
Authors: Sachin Patil and Pieter Abbeel 1

CS 287, Fall 2013 Optional Extra Credit Problems
Extended Kalman Filtering and Gaussian Belief Space
Planning through Sequential Convex Programming [40pts]

Deliverable: pdf write-up by Wednesday December 18th, 11:59pm, submitted through Pandagrader. Your
pdf should be one page per subquestion, for a total of four pages. Thanks!

Please refer to the class webpage for the homework policy. Various starter files are provided on the course
website: www.cs.berkeley.edu/~pabbeel/cs287-fa13/.

1. Extended Kalman Filter (EKF) [10pt]

In this question you get to implement an extended Kalman Filter (EKF) for state estimation for nonlinear
dynamics and observation models.
Notes: Let x ∈ RxDim be the system state, u ∈ RuDim denote the control input applied to the system, and
z ∈ RzDim be the vector of observations obtained about the system state using sensors. We are given a
discrete-time stochastic dynamics model that describes how the system state evolves and an observation
model that relates the obtained observations to the state, given here in state-transition notation:

xt+1 = f(xt,ut,qt), qt ∼ N (0, Q), (1)
zt = h(xt, rt), rt ∼ N (0, R). (2)

Given the current state estimate x̂t, control input ut, covariance Σt, and observation zt+1, the EKF update
equations are given by:

x̂t+1 = f(x̂t,ut,0) +Kt(zt+1 − h(f(x̂t,ut,0),0)), (3a)
Σt+1 = (I −KtHt)Σ−t+1 (3b)

where

At = ∂f
∂x (x̂t,ut,0), Mt = ∂f

∂q (x̂t,ut,0), (3c)

Ht = ∂h
∂x (f(x̂t,ut,0),0), Nt = ∂h

∂r (f(x̂t,ut,0),0), (3d)

Σ−t+1 = AtΣtATt +MtQM
T
t , Kt = Σ−t+1H

T
t (HtΣ−t+1H

T
t +NtRN

T
t)−1. (3e)

Q. See ekf.m in the q1_starter folder and look for YOUR_CODE_HERE for the parts that you need to fill in. Use
the routine provided in numerical_jac.m to compute the required Jacobians (Eqs. (3c), (3d)). The script
test_ekf.m considers a two-dimensional nonlinear system defined by:

xt+1[1] = 0.1 ∗ (xt[1])2 − 2 ∗ xt[1] + 20 + qt[1];
xt+1[2] = xt[1] + 0.3 ∗ xt[2]− 3 + 3 ∗ qt[2]

and
zt[1] = xTt xt + sin(5 ∗ rt[1]);
zt[2] = 3 ∗ (xt[2])2/xt[1] + rt[2],

where dynamics noise qt and the measurement noise rt are assumed to be drawn from a Gaussian distribution
with zero mean and specified variances Q = [2 0

0 2] and R = [1 0
0 10], respectively.

For verifying correctness, starting from an initial state x0 ∼ N ([10
10] , [1 0

0 1]), a random trajectory X1:50 was
generated and corresponding observations Z1:50 were collected. These have been provided to you in the form
of files X.mat and Z.mat, respectively.
The script test_ekf.m plots the ground truth value of the state X1:50 along each dimension and also plots
the state estimate given by the EKF (blue dotted line) and plots 3-standard deviations of the variance

Authors: Sachin Patil and Pieter Abbeel 2

corresponding to each dimension. It also prints out the state estimate x̂50 and covariance Σ50 at the final
time step to help you verify correctness of your implementation.

Deliverable: Submit the results plot, which is saved to a png file by the script, and the mean x̂50 and
covariance Σ50 at the final time step.

2. Gaussian Belief Space Planning (BSP)

In this question you get to implement a belief space planning algorithm by building on the trajectory opti-
mization framework introduced in PS#3.
We consider a Gaussian parameterization of the probability distribution over the state, also known as the
belief. Specifically, the belief state bt =

[x̂t

vec[
√

Σt]
]
is a vector comprised of the mean state x̂t and the columns

of the square root
√

Σt of the covariance Σt of a Gaussian distribution N (x̂t,Σt). We consider the square
root

√
Σt to enforce positive semidefiniteness of the covariance matrix. Two things to note here:

(a) The square root of a matrix is not unique and we use the principal square root, which is uniquely defined
for a positive definite matrix, in our implementation for numerical reasons.
(b) We also include the lower (or equivalently, upper) triangular entries of the symmetric matrix

