
SCP for trajectory optimization
 Basic problem

 minimize_{traj} path_length + other costs
 subject to pose constraints, joint limits, “no collisions”

 Why use optimization for planning?
 Solve high-DOF problems
 Smooth solutions
 Encode preferences
 It’s wicked fast

 Why SCP rather than some other descent method?
 Deals with hard constraints and discontinuous costs

stably and robustly
 Solver isn’t the bottleneck anyway

1
Wednesday, October 31, 12

 repeat until convergence:
 convexify objective and constraints
 solve convex approximation to problem
 recalculate actual objective
 if objective decreased

 shrink trust region
 else

 accept update

minimize f(x)
subject to g(x) ≤ 0

where f, g, may not be
convex

2

SCP in general

Wednesday, October 31, 12

Non-overlap constraints
 Any kind of collision cost/constraint is non-convex, but we

can locally approximate it as convex
 simple example: consider constraint

 For convex C, this is an “OR” of linear constraints
 Approximation: only impose constraint/cost from closest

side to current x

3

x /2 C

C x

Wednesday, October 31, 12

Signed distance
 distance(shape1, shape2) = length of shortest translation

that puts them in contact. (for non-overlapping shapes)
 penetration_depth(shape1, shape2) = length of shortest

translation that takes them out of contact (for overlapping
shapes)

 signed_distance(shape1, shape2) =
 if overlapping: - penetration_depth
 else: + distance

 There are efficient algorithms for convex shapes, based
on considering Minkowski difference
 GJK: find if convex set contains the origin
 EPA: find distance from origin to exterior

4
Wednesday, October 31, 12

Collision cost
 Decompose the robot into convex parts
 Cost:

 Convexification
 detect all near-collisions
 for each near-collision, linearize position of closest

point using Jacobian

5

obsrobot p

�p = J�✓

�d = n̂J̇�✓

X

t

X

i,j

|dsafe � signeddist(parti, obstaclej)|+

.

Wednesday, October 31, 12

Two problems
 Need to make collision cost high enough to get out of all

collisions
 solution: increate collision cost coefficient

 Need to make sure trajectory is continuous-time safe
 solution: subdivide trajectory in collision intervals

6
Wednesday, October 31, 12

Two problems
 Need to make collision cost high enough to get out of all

collisions
 solution: increate collision cost coefficient
 since it’s an L1 penalty, cost -> zero for finite coeff

 Need to make sure trajectory is continuous-time safe
 solution: subdivide trajectory in collision intervals

7

r

r

obs

Wednesday, October 31, 12

Two problems
 Need to make collision cost high enough to get out of all

collisions
 solution: increate collision cost coefficient
 since it’s an L1 penalty, cost -> zero for finite coeff

 Need to make sure trajectory is continuous-time safe
 solution: subdivide trajectory in collision intervals

8

r

r

obs
r

Wednesday, October 31, 12

Trajectory optimization: outer loop

while true:
 do sqp optimization
 if trajectory is not discrete-time safe:
 increase penalty parameter
 continue
 if traj is not continuous-time safe:
 subdivide collision intervals
 continue
 break

9
Wednesday, October 31, 12

Demo videos

10
Wednesday, October 31, 12

How to make SCP fast
 Convexification

 If func evaluation is expensive, use analytic gradients
 Solving

 Warm-start
 Use a fast solver that exploits sparsity (any trajectory

problem has banded-diagonal structure)
 Fast convergence

 Use adaptive trust region adjustment

11

If exact_improvement > .2 * approx_improvement:
 expand trust region
Else:
 shrink trust region

Wednesday, October 31, 12

Robot LfD: comparison of techniques

 Inverse Optimal Control
 Learn the objective function from human

demonstrations, then do optimal control
 e.g. Abbeel & Ng, 2004

 Trajectory learning
 Learn a trajectory, the control inputs that achieve it, and

a dynamics model
 e.g. Abbeel, Coates, and Ng 2010

 Behavioral cloning
 Learn mapping between states and actions
 e.g. Calinon, Guenter, and Billard 2007
 the following work

12
Wednesday, October 31, 12

When can’t we use traditional planning & opt. ctrl?

 Planning problem is hard
 state space is big and you don’t get any gradient info
 e.g. with deformable objects like rope or cloth

 Can’t simulate
 e.g. we don’t want to do a fluid simulation to figure out

how to pour liquid
 Can simulate, but unable to perceive the full state

 e.g. crumpled up clothing article

13
Wednesday, October 31, 12

Generalizing trajectories
 Abstract problem: given a bunch of demonstrations

of a task, (scene_1, traj_1), (scene_2, traj_2) ...,
learn to generate a correct trajectory given a new
scene

14
Wednesday, October 31, 12

Knot tying
 very hard to program
 To my knowledge, no one has gotten a robot to

autonomously and robustly tie knots with a closed-loop
procedure

 The most basic problem:

15

given a demonstrated
motion
on this rope...

generate an
appropriate motion
for this rope

Wednesday, October 31, 12

Cartoon Problem Setting

Wednesday, October 31, 12

demonstration: --- trajectory

Cartoon Problem Setting

Wednesday, October 31, 12

demonstration: --- trajectory

How to perform action here?

Train situation:

Test situation:

Cartoon Problem Setting

Wednesday, October 31, 12

demonstration: --- trajectory

How to perform action here?

