
Bellman’s curse of dimensionality 

n  n-dimensional state space 

n  Number of states grows exponentially in n (assuming some fixed 
number of discretization levels per coordinate) 

n  In practice 

n  Discretization is considered only computationally feasible up 
to 5 or 6 dimensional state spaces even when using 

n  Variable resolution discretization 
n  Highly optimized implementations 



n  Goal: find a sequence of control inputs (and corresponding sequence 
of states) that solves: 

n  Generally hard to do.  In this set of slides we will consider convex 
problems, which means g is convex, the sets Ut and Xt are convex, 
and f is linear.  Next set of slides will relax these assumptions. 

n  Note: iteratively applying LQR is one way to solve this problem if 
there were no constraints on the control inputs and state. 

n  In principle (though not in our examples), u could be parameters of a 
control policy rather than the raw control inputs.  

   

Optimization for Optimal Control 



Convex Optimization 
 

Pieter Abbeel 
UC Berkeley EECS 

 
 
 

Many slides and figures adapted from Stephen Boyd 
 
[optional] Boyd and Vandenberghe, Convex Optimization, Chapters 9 – 11 
[optional] Betts, Practical Methods for Optimal Control Using Nonlinear Programming 
 
 
 

TexPoint fonts used in EMF.  
Read the TexPoint manual before you delete this box.: 
AAAAAAAAAAAA 



n  Convex optimization problems 

n  Unconstrained minimization 

n  Gradient Descent 

n  Newton’s Method 

n  Equality constrained minimization 

n  Inequality and equality constrained minimization 

Outline 



n  A function is f: <n à < is convex if and only if 

 

 

Convex Functions 

∀x1, x2 ∈ Domain(f), ∀t ∈ [0, 1] :

f(tx1 + (1− t)x2) ≤ tf(x1) + (1− t)f(x2)

Image source: wikipedia  



Convex Functions 

Source: Thomas Jungblut’s Blog 

•  Unique minimum 
•  Set of points for which f(x) <= a is convex 



n  Convex optimization problems are a special class of 
optimization problems, of the following form: 

 with fi(x) convex for i = 0, 1, …, n 

n  A function is f is convex if and only if 

 

 

Convex Optimization Problems 

min
x∈Rn

f0(x)

s.t. fi(x) ≤ 0 i = 1, . . . , n

Ax = b

∀x1, x2 ∈ Domain(f), ∀λ ∈ [0, 1]

f(λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2)



n  Convex optimization problems 

n  Unconstrained minimization 

n  Gradient Descent 

n  Newton’s Method 

n  Equality constrained minimization 

n  Inequality and equality constrained minimization 

Outline 



n  If x* satisfies: 

    

  then x* is a local minimum of f.   

n  In simple cases we can directly solve the system of n equations given by (2) to find 
candidate local minima, and then verify (3) for these candidates. 

n  In general however, solving (2) is a difficult problem.  Going forward we will 
consider this more general setting and cover numerical solution methods for (1). 

 

Unconstrained Minimization 



n  Idea:  

n  Start somewhere 

n  Repeat:  Take a step in the steepest descent direction 

Steepest Descent 

Figure source: Mathworks 



1. Initialize x 

2. Repeat 

1. Determine the steepest descent direction ¢x 

2. Line search.  Choose a step size t > 0. 

3. Update.  x := x + t ¢x. 

3. Until stopping criterion is satisfied 

Steepest Descent Algorithm 



What is the Steepest Descent Direction? 

à Steepest Descent = Gradient Descent 



n  Used when the cost of solving the minimization problem with 
one variable is low compared to the cost of computing the 
search direction itself. 

