Bellman'’s curse of dimensionality

n-dimensional state space

Number of states grows exponentially in n (assuming some fixed
number of discretization levels per coordinate)

In practice

= Discretization is considered only computationally feasible up
to 5 or 6 dimensional state spaces even when using

= Variable resolution discretization
= Highly optimized implementations



Optimization for Optimal Control

Goal: find a sequence of control inputs (and corresponding sequence
of states) that solves:

H
min, ; Z g(we, ur)
t=0

subject to  x;11 = f(xy,uy) Vi
U € Z/[t YVt
Ty € Xt YVt

Generally hard to do. In this set of slides we will consider convex
problems, which means g is convex, the sets U, and X, are convex,
and f is linear. Next set of slides will relax these assumptions.

Note: iteratively applying LQR is one way to solve this problem if
there were no constraints on the control inputs and state.

In principle (though not in our examples), u could be parameters of a
control policy rather than the raw control inputs.



Convex Optimization

Pieter Abbeel
UC Berkeley EECS

Many slides and figures adapted from Stephen Boyd

[optional] Boyd and Vandenberghe, Convex Optimization, Chapters 9 — I |

[optional] Betts, Practical Methods for Optimal Control Using Nonlinear Programming



Outline

= Convex optimization problems

= Unconstrained minimization
s Gradient Descent

= Newton’s Method
= Equality constrained minimization

= Inequality and equality constrained minimization



Convex Functions

= A function is f: t" > R is convex if and only if
Va1, 2o € Domain(f),Vt € [0,1] :
ftxr + (1 —t)ze) < tf(x1)+ (1 —1t)f(x2)

f(x)

tf (z1) + (1= 1)f (22)

[tz + (1 —t)x) >

1 try+ (1= t)x o Image source: wikipedia



Convex Functions

e Unique minimum
e Set of points for which f(x) <= a is convex

Source: Thomas Jungblut’s Blog



Convex Optimization Problems

= Convex optimization problems are a special class of
optimization problems, of the following form:

min fo(x

reR"™ )
s.t. fi(x) <0 i=1,...,n
Ax =0

with f(x) convex fori=0, I, ..., n

= A function is f is convex if and only if

Va1, 2o € Domain(f), VA € [0, 1]
fAz1 + (1= Nag) < Af(x1) + (1= N)f(x2)



Outline

= Convex optimization problems

s Unconstrained minimization
= Gradient Descent

= Newton’s Method
= Equality constrained minimization

= Inequality and equality constrained minimization



Unconstrained Minimization

i (@) (D

(Implicitly assumed x can be chosen from the entire domain of f, often R™.)

m If x* satisfies:

Va f(z7)
Vaf(a®)

Y i

o O
—~~
W Do
~— ~—

then x* is a local minimum of f.

= In simple cases we can directly solve the system of n equations given by (2) to find
candidate local minima, and then verify (3) for these candidates.

= In general however, solving (2) is a difficult problem. Going forward we will
consider this more general setting and cover numerical solution methods for (1).



Steepest Descent

m ldea:

= Start somewhere

= Repeat: Take a step in the steepest descent direction

2 2
X, T4 x2+3 X,

4 B —
////{ - o S
3 iy
2 |
1
>0
-1
-2 \
-3} TR
=
\\ e
il —
-5 L L i 1 L
—6 —4 2o 0

Eigure source: Mathworks



Steepest Descent Algorithm

|. Initialize x

2. Repeat
|. Determine the steepest descent direction Ax
2. Line search. Choose a step size t > 0.

3. Update. x:=x +t Ax.

3. Until stopping criterion is satisfied



What is the Steepest Descent Direction?

Assuming a smooth function, we have that
f(zo + Az) = f(x0) + Vaf(wo) ' A

The (locally at xg) direction of steepest descent is given by:

Az* = ar min zo) + Vi f(zo) " Az
gAm:||Aa:||2=1f( 0) f (o)
= ar min V. f(zo) Az
gA:IJZ”A.’E“g:]. :z:f( 0)
As we have all a,b € R"™ that ming,,,=1 a'b is achieved for b = —W, we

have that the steepest descent direction

Az™ = _v:rf(xO)

- Steepest Descent = Gradient Descent



Stepsize Selection: Exact Line Search

t = arg m>i8 f(x + sAx)

= Used when the cost of solving the minimization problem with
one variable is low compared to the cost of computing the
search direction itself.