√
Σt to

eliminate redundancy in the belief state.
We assume that the initial belief b1 =

[x̂1
vec[
√

Σ1]
]
is given. Given a current belief bt, a control input ut, and

an observation zt+1, the evolution of the belief state bt+1 = g(bt,ut) can be described using a Kalman filter
(such as an extended Kalman filter) and is a stochastic process. However, we eliminate the stochasticity from
the belief dynamics by assuming that the maximum likelihood observation is obtained at each time step,
i.e., zt+1 = h(f(x̂t, ût,0),0) [1]. Adapting the EKF update equations from Eq. (3), the deterministic belief
dynamics are now given by:

bt+1 = g(bt,ut) =
[

x̂t+1

vec
[√

(I −KtHt)Σ−t+1
]] , where (4a)

x̂t+1 = f(x̂t,ut,0), Σ−t+1 = At
√

Σt(At
√

Σt)T +MtQM
T
t , (4b)

where Jacobian matrices At,Mt, Ht, Nt, and Kalman gain matrices Kt are computed using Eqs. (3c) - (3e).
This makes the belief dynamics suitable for trajectory optimization using sequential quadratic programming
(SQP). Note that the maximum likelihood observation assumption is only used for trajectory optimization
but observations have to be taken into account during execution (refer to the note at the end of Q 2(i)).
The objective is to compute a locally optimal trajectory in the (Gaussian) belief space to minimize uncertainty
during execution. For notational convenience, we concatenate the belief states and control inputs for all time
steps 1 ≤ t ≤ T to form B = [b1 . . .bT] and U = [u1 . . .uT−1] that parameterize a belief space trajectory
such that bt+1 = g(bt,ut). We will solve the following constrained nonlinear optimization problem:

min
B,U

C(B,U) = αfinal_belief tr[ΣT] +
T−1∑
t=1

(αbelief tr[Σt] + αcontroluTt ut) (5a)

s. t.∀t∈{1,...,T−1} bt+1 = g(bt,ut), B belief dynamics constraint (nonlinear) (5b)
x̂T = xgoal, B robot reaches goal at time T (5c)
xmin ≤ x̂t ≤ xmax, B bounds on state (5d)
umin ≤ ut ≤ umax, B control input bounds (5e)

where the cost function C(B,U) encodes the objective of minimizing uncertainty (minimizing the trace of the
covariance tr[Σt] = tr[

√
Σt

T√Σt]) while penalizing the control effort, and αcontrol, αbelief, and αfinal_belief are
user-defined weights.

Q 2(i)[15pt] belief_opt_penalty_sqp.m in the q2_starter folder contains an incomplete implementation
of the penalty SQP method for belief space trajectory optimization. Look for YOUR_CODE_HERE for the parts
that you need to fill in. In particular – (i) complete the SQP outer loop, (ii) compute the merit function for
a given belief trajectory and set of controls, and (iii) add the cost function and constraints given in Eq. (5)
to the cvx problem definition.

Authors: Sachin Patil and Pieter Abbeel 3

(a) (b) (c)

Figure 1: Point robot moving in a 2D light-dark domain adapted from Platt et al. [1]. (a) The optimization is
initialized with a straight line trajectory (shown in red) from the start to the goal. The beliefs along the initialized
trajectory are shown in yellow. (b) Sample solution obtained using trajectory optimization (included for reference).
(c) Simulation of open-loop execution of control computed using belief space planning. Since the maximum likeli-
hood observation assumption is not valid during execution, the trajectory deviates from the planned trajectory (see
simulate_bsp_trajectory.m for code).

Some things to keep in mind:
(a) Directly add constraints given in Eqs. (5c), (5d), and (5e) to the cvx problem.
(b) In the penalty SQP formulation, the merit function that is minimized is of the form:

merit = C(B,U) +
∑T−1
t=1 penalty_coeff ∗ |violation of belief dynamics constraint Eq. (5b)|, (6)

where the constraint at each time step t is linearized around the current solution (b(k)
t+1,b

(k)
t ,u(k)

t) at the kth
SQP iteration.
(c) Add in trust region constraints on the optimization variables of the form ‖bt−b(k)

t ‖2 < trust_box_size
and ‖ut − u(k)

t ‖2 < trust_box_size to ensure that the optimization progresses only within bounds of the
region where the locally convex approximation holds.

To test your implementation, look at the test_bsp_light_dark.m file that considers an adaptation of the
light-dark planning example from Platt et al. [1]. The robot’s ability to localize itself depends upon the
amount of light present at its actual position. The light, i.e., observation noise, varies as a quadratic function
of the x-coordinate. Fig. 1 shows the light-dark domain considered in this example. The intensity in the
figure illustrates the magnitude of the light over the domain.
Depending upon the start and goal positions, and the light configuration, the robot may need to move towards
the light to localize itself before coming back to the goal to reduce uncertainty, as shown in Fig. 1(b).
The script test_bsp_light_dark.m sets up five test cases by varying the initial beliefs and goal positions.
Fig. 1(b) shows the optimized trajectory for the first test case and is included for reference so that you can
verify correctness of implementation. Also provided is the cost of the optimized belief trajectory C(B,U) for
each of the five test cases.

Deliverable: Submit the optimized belief space trajectories for the five cases, which are saved to png files
by the script, and the reported expected cost for the optimized trajectories.