Stepsize Selection: Exact Line Search  



n  Inexact: step length is chose to approximately minimize f 
along the ray {x + t ¢x | t ¸ 0} 

Stepsize Selection: Backtracking Line Search  



Stepsize Selection: Backtracking Line Search  

Figure source: Boyd and Vandenberghe 



Steepest Descent (= Gradient Descent) 

Figure source: Boyd and Vandenberghe 



Gradient Descent: Example 1 

Figure source: Boyd and Vandenberghe 



Gradient Descent: Example 2 

Figure source: Boyd and Vandenberghe 



Gradient Descent: Example 3 

Figure source: Boyd and Vandenberghe 



n  For quadratic function, convergence speed depends on ratio of highest 
second derivative over lowest second derivative (“condition number”) 

n  In high dimensions, almost guaranteed to have a high (=bad) condition 
number 

n  Rescaling coordinates (as could happen by simply expressing quantities in 
different measurement units) results in a different condition number 

Gradient Descent Convergence 

 

 

 

 

 

 

 

 

Condition number = 10 Condition number = 1 



n  Unconstrained minimization 

n  Gradient Descent 

n  Newton’s Method 

n  Equality constrained minimization 

n  Inequality and equality constrained minimization 

Outline 



n  2nd order Taylor Approximation rather than 1st order: 

   assuming                 , the minimum of the 2nd order 
approximation is achieved at: 

Newton’s Method  

Figure source: Boyd and Vandenberghe 



Newton’s Method 

Figure source: Boyd and Vandenberghe 



n  Consider the coordinate transformation y = A-1 x    (x = Ay) 

n  If running Newton’s method starting from x(0) on f(x) results in  

 x(0), x(1), x(2), …  

n  Then running Newton’s method starting from y(0) = A-1 x(0) on 
g(y) = f(Ay), will result in the sequence  

 y(0) = A-1 x(0), y(1) = A-1 x(1), y(2) = A-1 x(2), … 

 

n  Exercise: try to prove this! 

Affine Invariance 



Affine Invariance --- Proof 



Example 1 

Figure source: Boyd and Vandenberghe 

gradient descent with Newton’s method with 
backtracking line search 



Example 2 

Figure source: Boyd and Vandenberghe 

gradient descent Newton’s method 



Larger Version of Example 2 



Gradient Descent: Example 3 

Figure source: Boyd and Vandenberghe 



n  Gradient descent 

n  Newton’s method (converges in one step if f convex quadratic) 

Example 3 



n  Quasi-Newton methods use an approximation of the Hessian 

n  Example 1: Only compute diagonal entries of Hessian, set 
others equal to zero.  Note this also simplifies 
computations done with the Hessian. 

n  Example 2: natural gradient --- see next slide 

Quasi-Newton Methods 



n  Consider a standard maximum likelihood problem: 

n  Gradient: 

n  Hessian:  

n  Natural gradient: 

only keeps the 2nd term in the Hessian.  Benefits: (1) faster to compute (only 
gradients needed); (2) guaranteed to be negative definite; (3) found to be superior in 
some experiments; (4) invariant to re-parametrization 

Natural Gradient 

∇2f(θ) =
�

i

∇2p(x(i); θ)

p(x(i); θ)
−

�
∇ log p(x(i); θ)

��
∇ log p(x(i); θ)

��



n  Property: Natural gradient is invariant to parameterization of 
the family of probability distributions p( x ; µ) 

n  Hence the name. 

n  Note this property is stronger than the property of 
Newton’s method, which is invariant to affine re-
parameterizations only. 

n  Exercise: Try to prove this property! 

Natural Gradient 



n  Natural gradient for parametrization with µ: 

n  Let Á = f(µ), and let                   i.e.,  

à the natural gradient direction is the same independent of the 
(invertible, but otherwise not constrained) reparametrization f 

Natural Gradient Invariant to 
Reparametrization --- Proof 



n  Unconstrained minimization 

n  Gradient Descent 

n  Newton’s Method 

n  Equality constrained minimization 

n  Inequality and equality constrained minimization 

Outline 



n  Problem to be solved: 

n  We will cover three solution methods: 

n  Elimination 

n  Newton’s method 

n  Infeasible start Newton method 

Equality Constrained Minimization 



n  From linear algebra we know that there exist a matrix F (in fact infinitely many) 
such that: 

    can be any solution to Ax = b 

 F spans the nullspace of A 
A way to find an F: compute SVD of A, A = U S V’, for A having k nonzero singular values, set F = U(:, k+1:end) 

n  So we can solve the equality constrained minimization problem by solving an 
unconstrained minimization problem over a new variable z: 

n  Potential cons: (i) need to first find a solution to Ax=b, (ii) need to find F, (iii) 
elimination might destroy sparsity in original problem structure 