Stepsize Selection: Backtracking Line Search

= Inexact: step length is chose to approximately minimize f
along the ray {x + t Ax | t > 0}

Backtracking Line Search.

given a descent direction Az for f at x € domf, a € (0,0.5), 5 € (0,1).
t:=1

while f(z + tAz) > f(z) + atV f(z) " Az, t := jt.




Stepsize Selection: Backtracking Line Search

flz +tAx)

Figure 9.1 Backtracking line search. The curve shows f, restricted to the line
over which we search. The lower dashed line shows the linear extrapolation
of f. and the upper dashed line has a slope a factor of a smaller. The
backtracking condition is that f lies below the upper dashed line, i.e., 0 <
t < to.

Figure source: Boyd and Vandenberghe



Steepest Descent (= Gradient Descent)

Algorithm 9.3 Gradient descent method.

given a starting point z € dom f.

repeat
1. Az := =V f(z).
2. Line search. Choose step size t via exact or backtracking line search.
3. Update. x := z + tAz.

until stopping criterion is satisfied.

The stopping criterion is usually of the form |V f(z)|ls < n, where n is small and
positive. In most implementations, this condition is checked after step 1, rather
than after the update.

Figure source: Boyd and Vandenberghe



Example 1

Gradient Descent

f'(IIZl,IQ) _ e:r1+3:1:2—0.1 4+ ex1—3:c2—0.1 n e_;rl_()_l

- - -

-

-

- - .

N . - - ——————

- —— -

exact line search

backtracking line search

Boyd and Vandenberghe

Figure source



Gradient Descent: Example 2

. 100
a problem in R

500

flx)=c"z - Z log(b; — al'z)
i=1

104

102

100 !

fa®) — p*

10_2.

~.exact |.s.

backtrack|ng |.s.

-4
10 0

50

100 150 200
k

‘linear’ convergence, i.e., a straight line on a semilog plot

Figure source: Boyd and Vandenberghe



Gradient Descent: Example 3

f(z) = (1/2)(x1 + 723) (v >0)

with exact line search, starting at z(?) = (v, 1):

k k
MONISW oliat MO S il
! \v+1) ’ v+1

o veryslow if vy > 1lorvy <1

e example for v = 10:

D)

7 7z
’
0' \
N\
N

—10 0 10

Figure source: Boyd and Vandenberghe



D)

Gradient Descent Convergence

Of

—10 0 10
Condition number = 10 Condition number = 1

= For quadratic function, convergence speed depends on ratio of highest
second derivative over lowest second derivative (“‘condition number”)

= In high dimensions, almost guaranteed to have a high (=bad) condition
number

= Rescaling coordinates (as could happen by simply expressing quantities in
different measurement units) results in a different condition number



Outline

s Unconstrained minimization
s Gradient Descent

= Newton’s Method
= Equality constrained minimization

= Inequality and equality constrained minimization



Newton’s Method

s 2" order Taylor Approximation rather than It order:

flx+ Az) ~ f(z)+ Vf(z) Az + %A:L'TVQf(:I:)Ax

assuming V2 f(z) > 0, the minimum of the 2"d order
approximation is achieved at: Az, = — (VQf(x))_l Vfx)

(z, f(z))

(-T + Amnte f(.'IC + AInt)) f
Figure source: Boyd and Vandenberghe



Newton’s Method

Algorithm 9.5 Newton’s method.

given a starting point z € dom f, tolerance € > 0.

repeat
1. Compute the Newton step and decrement.
Azye = —V2f(2) 'V f(z); A= V@) V() VF(z).
2. Stopping criterion. quit if \*/2 < e,
3. Line search. Choose step size t by backtracking line search.
4. Update. x := = + tAxy:.

