EP for trajectory optimization

= Basic problem

" minimize_{traj} path_length + other costs

= subject to pose constraints, joint limits, “no collisions”
= Why use optimization for planning?

= Solve high-DOF problems

= Smooth solutions

" Encode preferences

= [t's wicked fast
= Why SCP rather than some other descent method?

= Deals with hard constraints and discontinuous costs
stably and robustly

= Solver isn’t the bottleneck anyway

Wednesday, October 31, 12

EP iIn general

minimize f(x)
subject to g(x) < 0

where f, g, may not be
convex

= repeat until convergence:
= convexify objective and constraints
" solve convex approximation to problem
= recalculate actual objective
" jf objective decreased
= shrink trust region
= else
= accept update

Wednesday, October 31, 12

‘Non-overlap constraints

= Any kind of collision cost/constraint is non-convex, but we
can locally approximate it as convex

= simple example: consider constraint U ¢ C

C| ™

" For convex C, this is an "OR" of linear constraints

= Approximation: only impose constraint/cost from closest
side to current x

Wednesday, October 31, 12

Eigned distance

= distance(shapel, shape2) = length of shortest translation
that puts them in contact. (for non-overlapping shapes)

= penetration_depth(shapel, shape2) = length of shortest
translation that takes them out of contact (for overlapping
shapes)

= signed_distance(shapel, shape?) =
= if overlapping: - penetration_depth
= else: + distance

= There are efficient algorithms for convex shapes, based
on considering Minkowski difference

= GJK: find if convex set contains the origin
= EPA: find distance from origin to exterior

Wednesday, October 31, 12

Ellision cost

= Decompose the robot into convex parts
" Cost: Z Z dsqre — signeddist(part;, obstacle;)|™
t 1,
= Convexification
= detect all near-collisions

" for each near-collision, linearize position of closest
point using Jacobian

Ap = JAO
Ad = A AO

robot [$~0bs

Wednesday, October 31, 12

Dvo problems

= Need to make collision cost high enough to get out of all
collisions

= solution: increate collision cost coefficient
= Need to make sure trajectory is continuous-time safe
= solution: subdivide trajectory in collision intervals

Wednesday, October 31, 12

Ewo problems

= Need to make collision cost high enough to get out of all
collisions

= solution: increate collision cost coefficient
" since it's an L1 penalty, cost -> zero for finite coeff

= Need to make sure trajectory is continuous-time safe
= solution: subdivide trajectory in collision intervals

T~

Wednesday, October 31, 12

Ewo problems

= Need to make collision cost high enough to get out of all
collisions

= solution: increate collision cost coefficient
" since it's an L1 penalty, cost -> zero for finite coeff

= Need to make sure trajectory is continuous-time safe
= solution: subdivide trajectory in collision intervals

\

Wednesday, October 31, 12

‘ Trajectory optimization: outer loop

while true:

do sgp optimization

if trajectory is not discrete-time safe:
increase penalty parameter
continue

if traj is not continuous-time safe:
subdivide collision intervals
continue

break

Wednesday, October 31, 12

| Demo videos

10

Ew to make SCP fast

= Convexification

= If func evaluation is expensive, use analytic gradients
= Solving

= Warm-start

= Use a fast solver that exploits sparsity (any trajectory
problem has banded-diagonal structure)

= Fast convergence
= Use adaptive trust region adjustment

If exact improvement > .2 * approx improvement:
expand trust region

Else:
shrink trust region

11

Wednesday, October 31, 12

Robot LfD: comparison of techniques

= Inverse Optimal Control

= | earn the objective function from human
demonstrations, then do optimal control

= e.g. Abbeel & Ng, 2004
= Trajectory learning

" | earn a trajectory, the control inputs that achieve it, and
a dynamics model

= e.g. Abbeel, Coates, and Ng 2010
= Behavioral cloning
= L earn mapping between states and actions
= e.g. Calinon, Guenter, and Billard 2007
= the following work

12

Wednesday, October 31, 12

‘When can’t we use traditional planning & opt. ctrl?