 

Method 1: Elimination 



n  Recall problem to be solved: 

Methods 2 and 3 Require Us to First 
Understand the Optimality Condition 

x* with Ax*=b is  
(local) optimum iff: 
 
Equivalently:   



n  Recall the problem to be solved: 

Methods 2 and 3 Require Us to First 
Understand the Optimality Condition 



n  Problem to be solved: 

n    

n  Assume x is feasible, i.e., satisfies Ax = b, now use 2nd order 
approximation of f: 

n  à Optimality condition for 2nd order approximation: 

Method 2: Newton’s Method 



With Newton step obtained by solving a linear system of equations: 

 

 

Feasible descent method:  

Method 2: Newton’s Method 



n  Problem to be solved: 

n    

n  Use 1st order approximation of the optimality conditions at current x: 

Method 3: Infeasible Start Newton Method 



n  Unconstrained minimization 

n  Equality constrained minimization 

n  Inequality and equality constrained minimization 

Outline 



n  Recall the problem to be solved: 

Equality and Inequality Constrained Minimization 



n  Problem to be solved: 

n  Reformulation via indicator function,  

à No inequality constraints anymore, but very poorly 
conditioned objective function 

Equality and Inequality Constrained Minimization 



n  Problem to be solved: 

n  Approximation via logarithmic barrier: 

 for t>0, -(1/t) log(-u) is a smooth approximation of I_(u) 

 approximation improves for t à 1, better conditioned for smaller t 

Equality and Inequality Constrained Minimization 

n  Reformulation via indicator function 

à No inequality constraints anymore, but 
very poorly conditioned objective function 



Equality and Inequality Constrained Minimization 



n  Given: strictly feasible x, t=t(0) > 0, µ > 1, tolerance ² > 0  

n  Repeat 

1.   Centering Step.  Compute x*(t) by solving 

  

 starting from x 

2.  Update.   x := x*(t). 

3.  Stopping Criterion.  Quit if m/t < ² 

4.  Increase t.  t := µ t 

Barrier Method 



Example 1: Inequality Form LP 



Example 2: Geometric Program 



Example 3: Standard LPs 



n  Basic phase I method: 

    Initialize by first solving: 

n  Easy to initialize above problem, pick some x such that Ax = b, and then 
simply set s = maxi fi(x) 

n  Can stop early---whenever s < 0 

Initalization 



n  Sum of infeasibilities phase I method: 

n  Initialize by first solving: 

n  Easy to initialize above problem, pick some x such that Ax = b, and then 
simply set si = max(0, fi(x)) 

n  For infeasible problems, produces a solution that satisfies many more 
inequalities than basic phase I method 

Initalization 



n  We have covered a primal interior point method 

n  one of several optimization approaches 

n  Examples of others: 

n  Primal-dual interior point methods 

n  Primal-dual infeasible interior point methods 

Other methods 



n  For convex gt and fi, we can now solve: 

Which gives an open-loop sequence of controls 

  

Optimal Control (Open Loop) 



n  Given:  

n  For k=0, 1, 2, …, T 

n  Solve 

n  Execute uk 

n  Observe resulting state, 

à  = an instantiation of Model Predictive Control. 

à  Initialization with solution from iteration k-1 can make solver very fast (and 
would be done most conveniently with infeasible start Newton method)  

Optimal Control (Closed Loop) 

min
x,u

T�

t=k

gt(xt, ut)

s.t. xt+1 = Atxt +Btut ∀t ∈ {k, k + 1, . . . , T − 1}
fi(x, u) ≤ 0, ∀i ∈ {1, . . . ,m}
xk = x̄k



n  Disciplined convex programming 

n  = convex optimization problems of forms that it can easily 
verify to be convex 

n  Convenient high-level expressions 

n  Excellent for fast implementation 

n  Designed by Michael Grant and Stephen Boyd, with input 
from Yinyu Ye. 

n  Current webpage: http://cvxr.com/cvx/ 

  

CVX 



n  Matlab Example for Optimal Control, see course webpage 

CVX 