Figure source: Boyd and Vandenberghe



Affine Invariance

Consider the coordinate transformationy = A" x  (x = Ay)

If running Newton’s method starting from x(© on f(x) results in

x© x() x@ .

Then running Newton’s method starting from y© = A-! x(©) on
g(y) = f(Ay), will result in the sequence

0) = Al xO y(I) = A-l (). y2) = Al x(2 .
Y Y 4 ’

Exercise: try to prove this!



Affine Invariance --- Proof

o9 0 of
Oyrdy; Oy (; a%A“)
- o (of
o 82f 833[
B %:Xl:axl(?xj 8ykA’i
0 f
B Zzl:axlax]AlkA]z
J
Vg = A'V3fA
—(V2g) ' Vg
—(ATV2fA) ATV
—ATH(VRA) T ATTATYY
—ATH(V2F) TV

A Az




Example 1

. r1+3x0—0.1 r1—3xr9—0.1 —xr1—0.1
f(I1,I2)=/1+ 2 + %1 2 4 e %1

SR L
R b
backtracking line search backtracking line search

Figure source: Boyd and Vandenberghe



Example 2

. 100
a problem in R

~.exact |.s.

F®) — p*

10—2,

backtrack

-4 , . S~
10 0 510) 10 150 20
k

gradient descent

10°
L
. 10
~Y
,L - backtracking
~ 1077 ¢ [
= exact line search
= 10-10}
—-15 :
10775 2 4 6 8 10

Newton’s method

Figure source: Boyd and Vandenberghe



Larger Version of Example 2

10000
(

example in R with sparse a;)

10000 100000

flz) == log(l—z})— ) log(h;—a]x)
i=1 1=1

0 5 10 15 20
k

e backtracking parameters a = 0.01, 3 = 0.5.

e performance similar as for small examples



Gradient Descent: Example 3

f(z) = (1/2)(x1 + 723) (v >0)

with exact line search, starting at z(?) = (v, 1):

k k
MONISW oliat MO S il
! \v+1) ’ v+1

o veryslow if vy > 1lorvy <1

e example for v = 10:

D)

7 7z
’
0' \
N\
N

—10 0 10

Figure source: Boyd and Vandenberghe



Example 3
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m  Gradient descent

» Newton’s method (converges in one step if f convex quadratic)



Quasi-Newton Methods

= Quasi-Newton methods use an approximation of the Hessian

= Example |: Only compute diagonal entries of Hessian, set
others equal to zero. Note this also simplifies

computations done with the Hessian.

= Example 2: natural gradient --- see next slide



Natural Gradient

= Consider a standard maximum likelihood problem:

_ ),
mgxxf(@) mgxxzi:logp(a: :0)

a Gradient: 9f(0) _ Z 0logp(z'"); 0) _ Z ap(z;0) 1

06, ’L, 06, i 20,  p(x();0)
= Hessian:
f(O) Ppx;0) 1 px;0) 1 paD;0) 1
90,00, —~ 00,00, p(z();0) 20, p(x®;0) 00, p(x);0)

20 ((9) - _ . T
WIOESY Vpéc(u);é)e) ~ (Viogp(x:6)) (Viogp(a;0))

m  Natural sradient:

= (Z (V Ing(x(i);H)) <V logp(x(i);Q))T) _ <ZVlogp(a:(i);9))

(2

)

only keeps the 2" term in the Hessian. Benefits: (1) faster to compute (only

gradients needed); (2) guaranteed to be negative definite; (3) found to be superior in

some experiments; (4) invariant to re-parametrization



Natural Gradient

= Property: Natural gradient is invariant to parameterization of
the family of probability distributions p( x ; 6)

s Hence the name.

= Note this property is stronger than the property of
Newton’s method, which is invariant to affine re-
parameterizations only.

» Exercise: Try to prove this property!



