Probability: Review

Pieter Abbeel
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Many slides adapted from Thrun, Burgard and Fox, Probabilistic Robotics

Why probability in robotics?

= Often state of robot and state of its environment are
unknown and only noisy sensors available

= Probability provides a framework to fuse sensory
information

> Result: probability distribution over possible states of
robot and environment

= Dynamics is often stochastic, hence can’t optimize for a
particular outcome, but only optimize to obtain a good
distribution over outcomes

= Probability provides a framework to reason in this setting

> Result: ability to find good control policies for stochastic
dynamics and environments
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Example 1: Helicopter

|
= State: position, orientation, velocity, angular rate

= Sensors:
= GPS : noisy estimate of position (sometimes also velocity)

= Inertial sensing unit: noisy measurements from
o 3-axis gyro [=angular rate sensor],
@ 3-axis accelerometer [=measures acceleration +
gravity; e.g., measures (0,0,0) in free-fall],

@ 3-axis magnetometer

» Dynamics:

= Noise from: wind, unmodeled dynamics in engine, servos,
blades

Example 2: Mobile robot inside building

= State: position and heading

= Sensors:

= Odometry (=sensing motion of actuators): e.g., wheel
encoders
= Laser range finder:

= Measures time of flight of a laser beam between
departure and return

= Return is typically happening when hitting a surface
that reflects the beam back to where it came from

= Dynamics:

= Noise from: wheel slippage, unmodeled variation in floor
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Axioms of Probability Theory

m 0=Pr(4) =l

" PrQ)=1 Pr(¢) =0
s Pr(AUB)=Pr(A)+Pr(B)-Pr(ANB)

Pr(A) denotes probability that the outcome w is an
element of the set of possible outcomes A. A is often
called an event. Same for B.

Q is the set of all possible outcomes.

¢ is the empty set.

A Closer Look at Axiom 3

Pr(AUB)=Pr(A)+Pr(B)-Pr(ANB)

Q
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Using the Axioms

Pr(AU(Q\A)) = Pr(A)+Pr(Q\A)—Pr(AN(Q\ A))
Pr(Q) - Pr(A)+Pr(Q\ A) - Pr(¢)
1 - Pr(A)+Pr(Q\ A) -0
Pr(Q\A) = 1-Pr(A)

Discrete Random Variables

I Q -
m X denotes a random variable.

= X can take on a countable number of values in {x,, x,,

e X}

= P(X=x,), or P(x), is the probability that the random
variable X takes on value x.

= P() is called probability mass function.

= E.g, X models the outcome of a coin flip, x, = head, x, =
tail, P(x,) =0.5,P(x,) =0.5 8

Page 4




Continuous Random Variables

1
m X takes on values in the continuum.

m p(X=x), or p(x), is a probability density function.

Pr(xE(a,b)) =fp(x)dx

p(x)

Joint and Conditional Probability

|
m P(X=x and Y=y) = P(x,y)

If X and Y are independent then
P(xy) = P(x) P(y)
P(x | y) is the probability of x given y
P(x | y) = P(xy) I P(y)
P(xy) =P(x1y) P(y)
If X and Y are independent then
P(x|y) = P(x)
Same for probability densities, just P =2 p 10
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‘ Law of Total Probability, Marginals
|

Discrete case Continuous case
Y P(x)=1 [p@x)de=1
P(x)= ¥ P(x,y) p() = [p(x, ) dy

P(x)= Y P(x| WP(»)  p(x)= [ (x| ¥)p(y) dy

11

Bayes Formula

P(x,y)=P(x|y)P(y)=P(y|x)P(x)

=

P(y|x) P(x) likelihood - prior
P(y) evidence

P(x|y) =

12
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Normalization

P(y|x) P(x) _
POy ! P(y|x)P(x)

1 1
— P(v)! =
1m0 T STG P

P(x|y) =

Algorithm:

Vx:aux,, = P(y|x) P(x)

1
"= E aux .,

Vx:P(x|y)=naux,,

13

Conditioning

|
= Law of total probability:

P(x) = f P(x,z)dz
P(x) =fP(x | 2)P(z)dz

P(x|y) = [P(x| y.2) P(z| y) dz

14
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Bayes Rule with Background Knowledge

P(ylx,z) P(x|2)

P2 ==0 05

15

‘ Conditional Independence

P(x,y

z)=P(x|2)P(y|2)
equivalent to

o P(x‘ z)=P(x|z,y)

P(y|z)=P(y|z,x)

16
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Simple Example of State Estimation

= Suppose a robot obtains measurement z

= What is P(open|z)?

-

17

‘ Causal vs. Diagnostic Reasoning

I
= P(open|z) is diagnostic.

m P(z|open) is causal.
m Often causal kno e is easier to obtain.

= Bayes rule allows us to use ca count frequencies!

/

P(z|open)P(open)
P(z)

P(open|z) =

18
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Example

|
m P(z|lopen) = 0.6 P(z|-open) = 0.3

m P(open) = P(-open) = 0.5

P(zlopen)P(open)

P(openlz)=
g P(2)
P(open|z) = P(z|open)P(open)
P(z|open) p(open) + P(z| ~open) p(=open)
Plopen| 2) = 06705 2 oo

06-05+03-05 3

« zraises the probability that the door is open.
19

Combining Evidence

I
= Suppose our robot obtains another observation z,.

= How can we integrate this new information?

= More generally, how can we estimate
Px|z;..z,)?

20
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Recursive Bayesian Updating

P(zn|x,21,...,z0-1) P(x| z1,..., 20 -1)
P(zn| z,...,2n-1)

P(x|zy,...,z0) =

Markov assumption: z, is independent of z,,...,.z,_, if we
know x.

P(znlx) P(x121,...,20-1)
P(Zﬂ | Zl,...,Zn—l)
=1 P(z:|x) P(x121,...,20-1)

H P(zil x)

i=l..n

P(xlzi,...,z0) =

= 771n P(X)

21

Example: Second Measurement
|

m P(z,Jopen) = 0.5 P(z,|~open) = 0.6

m P(open|z,)=2/3

B P(z, | open) P(open|z,)
P(z, | open) P(open|z,)+ P(z, | —~open) P(—open|z,)

P(open|z,,z,)

[N

= > = 0.625
8

+

w\l\)[\)\,_.
W | W[

W | —

1
2
* Z, lowers the probability that the door is open.

22
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A Typical Pitfall

= Two possible locations x; and x,
= P(x,)=0.99
= P(z|x,)=0.09 P(z|x,)=0.07

23
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