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Many slides adapted from Thrun, Burgard and Fox, Probabilistic Robotics



Overview

= Kalman Filter = special case of a Bayes’ filter with dynamics model and
sensory model being linear Gaussian:
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p($t|$0:t—1, 20:t—15 Uo:t—l) = p(ﬂft|$t—1, Ut—l) ~ N(At—liCt—l + By jup—1, Qt—l)
p(2t|5130:t, 20:t—15 U():t—l) — p(2t|$t) ~ N(Ctﬂvt + dy, Rt)

m Above can also be written as follows:
Xy = A Xi 1+ Biqui1+ei—1 -1 ~N(0,Q4-1)
Zt —_— CtXt+dt+5t 5,5 NN(O,Rt)

Note: I switched time indexing on u to be in line with typical control community conventions (which is
different from the probabilistic robotics book).



Time update

= Assume we have current belief for X g.;:
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= Then, after one time step passes: @ @
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Time Update: Finding the joint p(x¢+1, x¢|20:¢, o:¢)
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= Now we can choose to continue by either of

= (i) mold it into a standard multivariate Gaussian format so
we can read of the joint distribution’s mean and covariance

= (ii) observe this is a quadratic form in x_{t} and x_{t+1} in
the exponent; the exponent is the only place they appear;
hence we know this is a multivariate Gaussian. We directly
compute its mean and covariance. [usually simpler!]



Time Update: Finding the joint p(zty1, z¢|20:t, %o:t)

= We follow (ii) and find the means and covariance matrices in

(Xt41, Xo)|20:, w0t ~ N ([ Fejo:t ] ; ! Zijo: 2tﬂf+1|0=t])

Ht+410:t Zt+1,t|0:t 2t+1|0:t

pejo:¢ and Xy o, are available from previous time step

Ht41]0:t = E[Xi11]20:t, uo:t] Hi41)0:t = E[Xt+1|0:t]
E[A: X + Byus + €204, Uo:t) E[A; X4j0:¢ + Brug + €410.¢]
=  AE[X¢|20.t, wo.t| + Brug + Eler|z0.¢, wo-t] AE[Xy)0.4) + Brug + Elego.4]
= Atpg0:t + Bruy = Atpe0:t + Brug

Setjor = Bl(Xet1j0 — tet110:¢) (Ko 1j0:t — Het1jo:e) | ]
= E[((AXtj04 + Brur + €) — (Aeirjor + Brur)) ((AeXijo. + Beue + €1) — (Aepugjone + Beur)) ']
= E[(A«(Xy0:t — pej0:e) + €) (Ae(Xpjor — te0:e) + €)'
= E[At(Xt|0:t - /J't|0:t)(Xt|0:t - Mt|0:t)TAT] + E[ft(At(Xt|0:t - Mt|0:t))T] + E[(At(Xt|0:t - /~Lt|0:t))€tT] + E[EthT]
AtE[(Xt|O:t - /~Lt|0:t)(Xt|0:t - ,Ut|0:t)T]A;r + E[€t]E[(At(Xt|0:t - Mt|0:t))T] + E[At(Xt|():t - Mt|0:t)]E[€t] + E[€t€;r]
= AX404A; +0+0+Qy

231&,1&-{-1|0:1& = E[(Xt|0:t - Mt|0:t)(Xt+1|0:t - ,ut+1|0:t)T]
— YAl [Exercise: Try to prove each of these
10:6%¢ without referring to this slide!]



Time Update Recap @*@

m  Assume we have

Xt|0:t ~ N(Mt|0:ta Z:t|0:t)
Xiv1 = AXi+ Buug + €,

e¢ ~ N(0,Q¢), and independent of x.¢, 204, Uo:t, €0:4—1

= Then we have
[ Lie0: DINTEED ) .
X104, X _ ~ N Ht)0:t ] , [ t|0:t t,t+1|0.t])
(Xt10:6 Xet1]0:t) (_Mt+1|0:t D180t t41]0:t

_ N( Ht)0:t ] [ 2t|0:t 2t|0:tA;r ])
|Atpigjo:e + Brue| T [ Ay Atzt|0:tA;r+Qt

= Marginalizing the joint, we immediately get

Xt+1|0:t ~ N(At,utm:t+BtutaAtEt|0:tAtT+Qt>



Generality! @*@

m  Assume we have

V. o~ N(pv,Zvv)
W = AV +b+e,
e ~ N(0,Q), and independent of V

m [ hen we have
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= Marginalizing the joint, we immediately get

