
CS287 Problem Set #4 1

CS 287, Fall 2013 Problem Set #4
Multivariate Gaussians, Kalman Filtering, Maxi-
mum Likelihood, EM

Deliverable: pdf write-up by Wednesday November 6th, 23:59pm, submitted through Panda-
grader. Your pdf should be typeset as follows: Page 1: Question 1; Page 2: Question
2; Page 3: Question 3a; Page 4: Question 3b; Page 5: Question 3c; Page 6: Ques-
tion 3d or BLANK if you skip this optional/extra credit question; Page 7: Question
4abc. Thanks!

Please refer to the class webpage for the homework policy.

Various starter files are provided on the course website.

1. Maximum Likelihood

The Poisson distribution is a discrete probability distribution that expresses the probability
of a number of events occurring in a fixed period of time if these events occur with a known
average rate and independently of the time since the last event. Assume we obtain m i.i.d.

samples x(1), . . . , x(m) distributed according to the Poisson distribution P (x = k) = λke−λ

k! for

k = 0, 1, 2, 3, . . .. What is the maximum likelihood estimate of λ as a function of x(1), . . . , x(m)?

2. Linearity of Expectation, Positive Semi-definiteness

A matrix A ∈ Rnxn is positive semi-definite (often denoted by A � 0) if and only if:

Aij = Aji

∀z ∈ Rn : z>Az ≥ 0

Prove that covariance matrices, i.e., matrices of the form Σ = E[(X − EX)(X − EX)>] are
guaranteed to be positive semi-definite.

3. Kalman Filtering, Smoothing, EM

(a) Implementation of KF, Smoothing, EM. In this question you will implement a Kalman
Filter, a Kalman Smoother, and the EM algorithm to estimate the covariance matrices. Look
at p3 a starter.m for more detailed instructions.

(b) Application to Species Population Size Estimation from Observations of Total
Population Size. Consider three species U, V,W that grow independently of each other,
exponentially with growth rates: U grows 2% per hour, V grows 6% per hour, and C grows
11% per hour. The goal is to estimate the initial size of each population based on the
measurements of total population.



CS287 Problem Set #4 2

Let xU (t) denote the population size of species U after t hours, for t = 0, 1, . . ., and similarly
for xV (t) and xW (t), so that

xU (t+ 1) = 1.02xU (t), xV (t+ 1) = 1.06xV (t), xW (t+ 1) = 1.11xW (t).

The total population measurements are y(t) = xU (t) + xV (t) + xW (t) + v(t), where v(t) are
IID, N (0, 0.36). (Thus the total population is measured with a standard deviation of 0.6).

The prior information is that xU (0), xV (0), xW (0) (which are what we want to estimate) are
IID N (6, 2). (Obviously the Gaussian model is not completely accurate since it allows the
initial populations to be negative with some small probability, but we’ll ignore that.)

How long will it be (in hours) before we can estimate xU (0) with a variance less than 0.01?
How long for xV (0)? How long for xW (0)?

(c) Correlated Noise. In many practical situations the noise is not independent. Consider
the following stochastic system, for which the noise is not independent:

x0 ∼ N(µ0,Σ0)

xt+1 = Axt + wt

wt = 0.3wt−1 + 0.2wt−2 + pt−1

pt ∼ N (0,Σpp)

yt = Cxt + vt

vt = 0.8vt−1 + qt−1

qt ∼ N (0,Σqq)

p−1 = q−1 = v−1 = w−1 = w−2 = 0

Describe how, by choosing the appropriate state representation, the above setup can be
molded into a standard Kalman filtering setup. In particular, describe the state, the dy-
namics model, and the measurement model such that the problem is transformed into the
standard Kalman filtering setup with uncorrelated noise.

(d) (Optional / Extra Credit) EM Equations for A,B,C, d. Derive the EM update equa-
tions for A,B,D, d for the usual linear Gaussian system, which is of the form:

xt+1 = Axt +But + wt wt ∼ N (0,Σw)

yt = Cxt + d+ vt vt ∼ N (0,Σv)

where all wt and vt are independent. Show your work. Generate some data from a linear
Gaussian system and report on the ability to learn A,B,C, d using EM.

4. Sensor Selection

We consider the following linear system:

xt+1 = Axt + wt

zt = Ctxt + vt

where A ∈ Rn×n is constant, but Ct can vary with time. The noise contributions are independent,
and

x0 ∼ N (0,Σ0), wt ∼ N (0,Σw) vt ∼ N (0,Σv).
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Here is the twist: the measurement matrix Ct at each time comes from the set S = {S1, . . . , SK}.
In other words, at each time t, we have Ct = Sit . The sequence i0, i1, i2, . . . specifies which of
the K possible measurements is taken at time t. For example the sequence 2, 2, 2, . . . means
that Ct = S2 for all t. The sequence 1, 2, . . . ,K, 1, 2, . . . ,K, . . . is called round-robin: we cycle
through the possible measurements, in order, over and over again.

Here is the interesting part: you get to choose the measurement sequence i0, i1, i2, . . ..

You will work with the following specific system:

A =

−0.6 0.8 0.5
−0.1 1.5 −1.1
1.1 0.4 −0.2

 , Σw = I, Σv = 0.12, Σ0 = I

and K = 3 with

S1 =
[
0.74 −0.21 −0.64

]
, S2 =

[
0.37 0.86 0.37

]
, S3 =

[
0 0 1

]
.

(a) Using One Sensor. Plot trace(Σt|0:t) versus t for the three special cases when Ct = S1 for
all t, Ct = S2 for all t, and Ct = S3 for all t.

(b) Round-robin. Plot trace(Σt|0:t) versus t using the round-robin sensor sequence 1, 2, 3, 1, 2, 3, . . ..

(c) Greedy Sensor Selection. Plot trace(Σt|0:t) versus t using greedy sensor selection. In
greedy sensor selection at time t the choice of i0, i1, . . . , it−1 has already been made and it
has determined Σt|0:t−1. Then Σt|0:t depends on it only, i.e., which of S1, . . . , SK is chosen
as Ct. Among these K choices you pick the one that minimizes trace(Σt|0:t).

In all parts show the plots over the interval t = 0, . . . , 50 and report the steady-state (t → ∞)
values (if such a limit exists).

Note none of these require knowledge of the measurements z0, z1, . . ..