= Planning problem is hard
= state space is big and you don’t get any gradient info
= e.g. with deformable objects like rope or cloth

= Can't simulate

" e.g. we don’t want to do a fluid simulation to figure out
how to pour liquid

= Can simulate, but unable to perceive the full state
= e.g. crumpled up clothing article

13

Wednesday, October 31, 12

Generalizing trajectories

= Abstract problem: given a bunch of demonstrations
of a task, (scene_1, traj_1), (scene_2, traj_2) ...,
learn to generate a correct trajectory given a new
scene

14

Wednesday, October 31, 12

Knot tying

= very hard to program

= To my knowledge, no one has gotten a robot to
autonomously and robustly tie knots with a closed-loop
procedure

= The most basic problem:

given a demonstrated generate an
motion appropriate motion
on this rope... for this rope

15

Wednesday, October 31, 12

|Cartoon Problem Setting

‘Cartoon Problem Setting

demonstration: --- trajectory

N
.
[[® - [
| |
L] "
* "Saspgmns
’ .
. .
¢ ¢ 0 @0
’.--’

‘Cartoon Problem Setting

Train situation: demonstration: --- trajectory
® ® ® - ©
® ® :‘ ® :' ®
Test situation: How to perform action here?
[
[
[

Wednesday, October 31, 12

‘Cartoon Problem Setting

Train situation: demonstration: --- trajectory
® ® ® : ©
® ® :‘ ® :' ®
Test situation: How to perform action here?
[° [? °
[[

Wednesday, October 31, 12

‘Cartoon Problem Setting

Train situation: demonstration: --- trajectory
® ® ® : ©
® ® :‘ ® :' ®
Test situation: How to perform action here?
[° [? °
[[

Wednesday, October 31, 12

‘Cartoon Problem Setting

Train situation

°

Test situation:

‘

demonstration: --- trajectory

Wednesday, October 31, 12

‘Cartoon Problem Setting

Train situation:

Test situation:

demonstration: --- trajectory

Wednesday, October 31, 12

‘Cartoon Problem Setting

Train situation:

Test sifuation:

demonstration: --- trajectory

Wednesday, October 31, 12

‘Cartoon Problem Setting

Train situation: demonstration: --- trajectory
® ® ® - ©
° . ',” .

Test sityation: How to perform action here?

Wednesday, October 31, 12

‘Cartoon Problem Setting

Train situation: demonstration: --- trajectory
o o ® E ®
® ¢ \Samples of ‘o e
: RZ 9 RZ apn®

Test sitqation:

.

o

How to perform action here?

.

Wednesday, October 31, 12

‘Cartoon Problem Setting

Train situation: demonstration: --- trajectory
® ® o : o
Samples of ‘e o
N f: R2Z> R? Tamnt
Test sityation: How to perform action here?

Wednesday, October 31, 12

‘Cartoon Problem Setting

Train situation: demonstration: --- trajectory
® ® © : o
Samples of ‘e o
N f:RZ> R? Tamnt
Test S|tqat|on: How to perform action here?
| /4 L °®
17/ e)
\ [V / .
@

Wednesday, October 31, 12

‘Cartoon Problem Setting

Train situation: demonstration: --- trajectory
® @ ® | @
Samples of ‘e [t @
Il [\f:RZ> R2 teees
Test situation: How to perform action here?
2 A ’./ /@
[17~ {77

\ / / :(""ﬁt%;-,{ -----

...‘

Wednesday, October 31, 12

jT_hin plate splines

= Global smoothness is very important, since this function
will determine the gripper trajectory and orientation

= Thin plate splines: regularize function by Frob norm of
second derivatives matrix

T =3 (e — Fx))? + A / Px|| Do f ()|

1

= Kernel expansion (1D):

=Yook

K(x,y) = «

K(x;,x +bTaz+c

(

cor* %Inr, d=2ord=4

\017“4_d, otherwise | yll2

21

Wednesday, October 31, 12

j@ot tying procedure

= Look up nearest demonstration
Closest DemoRope = arg min dist(DemoRope;, N ew Rope)

= Fit @ non-rigid transformation f that maps from
ClosestDemoRope to NewRope

= Apply f to the end-effector trajectory (positions and
orientations) to get a "warped” trajectory

= Execute warped trajectory

22

Wednesday, October 31, 12

JrVisuaIization during knot tie

23

ﬁoint cloud registration

" Find a non-rigid transformation between two point clouds

= Given two point clouds X, Y, find a non-rigid
transformation f that minimizes dist(f(X), Y)

= for some meaningful distance measure dist(.) on un-
organized point clouds

= TPS-RPM Algorithm (Chui & Ragnaran, 2003)

= Correspondence: find matrix of correspondences
between X and Y points
= C_ij = correspondence between x_i and y_]j

" Fit thin plate spline transformation that maps each x_i
to weighted sum of points y_j it corresponds to

24

Wednesday, October 31, 12

Application to other tasks

= Want to apply this method to a wide assortment of everyday
tasks. e.qg. in the kitchen:

" pour, open container, pour, sprinkle, dip, stir, scoop,
skewer, unskewer, stack, toss, cover, uncover, press,
shake, grind, dump out, slice

= Still need to use non-rigid registration, even if the objects
themselves are rigid

25

Wednesday, October 31, 12

