#### **Autonomous Helicopter Flight**

Pieter Abbeel UC Berkeley EECS

#### Challenges in Helicopter Control

- Unstable
- Nonlinear
- Complicated dynamics
  - Air flow
  - Coupling
  - Blade dynamics
- Noisy estimates of position, orientation, velocity, angular rate (and perhaps blade and engine speed)



#### Success Stories: Hover and Forward Flight

- Just a few examples:
  - Bagnell & Schneider, 2001;
  - LaCivita, Papageorgiou, Messner & Kanade, 2002;
  - Ng, Kim, Jordan & Sastry 2004a (2001); Ng et al., 2004b;
  - Roberts, Corke & Buskey, 2003;
  - Saripalli, Montgomery & Sukhatme, 2003;
  - Shim, Chung, Kim & Sastry, 2003;
  - Doherty et al., 2004;
  - Gavrilets, Martinos, Mettler and Feron, 2002.
- Varying control techniques: inner/outer loop PID with hand or automatic tuning, H1, LQR, ...



# One of our first attempts at autonomous flips [using similar methods to what worked for ihover]



Target trajectory: meticulously hand-engineered Model: from (commonly used) frequency sweeps data

## Stationary vs. Aggressive Flight

- Hover / stationary flight regimes:
  - Restrict attention to specific flight regime
  - Extensive data collection = collect control inputs, position, orientation, velocity, angular rate
  - Build model + model-based controller
- → Successful autonomous flight.
- Aggressive flight maneuvers --- additional challenges:
  - Task description: What is the target trajectory?
  - Dynamics model: How to obtain accurate model?

### Aggressive, Non-Stationary Regimes

- Gavrilets, Martinos, Mettler and Feron, 2002
  - 3 maneuvers: split-S, snap axial roll, stall-turn
  - Key: Expert engineering of controllers after human pilot demonstrations

#### Aggressive, Non-Stationary Regimes

#### Our work:

- Key: Automatic engineering of controllers after human pilot demonstrations through machine learning
- Wide range of aggressive maneuvers
- Maneuvers in rapid succession

## Learning Dynamic Maneuvers

- Learning a target trajectory
- Learning a dynamics model
- Autonomous flight results

## **Target Trajectory**

- Difficult to specify by hand:
  - Required format: position + orientation over time
  - Needs to satisfy helicopter dynamics

- Our solution:
  - Collect demonstrations of desired maneuvers
  - Challenge: extract a clean target trajectory from many suboptimal/noisy demonstrations

## **Expert Demonstrations**

## Learning a Trajectory



- HMM-like generative model
  - Dynamics model used as HMM transition model
  - Demos are observations of hidden trajectory
- Problem: how do we align observations to hidden trajectory?

#### Learning a Trajectory





- Dynamic Time Warping (Needleman&Wunsch 1970 Sakoe&Chiba, 1978)
- Extended Kalman filter / smoother

## Results: Time-Aligned Demonstrations

White helicopter is inferred "intended" trajectory.

#### Results: Loops



Even without prior knowledge, the inferred trajectory is much closer to an ideal loop.

## Learning Dynamic Maneuvers

- Learning a target trajectory
- Learning a dynamics model
- Autonomous flight results

## Standard Modeling Approach



## **Key Observation**



Errors observed in the "baseline" model are clearly consistent after aligning demonstrations.

## **Key Observation**

- If we fly the same trajectory repeatedly, errors are consistent over time once we align the data.
  - There are many unmodeled variables that we can't expect our model to capture accurately.
    - Air (!), actuator delays, etc.
  - If we fly the same trajectory repeatedly, the hidden variables tend to be the same each time.

~ muscle memory for human pilots

# Trajectory-Specific Local Models

- Learn locally-weighted model from aligned demonstrations
  - Since data is aligned in time, we can weight by time to exploit repeatability of unmodeled variables.
  - For model at time t:  $W(t') = e^{-\frac{(t-t')^2}{\sigma^2}}$
  - Obtain a model for each time t into the maneuver by running weighted regression for each time t

## Learning Dynamic Maneuvers

- Learning a target trajectory
- Learning a dynamics model
- Autonomous flight results

### **Experimental Setup**



Abbeel, Coates, Quigley, Ng, NIPS 2007

#### **Experimental Procedure**

- 1. Collect sweeps to build a baseline dynamics model
- 2. Our expert pilot demonstrates the airshow several times.



- Learn a target trajectory.
- 4. Learn a dynamics model.
- Find the optimal control policy for learned target and dynamics model.
- 6. Autonomously fly the airshow



- 7. Learn an improved dynamics model. Go back to step 4.
- → Learn to fly new maneuvers in < 1hour.

## Results: Autonomous Airshow



## Results: Flight Accuracy



### **Autonomous Autorotation Flights**



Abbeel, Coates, Hunter, Ng, ISER 2008

#### Chaos ["flip/roll" parameterized by yaw rate]