W ~ N (Auy +v,ASyv A" +Q)




Observation update

= Assume we have: @
Xt+1|0:t ~ N(Ht+1|0:t,2t+1|0:t)
Ziy1r ~ Cip1Xpg1 +digp1 + 041

641 ~ N(0,R;), and independent of zg.¢+1, 20:¢, Uo:t, €0:t

= [ hen:

. Yi41)0: 2i4110::Cry
X "/ _ ~ N Ft+1]0:t ] ’ [ t+1]0:t t+110:t“i41 ])
( t+1[0:t t+1|0.t) ([C’Hluth:t +d Ct+12t+1|0:t Ct+1zt+1|0:t0;1 + Ritq

= And, by conditioning on Z;,; = z;,(see lecture slides on
Gaussians) we readily get:

Xir1lz041,u0:41 = Xyg1)0:441
~ N (Mt+1|0:t + Zt+1|0:tCtT}-1(Ct-i-lzt-i-llO:tCtTH + Rt+1)_1(zt+1 - (Ct+1ﬂt+1|0;t +d)),

T T 1
Se4110:t — 2t4110:tCorp1 (Cr1Z64110:4Crp1 + Rig1) " Crp1 814104



Complete Kalman Filtering Algorithm

s At time O: Xo ~ N(Mo|0, Z0|O)
m Fort=1,2,...

= Dynamics update:

Ht41]0:t = Atﬂtm:t + Biuy
. T
Yit10t = Aoy + Qs
= Measurement update:
Hi4+100:t4+1 = He+1)0:¢ T Et+1|0:tC7:_Er1(CH-lEt+1|0:tCzIL1 + Riy1) (241 — (Cty1fit41)0:¢ +d))
Yit1)0:t41 = D410t — Zt+1|0:tCtT|_1(Ct+1zt—|—1|0:t0t—:_1 + Rt+1)_lct—|—1zt—|—l|0:t

= Often written as:

Kip1 = 2t+1|0:tCt_I-_+-1(Ct+12t+1|0:tc’f1_*_1 + Rt+1)_1 (Kalman gain)
psjoie41 = Het1]0:t T Kir1(ze41 — (Crgiptet1)o:e + d)) “innovation”
Zt+1|0:t—|—1 - (I - Kt+1Ct+1)Et+1|0:t



Kalman Filter Summary

= Highly efficient: Polynomial in measurement dimensionality k
and state dimensionality n:
O(k237¢ + n?)

m Optimal for linear Gaussian systems!
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Forthcoming Extensions

= Nonlinear systems

s Extended Kalman Filter, Unscented Kalman Filter

= Very large systems with sparsity structure

= Sparse Information Filter

= Very large systems with low-rank structure

s Ensemble Kalman Filter

= Kalman filtering over SE(3)

= How to estimate A, B, C, Q,, R. from data (z, 1, U,.1)

= EM algorithm

= How to compute  p(Z¢|20:7, to:7) (note the capital “T”)

= Smoothing



Things to be aware of that we won't cover

m Square-root Kalman filter --- keeps track of square root of covariance matrices ---
equally fast, numerically more stable (bit more complicated conceptually)

= fA=AQ=QC=CR =R

= If system is “observable” then covariances and Kalman gain will converge to
steady-state values for t -> co

» Can take advantage of this: pre-compute them, only track the mean, which is done by
multiplying Kalman gain with “innovation”

= System is observable if and only if the following holds true: if there were zero
noise you could determine the initial state after a finite number of time steps

= Observable if and only if: rank([ C; CA; CA2; CA3;...;CA™']) =n

= Typically if a system is not observable you will want to add a sensor to make
it observable

» Kalman filter can also be derived as the (recursively computed) least-squares
solutions to a (growing) set of linear equations



Kalman filter property

=l [f system is observable (=dual of controllable!) then Kalman filter will
converge to the true state.

= System is observable iff
O =[C; CA;CA%;...; CA-'] is full column rank (1)

Intuition: if no noise, we observe y,, y|, ... and we have that the unknown initial
state X, satisfies:

Yo = C X
y1 = CAX,
Yk = CAS %,

This system of equations has a unique solution X, iff the matrix [C; CA,; ... CAX] has full
column rank. B/c any power of a matrix higher than n can be written in terms of
lower powers of the same matrix, condition (1) is sufficient to check (i.e., the column
rank will not grow anymore after having reached K=n-1).



