SCP for trajectory optimization

- Basic problem
- minimize_\{traj\} path_length + other costs
" subject to pose constraints, joint limits, "no collisions"
- Why use optimization for planning?
- Solve high-DOF problems
- Smooth solutions
- Encode preferences
- It's wicked fast
- Why SCP rather than some other descent method?
- Deals with hard constraints and discontinuous costs stably and robustly
- Solver isn't the bottleneck anyway

SCP in general

minimize $f(x)$
subject to $\mathrm{g}(\mathrm{x}) \leq 0$
where f, g, may not be convex

- repeat until convergence:
- convexify objective and constraints
- solve convex approximation to problem
- recalculate actual objective
- if objective decreased
- shrink trust region
- else
- accept update

Non-overlap constraints

- Any kind of collision cost/constraint is non-convex, but we can locally approximate it as convex
- simple example: consider constraint $x \notin C$

- For convex C, this is an "OR" of linear constraints
- Approximation: only impose constraint/cost from closest side to current x

Signed distance

- distance(shape1, shape2) = length of shortest translation that puts them in contact. (for non-overlapping shapes)
- penetration_depth(shape1, shape2) = length of shortest translation that takes them out of contact (for overlapping shapes)
- signed_distance(shape1, shape2) =
- if overlapping: - penetration_depth
- else: + distance
- There are efficient algorithms for convex shapes, based on considering Minkowski difference
- GJK: find if convex set contains the origin
- EPA: find distance from origin to exterior

Collision cost

- Decompose the robot into convex parts
- Cost: $\sum_{t} \sum_{i, j} \mid d_{s a f e}-\left.\operatorname{signeddist}\left(\right.$ part $_{i}$, obstacle $\left._{j}\right)\right|^{+}$
- Convexification
- detect all near-collisions
- for each near-collision, linearize position of closest point using Jacobian

robot $\stackrel{p}{p} \rightarrow$ obs

$$
\Delta p=J \Delta \theta
$$

$\Delta d=\hat{n}: \dot{J} \Delta \theta$

Two problems

- Need to make collision cost high enough to get out of all collisions
- solution: increate collision cost coefficient
- Need to make sure trajectory is continuous-time safe
- solution: subdivide trajectory in collision intervals

Two problems

- Need to make collision cost high enough to get out of all collisions
- solution: increate collision cost coefficient
- since it's an L1 penalty, cost -> zero for finite coeff
- Need to make sure trajectory is continuous-time safe
- solution: subdivide trajectory in collision intervals

Two problems

- Need to make collision cost high enough to get out of all collisions
- solution: increate collision cost coefficient
- since it's an L1 penalty, cost -> zero for finite coeff
- Need to make sure trajectory is continuous-time safe
- solution: subdivide trajectory in collision intervals

Trajectory optimization: outer loop

while true:
do sqp optimization
if trajectory is not discrete-time safe: increase penalty parameter continue
if traj is not continuous-time safe: subdivide collision intervals continue
break

Demo videos

How to make SCP fast

- Convexification
- If func evaluation is expensive, use analytic gradients
- Solving
- Warm-start
- Use a fast solver that exploits sparsity (any trajectory problem has banded-diagonal structure)
- Fast convergence
- Use adaptive trust region adjustment

```
If exact_improvement > .2 * approx_improvement:
    expand trust region
Else:
    shrink trust region
```


Robot LfD: comparison of techniques

- Inverse Optimal Control
- Learn the objective function from human demonstrations, then do optimal control
- e.g. Abbeel \& Ng, 2004
- Trajectory learning
- Learn a trajectory, the control inputs that achieve it, and a dynamics model
- e.g. Abbeel, Coates, and Ng 2010
- Behavioral cloning
- Learn mapping between states and actions
- e.g. Calinon, Guenter, and Billard 2007
- the following work

When can't we use traditional planning \& opt. ctrl?