Train situation:

Test situation:

Cartoon Problem Setting

?

Wednesday, October 31, 12

demonstration: --- trajectory

How to perform action here?

Train situation:

Test situation:

?

Cartoon Problem Setting

Wednesday, October 31, 12

demonstration: --- trajectory

How to perform action here?

Train situation:

Test situation:

?

Cartoon Problem Setting

Wednesday, October 31, 12

demonstration: --- trajectory

How to perform action here?

Train situation:

Test situation:

?

Cartoon Problem Setting

Wednesday, October 31, 12

demonstration: --- trajectory

How to perform action here?

Train situation:

Test situation:

?

Cartoon Problem Setting

Wednesday, October 31, 12

demonstration: --- trajectory

How to perform action here?

Train situation:

Test situation:

?

Cartoon Problem Setting

Wednesday, October 31, 12

demonstration: --- trajectory

How to perform action here?

Train situation:

Test situation:

Samples of
f : R2  R2

?

Cartoon Problem Setting

Wednesday, October 31, 12

demonstration: --- trajectory

How to perform action here?

Train situation:

Test situation:

Samples of
f : R2  R2

?

Cartoon Problem Setting

Wednesday, October 31, 12

demonstration: --- trajectory

How to perform action here?

Train situation:

Test situation:

Samples of
f : R2  R2

?

Cartoon Problem Setting

Wednesday, October 31, 12

demonstration: --- trajectory

How to perform action here?

Train situation:

Test situation:

Samples of
f : R2  R2

Cartoon Problem Setting

Wednesday, October 31, 12

Thin plate splines
 Global smoothness is very important, since this function

will determine the gripper trajectory and orientation
 Thin plate splines: regularize function by Frob norm of

second derivatives matrix

 Kernel expansion (1D):

21

4. Apply � to the trajectory G

nearest

to obtain a new trajectory G

new

.

5. Solve for the joint trajectory ✓ that achieves G
new

, and execute this joint trajectory.

4 Experiments

Describe data collection procedure: direct manual control of robot. Describe specifics of experiment
for tying two kinds of knot + at least one other task, e.g. suturing or some clothing folding task.

5 Benchmark

It would be great if we could set up a benchmark task that could be run in gazebo. Even if no one
wants to compete on the benchmark, it’ll be really helpful for people who want to download and try
out our code. To run the whole LfD system in reality you need to set up a point cloud processing
system and get some parameters right. But ideally someone could just fire up the simulation and
see it work and then play with the code.

On the other hand, it might be more trouble than it’s worth to set up a simulation and explain
to people how to build it and run it.

A Thin plate splines

Thin plate splines are an example of a general class of regularized function fitting methods where
one is trying to minimize a function

min
f2H

X

i

L(yi, f(xi)) + �J(f) (12)

whereH is a Hilbert space of functions, L is a loss function which encourages each yi (the dependent
variable) to be close to the fitted predictions f(xi) (xi is the dependent variable), and J is a
regularization term that typically encourages f to be smooth. Remarkably, these optimization
problems on infinite-dimensional function space can, in some cases, be turned into tractable, finite-
dimensional optimization problems by using the machinery of Reproducing Kernels.

A Reproducing Kernel Hilbert Space is a vector space of functions, each of which is a sum of
kernel functions generated by filling in the first argument of a two-argument kernel function K(·, ·)

f(x) =
X

i

aiK(xi, x) (13)

The kernel K and the inner product h·, ·iH have the following relationship:

hPi aiK(xi, ·),
P

j bjK(xj, ·)iH =
P

i

P
j aiajK(xi, xj) (14)

hK(xi, ·), fiH = f(xi) (15)

It turns out that for the appropriate choice of kernel function, the solution to the minimization
problem of Equation 12 is exactly given by a sum of the form 13. The method of smoothed thin
plate splines minimizes the following cost functional on f : R3 ! R:

J(f) =
X

i

(yi � f(xi))
2 + �

Z
d

3

xkD
2

f(x)k2 (16)

4

Wednesday, October 31, 12

Knot tying procedure
 Look up nearest demonstration

 Fit a non-rigid transformation f that maps from
ClosestDemoRope to NewRope

 Apply f to the end-effector trajectory (positions and
orientations) to get a “warped” trajectory

 Execute warped trajectory

22

ClosestDemoRope = argmin
i

dist(DemoRopei, NewRope)

Wednesday, October 31, 12

Visualization during knot tie

23
Wednesday, October 31, 12

Point cloud registration
 Find a non-rigid transformation between two point clouds
 Given two point clouds X, Y, find a non-rigid

transformation f that minimizes dist(f(X), Y)
 for some meaningful distance measure dist(.) on un-

organized point clouds
 TPS-RPM Algorithm (Chui & Ragnaran, 2003)

 Correspondence: find matrix of correspondences
between X and Y points
 C_ij = correspondence between x_i and y_j

 Fit thin plate spline transformation that maps each x_i
to weighted sum of points y_j it corresponds to

24
Wednesday, October 31, 12

Application to other tasks
 Want to apply this method to a wide assortment of everyday

tasks. e.g. in the kitchen:
 pour, open container, pour, sprinkle, dip, stir, scoop,

skewer, unskewer, stack, toss, cover, uncover, press,
shake, grind, dump out, slice

 Still need to use non-rigid registration, even if the objects
themselves are rigid

25
Wednesday, October 31, 12

