t. xwis the solution of:

maxx
∑T

t=0

∑
i wiφi(xt)

s.t.xt+1 = f(xt, ut)

x0 = x∗0, xT = x∗T

[Mombaur, Truong, Laumond, 2009]



� Example applications

� Inverse RL vs. behavioral cloning

� History of inverse RL

� Mathematical formulations for inverse RL

Lecture outline

� Case studies: (1) Highway driving, (2) Crusher, (3) 
Parking lot navigation, (4) Route inference, (5) Human 
path planning, (6) Human inverse planning, (7) 
Quadruped locomotion



Simulated highway driving

Abbeel and Ng, ICML 2004; Syed and Schapire, NIPS 2007



Highway driving

Teacher in Training World Learned Policy in Testing World

[Abbeel and Ng 2004]

� Input: 

� Dynamics model / Simulator   Psa(st+1 | st, at)

� Teacher’s demonstration: 1 minute in “training world”

� Note: R* is unknown.

� Reward features: 5 features corresponding to lanes/shoulders; 10 features 
corresponding to presence of other car in current lane at different distances  



More driving examples
Driving 

demonstration
Driving 

demonstration
Learned 
behavior

Learned 
behavior

[Abbeel and Ng 2004]

In each video, the left sub-panel shows a

demonstration of a different driving

“style”, and the right sub-panel shows

the behavior learned from watching the

demonstration.



Crusher

RSS 2008: Dave Silver and Drew Bagnell



Learning movie



Max margin

[Ratliff + al, 2006/7/8]



Max-margin

[Ratliff + al, 2006/7/8]



Parking lot navigation

[Abbeel et al., IROS 08]

� Reward function trades off: 

� Staying “on-road,”

� Forward vs. reverse driving,

� Amount of switching between forward and reverse, 

� Lane keeping,

� On-road vs. off-road,

� Curvature of paths.



� Demonstrate parking lot navigation on “train parking lots.”

Experimental setup

� Run our apprenticeship learning algorithm to find the reward 
function.

� Receive “test parking lot” map + starting point and 
destination. 

� Find the trajectory that maximizes the learned reward 
function for navigating the test parking lot.



Nice driving style



Sloppy driving-style



“Don’t mind reverse” driving-style



Only 35% of routes are 
“fastest” (Letchner, Krumm, & 

Horvitz 2006)



Time Money

Stress SkillStress Skill

Ziebart+al, 2007/8/9



Time

Fuel

Safety

Stress

Distance

Speed

Type

Lanes Stress

Skill

Mood

Lanes

Turns

Context

Ziebart+al, 2007/8/9



Data Collection

25 Taxi Drivers

Length
Speed
Road 
Type
Lanes

Accidents
Construction
Congestion
Time of day

Over 100,000 miles Ziebart+al, 2007/8/9



Destination Prediction



� Reward features:

� Time to destination

� (Forward acceleration)2

� (Sideways acceleration)2

Human path planning

� (Sideways acceleration)2

� (Rotational acceleration)2

� Integral (angular error)2

[Mombaur, Truong, Laumond, 2009]



� Result:

� Time to destination: 1

� (Forward acceleration)2 1.2

� (Sideways acceleration)2 1.7

Human path planning

� (Sideways acceleration) 1.7

� (Rotational acceleration)2 0.7

� Integral (angular error)2 5.2

[Mombaur, Truong, Laumond, 2009]



Human path planning

[Mombaur, Truong, Laumond, 2009]



Human path planning

[Mombaur, Truong, Laumond, 2009]



� Observe partial paths, predict goal.  Goal could be either 
A, B, or C.

� + HMM-like extension: goal can change (with some 
probability over time).

Goal inference

[Baker, Saxe, Tenenbaum, 2009]



� Observe partial paths, predict goal.  Goal could be either 
A, B, or C.

Goal inference

[Baker, Saxe, Tenenbaum, 2009]



Quadruped

� Reward function trades off 25 features.

Hierarchical max margin [Kolter, Abbeel & Ng, 2008]



� Demonstrate path across the “training terrain”

� Run our apprenticeship learning algorithm to find the 
reward function

Experimental setup

reward function

� Receive “testing terrain”---height map. 

� Find the optimal policy with respect to the learned 
reward function for crossing the testing terrain.

Hierarchical max margin [Kolter, Abbeel & Ng, 2008]



Without learning



With learned reward function



� Run footstep planner as expert (slow!)

� Run boosted max margin to find a reward function that 
explains the center of gravity path of the robot (smaller 
state space)

Quadruped: Ratliff + al, 2007

� At control time: use the learned reward function as a 
heuristic for A* search when performing footstep-level 
planning



� Example applications

� Inverse RL vs. behavioral cloning

� Sketch of history of inverse RL

� Mathematical formulations for inverse RL

Summary

� Case studies

� Open directions: Active inverse RL, Inverse RL w.r.t. 
minmax control, partial observability, learning stage 
(rather than observing optimal policy), … ?