- Planning problem is hard
- state space is big and you don't get any gradient info
- e.g. with deformable objects like rope or cloth
- Can't simulate
- e.g. we don't want to do a fluid simulation to figure out how to pour liquid
- Can simulate, but unable to perceive the full state
- e.g. crumpled up clothing article

Generalizing trajectories

- Abstract problem: given a bunch of demonstrations of a task, (scene_1, traj_1), (scene_2, traj_2) ..., learn to generate a correct trajectory given a new scene

Knot tying

- very hard to program
- To my knowledge, no one has gotten a robot to autonomously and robustly tie knots with a closed-loop procedure
- The most basic problem:

given a demonstrated motion
on this rope...

generate an appropriate motion for this rope

Cartoon Problem Setting

demonstration: --- trajectory

Cartoon Problem Setting

Train situation:

Test situation:
demonstration: --- trajectory

How to perform action here?

Cartoon Problem Setting

Train situation:

Test situation:

How to perform action here?

\bullet

Cartoon Problem Setting

Train situation:

Test situation:

How to perform action here?

\bullet

Cartoon Problem Setting

Train situation:

Test situation:

-

demonstration: --- trajectory

How to perform action here?
-?

Cartoon Problem Setting

Train situation:

Test situation:

demonstration: --- trajectory

How to perform action here?
-?

Cartoon Problem Setting

Train situation:

Test situation:

demonstration: --- trajectory

How to perform action here?
-?

Cartoon Problem Setting

Train situation:

Test situation:
demonstration: --- trajectory

How to perform action here?

\bullet

Cartoon Problem Setting

Train situation:

Cartoon Problem Setting

Train situation:

demonstration: --- trajectory

How to perform action here?

Cartoon Problem Setting

Train situation:

demonstration: --- trajectory

How to perform action here?
-?
\bullet
-

Cartoon Problem Setting

Train situation:

demonstration: --- trajectory

How to perform action here?

Thin plate splines

- Global smoothness is very important, since this function will determine the gripper trajectory and orientation
- Thin plate splines: regularize function by Frob norm of second derivatives matrix

$$
J(f)=\sum_{i}\left(y_{i}-f\left(\mathbf{x}_{i}\right)\right)^{2}+\lambda \int d^{3} \mathbf{x}\left\|D_{2} f(\mathbf{x})\right\|^{2}
$$

- Kernel expansion (1D):

$$
\begin{aligned}
& f(x)=\sum_{i=1}^{m} a_{i} K\left(x_{i}, x\right)+b^{\top} x+c, \\
& K(x, y)=\left\{\begin{array}{l}
c_{0} r^{4-d} \ln r, d=2 \text { or } d=4 \\
c_{1} r^{4-d}, \text { otherwise }
\end{array} \text { with } r=\|x-y\|_{2} .\right.
\end{aligned}
$$

Knot tying procedure

- Look up nearest demonstration

ClosestDemoRope $=\arg \min _{i} \operatorname{dist}\left(\right.$ DemoRope $_{i}$, NewRope $)$

- Fit a non-rigid transformation f that maps from ClosestDemoRope to NewRope
- Apply f to the end-effector trajectory (positions and orientations) to get a "warped" trajectory
- Execute warped trajectory

Visualization during knot tie

Point cloud registration

- Find a non-rigid transformation between two point clouds
- Given two point clouds X, Y, find a non-rigid transformation f that minimizes $\operatorname{dist}(f(X), Y)$
- for some meaningful distance measure dist(.) on unorganized point clouds
- TPS-RPM Algorithm (Chui \& Ragnaran, 2003)
- Correspondence: find matrix of correspondences between X and Y points
- C_ij = correspondence between x_i and y_j
- Fit thin plate spline transformation that maps each x_i to weighted sum of points y_{-}jit corresponds to

Application to other tasks

- Want to apply this method to a wide assortment of everyday tasks. e.g. in the kitchen:
- pour, open container, pour, sprinkle, dip, stir, scoop, skewer, unskewer, stack, toss, cover, uncover, press, shake, grind, dump out, slice
- Still need to use non-rigid registration, even if the objects themselves are rigid