Natural Gradient Invariant to
Reparametrization --- Proof

= Natural gradient for parametrization with 6:

Jo = (Z (Vologp(29;0)) (Vo logp(a?; 9))T) _ (Z Vo log p(z”; 9))

7

= Let¢=f(0).andlet J =22 e, J;; = 2
' J

- (Z (W logp(m(i)wb)) <V¢ logp(iv(i);@)T)_ (Z Vo logp(f(i)ﬂb))

i

1
= (Z (JTVe logp(:v“);cb)) (JTW logp(w(“;@)T) (JTZW logp(x(“;qb))

= J' g

—> the natural gradient direction is the same independent of the
(invertible, but otherwise not constrained) reparametrization f



Outline

m Unconstrained minimization
s Gradient Descent

= Newton’s Method
= Equality constrained minimization

= Inequality and equality constrained minimization



Equality Constrained Minimization

m Problem to be solved:

min, f(x)

s.t. Ax=5b

= We will cover three solution methods:
s Elimination
= Newton’s method

s Infeasible start Newton method



Method 1: Elimination

=  From linear algebra we know that there exist a matrix F (in fact infinitely many)
such that:

{x|Ax =0} ={z|lz =2+ Fz}
2 can be any solution to Ax = b

F spans the nullspace of A

A way to find an F: compute SVD of A, A=U S V’, for A having k nonzero singular values, set F = U(;, k+1:end)

= So we can solve the equality constrained minimization problem by solving an
unconstrained minimization problem over a new variable z:

min f(Z + F'z)

= Potential cons: (i) need to first find a solution to Ax=b, (ii) need to find F, (iii)
elimination might destroy sparsity in original problem structure



Methods 2 and 3 Require Us to First
Understand the Optimality Condition

= Recall problem to be solved:

min, f(x)

s.t. Ax=0b

X* with Ax*=b is
(local) optimum iff: VAz if AAz =0 then Vf(z*)' Az = 0.

Equivalently: Vi)' =v'A



Methods 2 and 3 Require Us to First
Understand the Optimality Condition

= Recall the problem to be solved:

min, f(z)

s.t. Axz=0b>

Optimality Condition: Az* =band Vf(z*)+A'v =0




Method 2: Newton’s Method

= Problem to be solved: min, f(z)
s.t. Ax=0b>

m  Optimality Condition: Az* =band Vf(z*)+ATv =0

s Assume X is feasible, i.e., satisfies Ax = b, now use 2" order
approximation of f:

1
mina, f(z) + Vf(z) Az + EAxTVQf(a:)Ax
st.  A(x+Az)=0b

= > Optimality condition for 2" order approximation:

" -1



Method 2: Newton’s Method

given starting point x € dom f with Az = b, tolerance € > 0.
repeat
1. Compute the Newton step and decrement Az, A(x).
2. Stopping criterion. quit if A\ /2 < e.
3. Line search. Choose step size t by backtracking line search.
4. Update. © := = + tAxy,t.

With Newton step obtained by solving a linear system of equations:

P 4] [

Feasible descent method: (%) feasible and f(z(*+t1D) < f(x(k))



Method 3: Infeasible Start Newton Method

m Problem to be solved: min,, f(x)

s.t. Ax=0b>

®  Optimality Condition: Az* =band Vf(z*)+ ATv =0

=  Use It order approximation of the optimality conditions at current x:
Alx+Az) = b
Vfix)+Vif(zx) Az +A"v = 0

A1) =R



Outline

= Unconstrained minimization
= Equality constrained minimization

= Inequality and equality constrained minimization



Equality and Inequality Constrained Minimization

= Recall the problem to be solved:
min, fo(x)
st.  fi(x) <0, i=1,..., m
Axr =0



Equality and Inequality Constrained Minimization

m Problem to be solved:

min, fo(z)
st.  fi(x) <0, i=1,...,m
Ax =b

m Reformulation via indicator function,

oo otherwise

min,  fo(z) + Y I (fi(z)) I_(u) = {O ifu<0
I=1
Axr =0»

- No inequality constraints anymore, but very poorly
conditioned objective function



Equality and Inequality Constrained Minimization

m Problem to be solved: m  Reformulation via indicator function
min,  fo() min, fo(z)+ > I-(fi(z))
st.  fi(x) <0, i=1,...,m I=1
Az =b Az =b

—> No inequality constraints anymore, but
very poorly conditioned objective function