Note: In Q 2(i), we computed a locally optimal trajectory in belief space, which assumes that maximum
likelihood observations are obtained. However, this assumption does not hold during execution as observations
have to accounted for. Fig. 1(c) shows the means and covariances obtained by open-loop execution of the
controls computed by the trajectory optimization, which deviates significantly from the planned trajectory.
To account for this deviation, one needs to re-plan at every time step in a model predictive control (MPC)
fashion, or design a feedback controller around the locally-optimal trajectory.
For your reference, sample code to simulate execution is provided in simulate_bsp_trajectory.m. In
particular, this function takes as input the initial belief and a set of controls, and at each time step, propagates
the belief bt based on the applied control input ut and observation zt+1. Note that, unlike the planning phase,

Authors: Sachin Patil and Pieter Abbeel 4

(a) (b)

Figure 2: Point robot moving in a 2D domain lit up by a triangular spotlight (shown in blue), which can rotate
around the base (red square). The default orientation of the spotlight (θ = 0) is shown. (a) The optimization is
initialized with a straight line trajectory (shown in red) from the start to the goal. The beliefs along the initialized
trajectory are shown in yellow. (b) Sample solution obtained using trajectory optimization (included for reference)
for the default orientation.

the belief dynamics has to incorporate observations obtained during executions. For simulating observations,
we also maintain the (hidden) true state xtrue, which is initially sampled from the initial belief, and is
propagated using the stochastic dynamics function given in Eq. (1).

Q 2(ii)[5pt] In this question, we consider a variation of the light-dark example from Q 2(i) in which we have
a triangular spotlight, as shown in Fig. 2. The intensity in the figure illustrates the magnitude of the light
over the domain. Since trajectory optimization requires continuous gradients to progress, we approximate
the light intensity given out by the spotlight as a function of the signed distance to the boundary of the
spotlight (computed by the provided function in signed_distance_spotlight.m). The spotlight can also
rotate about its base. Just like in the light-dark domain, the robot’s ability to localize itself depends upon
the amount of light present at its actual position.
The script test_bsp_spotlight.m sets up three test cases by changing the orientation of the spotlight
(θ = {0, π/2, π}). Fig. 2(b) shows the optimized trajectory for the first test case and is included for reference
so that you can verify correctness of implementation. In all three cases, the optimal trajectory moves the
robot to the spotlight for accurate localization before leading the robot back to the goal. Also provided is
the cost of the optimized belief trajectory C(B,U) for each of the three test cases.

Deliverable: Submit the optimized belief space trajectories for the three cases, which are saved to png files
by the script, and the reported expected cost for the optimized trajectories.

Q 2(iii)[10pt] In this question, we now consider the problem of simultaneously planning the motion of the
robot and the spotlight. This often arises in tracking applications or when one needs to simultaneously plan
motions for the robot and mobile sensors. In this case, ideally, the spotlight should track the motion of the
robot to minimize overall uncertainty. This is readily accomplished using our belief space planning framework
by making a few minor modifications.
To this end, modify the test_bsp_spotlight.m script to do the following:
(a) Augment the state to now also include the spotlight orientation θ, i.e., x = [x, y, θ]T , where [x, y]T is the
position of the robot. Define the dynamics and observation functions as:

xt+1 = f(xt,ut,qt) = xt + ut ∗ dT + 0.01 ∗ qt, qt ∼ N (0,
[

1 0 0
0 1 0
0 0 0.01

]
),

zt = h(xt, rt) =
[
xt+intensity∗rt[1]
yt+intensity∗rt[2]

θt

]
, rt ∼ N (0, [1 0

0 1]),

where the observation noise scaling factor intensity is a function of the spotlight orientation θt.
(b) Initialize the optimization with a straight line trajectory from the start to the goal for the robot. For the
spotlight, initialize the optimization with 0 controls, i.e., ut[3] = 0 ∀t ∈ {1, . . . , T − 1}.
(c) The goal constraint (Eq. (5c)) is only on the robot position, i.e, xT [1 : 2] = goal. There is no constraint

Authors: Sachin Patil and Pieter Abbeel 5

on the spotlight orientation at the final time step.
(d) Setup the state bounds as xmin = [−4,−3,−2π]T and xmax = [4, 3, 2π]T , and the control input bounds
as umin = [−1,−1,−π/3]T and umax = [1, 1, π/3]T .
(e) Set the display_spotlight_trajectory flag to 1 to plot the spotlight at each time step along the
trajectory. The color varies from red (t = 1) to blue (t = T), to indicate the rotation of the spotlight across
time steps. The intermediate spotlight configurations are also drawn using dashed line segments.

Deliverable: Compute belief space plans for different initial beliefs b1 ∼ N (
[−3

2
θ1

]
, I), θ1 = {0, π/2, 2π}.

Submit the optimized trajectories, which are saved as png files by the script.

References
[1] R. Platt, R. Tedrake, L. Kaelbling, T. Lozano-Perez. Belief space planning assuming maximum likelihood

observations. Robotics: Science and Systems, 2010.

