
CS287 Problem Set #2 1

CS 287 Fall 2013 Problem Set #2: Function Ap-
proximation and LQR

Deliverable: pdf write-up by Wednesday September 25th, 23:59pm, submitted through Panda-
grader. Note that some of the starter code will generate plots. Don’t include all of them, include
whatever is sufficient to show that you correctly solved the problem. Whenever including a
figure, make sure it is accompanied by a discussion of that figure.

Your pdf write-up should be typeset as follows: 1(a) an page 1; 1(b) on page 2; 1(c)
on page 3; 1(d) on page 4; 1(e) (i) on page 5; 1(e) (ii) on page 6; 1(e) (iii) on page 7;
1(e) (iv) on page 8; 2(a) on page 9; 2(b) on page 10; 2(c) on page 11; 2(d) on page
12; 2(e) on page 13. Note that for most of these you wouldn’t need the entire page,
so frequently the bottom part of a page will be left empty. Also note that you only
need to solve three out of four subquestion of 1(e) — please insert a blank page for
the one you skip over. Thanks!

Refer to the class webpage for the homework policy.

Various starter files are provided on the course website.

You are free to use any linear programming solver of your choice for this assignment. If you
don’t have in-depth experience with a particular solver already, I recommend you try out CVX.
CVX can solve a broad class of convex optimization problems, including linear programs, but
also quadratic programs.

1. Function Approximation

We will study the application of linear programming with function approximation to building
a control policy for the game of tetris. The file main ALP starter.m illustrates the use of the
starter files available to you. There should be no need to investigate other files, though you
might have some fun with main play and collect data.m.

The game of tetris has a very large state space. We will use a linear function approximator
with the standard set of 22 features. A function computing them from a board configuration
is provided (tetris standard 22 features.m). Our resulting value function approximation for a
board configuration b is of the form V (b) = θ>φ(b). As this function approximation ignores the
current block k, we are going to use a slightly altered Bellman equation:

V (b) =
1

K

K∑
k=1

V (b, k)

V (b, k) = max
a

R(b′(b, k, a)) + γV (b′(b, k, a))

where k = 1, . . . ,K indexes over the different blocks, V (b, k) is the value of board configuration
b with current block k, a indexes over all possible actions (the product space of 4 rotations and
10 translations), and b′ is the next board configuration achieved when starting from b with block
k and taking action a.

(a) Write out the approximate linear program you obtain with this new formulation.

(b) Implement the approximate linear programming (ALP) approach. Per the constraint sam-
pling: your starter file loads a log of a couple of games I played. Investigate how well the



CS287 Problem Set #2 2

ALP approach works as a function of the number of constraints being sampled (when sub-
sampling, it would be most natural to subsample equally spaced, maximizing the diversity
of board configurations),1 As your evaluation metric for each of the settings, run the result-
ing policy (i.e, the greedy policy w.r.t. the found value function) 20 times and report the
mean and standard error of the number of blocks placed. To make your comparisons more
meaningful, compare on the same 20 sequences of blocks.

(c) Discuss performance as a function of the choice of discount factor. Same evaluation metric
as above.

(d) For this subquestion only, change the reward function. The default reward function gives
a reward of 20 − maxheight, i.e., the distance of the highest filled square from the top of
the board, and also zero for game-over. Max height is feature φ(20) in the standard list of
22 features. Change it to reward of 1 for every block being placed, a reward of zero when
the “game-over” state has been reached. With the default set of game states I provided you
with, you should see that this did not work–how can you tell from the values you found as
the solution of the LP? Would there be a choice of states that would still enable learning
with this simpler reward function? Discuss why you believe so, but no need to implement
with such set of states.

(e) Investigate three of the following four extensions:

(i) Bootstrapping. After solving the ALP use the greedy policy w.r.t. the obtained
value function to sample states. Then re-solve the ALP with the newly sampled states
and iterate.

(ii) Feature selection. Generate a very large vocabulary of features. Investigate how the
ALP performs with an increasing number of features. (You might want to add some
form of regularization to avoid overfitting.)

(iii) Smoothed ALP. Recently the “smoothed ALP” has been proposed. Modify your
code to use this smoothed version and compare performance with the original formu-
lation. (See, http://web.mit.edu/~vivekf/www/papers/salp.pdf for details on the
smoothed ALP.)

(iv) A different extension. This could be something you read / heard about somewhere,
or an original idea of your own.

2. LQR

(a) LQR for a Linear System. In this question you will implement and evaluate LQR for a
linear system. See p a starter.m for detailed instructions.

(b) LQR-based Stablization for a Nonlinear System, Cartpole. In this question you will
implement and evaluate the application of LQR to stablization of a nonlinear system. See
p b starter.m for detailed instructions.

(c) LQR-based Stabilization of a Helicopter in Hover. In this question you will implement
and evaluate the application of LQR to stablization of a helicopter in hover. See p c starter.m
for detailed instructions.

1On my laptop, it took 200s for CVX to parse (most of the time) and solve the ALP when sampling every
5’th board configuration for the constraint set, and 68s when sampling every 10’th board.

http://web.mit.edu/~vivekf/www/papers/salp.pdf


CS287 Problem Set #2 3

(d) Consider the following optimal control problem, which considers a linear system with additive
noise and quadratic cost:

minx,u E[

T−1∑
t=0

x>t Qxt + u>t Rut] + E[x>TQxT ]

s.t. xt+1 = Axt +But + wt, ∀t = 0, 1, 2, . . . , T − 1

with wt independent random vectors with E[wt] = 0, and E[wtw
>
t ] = Σw.

Find an LQR-like sequence of matrix updates that computes the optimal cost-to-go at all
times and the optimal feedback controller at all times. Describe the expected cost incurred
in excess of the expected cost in the case when there is no noise.

(e) Consider the following optimal control problem, which considers a linear system with mul-
tiplicative noise and quadratic cost:

minx,u E[x>TQxT ]

s.t. xt+1 = Axt + (B +Wt)ut, ∀t = 0, 1, 2, . . . , T − 1

Here Q ∈ RnX×nX , A ∈ RnX×nX , B ∈ RnX×nU are given and fixed. Wt ∈ RnX×nU , t =
0, 1, . . . , T − 1 are independent random matrices with E[Wt] = 0. Higher-order expectations
involving Wt will show up. These higher-order expectations are not assumed to be zero, and
you should just keep these expectations around—no need to try to simplify these (and not
possible anyway unless additional assumptions were made).

Find an LQR-like sequence of matrix updates that computes the optimal cost-to-go at all
times and the optimal feedback controller at all times.