Approximation via logarithmic barrier: 1/ log(—u)

m

min, fo(z) — (1/t) > log(—fi(x)) 10
1=1
st. Axz=0b >
0
for £>0, -(1/t) log(-u) is a smooth approximation of |_(u) e - 1
u

approximation improves for t = oo, better conditioned for smaller t



Equality and Inequality Constrained Minimization

10




Barrier Method

= Given: strictly feasible x, t=t® > 0, ;1 > 1, tolerance € > 0

= Repeat
|. Centering Step. Compute X (t) by solving
min,  fo(w) = (1/4) Y log(—fi(x))
i=1
st.  Axr=0b
starting from x
2. Update. x :=x'(¢).
3. Stopping Criterion. Quit if m/t < e

4. Increaset. t:=put



Example 1: Inequality Form LP

inequality form LP (m = 100 inequalities, n = 50 variables)

102 oy 140§
: 2 120
0 Q2
o 10 5100
o0 o
Z 1072 £ 80
= c
S g 60 -
© 10 % 40
! b=
1076 =50 u=150 pu=2 20} i
i L M L 0 " " " i i " " M M
0 20 40 60 80 0 40 80 120 160 200
Newton iterations 7l

e starts with x on central path (¢(°) = 1, duality gap 100)
e terminates when ¢ = 10% (gap 1079)
e centering uses Newton's method with backtracking

total number of Newton iterations not very sensitive for 1 > 10



Example 2: Geometric Program

geometric program (m = 100 inequalities and n = 50 variables)

minimize  log 22=1 exp(al, z + bo;:))

subject to log Zi‘:l exp(alz + bik)) <0, i=1,....m

duality gap
S
|
[3v]

pw =150 ‘u =50 p= 2

0 20 40 60 &0 100 120
Newton iterations



Example 3: Standard LPs

family of standard LPs (A € R™**™)

minimize Lz

subjectto Ax=b, x>0

m = 10, ...,1000; for each m, solve 100 randomly generated instances

35

30}

Newton iterations
no
ot

20¢

10! 102 103
m

number of iterations grows very slowly as m ranges over a 100 : 1 ratio



Initalization

= Basic phase | method:

Initialize by first solving:

ming s S
s.t file) <s, i=1,....,m
Ax = b

= Easy to initialize above problem, pick some x such that Ax = b, and then
simply set s = max; f(x)

= Can stop early---whenever s <0



Initalization

= Sum of infeasibilities phase | method:

= [nitialize by first solving:

m

min:l:,s E Si
I=1

st.  file)<s;, i=1,...,m
$si >0, 1=1,....,m

Az =10
= Easy to initialize above problem, pick some x such that Ax = b, and then
simply set s, = max(0, f(x))

» For infeasible problems, produces a solution that satisfies many more
inequalities than basic phase | method



Other methods

= We have covered a primal interior point method

= one of several optimization approaches

= Examples of others:
= Primal-dual interior point methods

= Primal-dual infeasible interior point methods



Optimal Control (Open Loop)

s For convex g, and f,, we can now solve:

T

ming., > gi(we,ue)

t=0
S.t. Lt41 = AtCCt + Btut Vit

f?(x7u) SO, izl,...,m

Which gives an open-loop sequence of controls



Optimal Control (Closed Loop)

= Given: g
m Fork=0,1,2,...,T
= Solve
T
Iilinth(a:t,ut)
"

s.t. T+l — AtZUt + Btut vVt € {k,k + ]., . ,T — ].}
filz,u) <0, Vie{l,...,m}

T = Tk

= Execute U,

= Observe resulting state, T1

> = an instantiation of Model Predictive Control.

> Initialization with solution from iteration k-| can make solver very fast (and
would be done most conveniently with infeasible start Newton method)



CVX

= Disciplined convex programming

= = convex optimization problems of forms that it can easily
verify to be convex

= Convenient high-level expressions

= Excellent for fast implementation

= Designed by Michael Grant and Stephen Boyd, with input
from Yinyu Ye.

s Current webpage: http://cvxr.com/cvx/




CVX

= Matlab Example for Optimal Control, see course webpage



