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Challenges in Helicopter Control

= Unstable
= Nonlinear

s Complicated dynamics

= Air flow
= Coupling
= Blade dynamics

= Noisy estimates of position, orientation, velocity, angular
rate (and perhaps blade and engine speed)



Success Stories: Hover and Forward Flight

= Just a few examples:
= Bagnell & Schneider, 2001;

LaCivita, Papageorgiou, Messner & Kanade, 2002;

= Ng, Kim, Jordan & Sastry 2004a (2001); Ng et al., 2004b;
= Roberts, Corke & Buskey, 2003;

= Saripalli, Montgomery & Sukhatme, 2003;

= Shim, Chung, Kim & Sastry, 2003;

= Doherty et al., 2004;

=  Gavrilets, Martinos, Mettler and Feron, 2002.

= Varying control techniques: inner/outer loop PID with hand
or automatic tuning, H1, LQR, ...



[Ng, Coates, Tse, et al, 2004]




One of our first attempts at autonomous flips
[using similar methods to what worked for ihover]

Target trajectory: meticulously hand-engineered
Model: from (commonly used) frequency sweeps data




Stationary vs. Aggressive Flight

= Hover / stationary flight regimes:
= Restrict attention to specific flight regime

= Extensive data collection = collect control inputs, position,
orientation, velocity, angular rate

= Build model + model-based controller
> Successful autonomous flight.

m  Aggressive flight maneuvers --- additional challenges:
= Task description: What is the target trajectory?

= Dynamics model: How to obtain accurate model?



Aggressive, Non-Stationary Regimes

s Gavrilets, Martinos, Mettler and Feron, 2002
= 3 maneuvers: split-S, snap axial roll, stall-turn

= Key: Expert engineering of controllers after human pilot
demonstrations



Aggressive, Non-Stationary Regimes

= Our work:

= Key: Automatic engineering of controllers after human pilot
demonstrations through machine learning

= Wide range of aggressive maneuvers

= Maneuvers in rapid succession



Learning Dynamic Maneuvers

= Learning a target trajectory

m Learning a dynamics model

s Autonomous flight results



Target Trajectory

= Difficult to specify by hand:
= Required format: position + orientation over time

= Needs to satisfy helicopter dynamics

= Our solution:
s Collect demonstrations of desired maneuvers

= Challenge: extract a clean target trajectory from many
suboptimal/noisy demonstrations

Abbeel, Coates, Ng, IJRR 2010



Expert Demonstrations




Learning a Trajectory
agen (=)= )= )= )= )

HMM-like generative model

- Dynamics model used as HMM transition model

- Demos are observations of hidden trajectory

Problem: how do we align observations to hidden trajectory?
Abbeel, Coates, Ng, IJRR 2010



Learning a Trajectory
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= Dynamic Time Warping (Needleman&Wunsch 1970
Sakoe&Chiba, 1978)

s Extended Kalman filter / smoother
Abbeel, Coates, Ng, IJRR 2010



Results: Time-Aligned Demonstrations

White helicopter is inferred “intended” trajectory.




Results: Loops
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Even without prior knowledge, the inferred trajectory is
much closer to an ideal loop.

Abbeel, Coates, Ng, IJRR 2010



Learning Dynamic Maneuvers

m Learning a target trajectory

= Learning a dynamics model

= Autonomous flight results



Standard Modeling Approach
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Abbeel, Coates, Ng, IJRR 2010



Key Observation
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Errors observed in the “baseline” model are clearly
consistent after aligning demonstrations.

Abbeel, Coates, Ng, IJRR 2010



Key Observation

= If we fly the same trajectory repeatedly, errors are consistent
over time once we align the data.

= There are many unmodeled variables that we can’t expect
our model to capture accurately.

= Air (!), actuator delays, etc.

= |f we fly the same trajectory repeatedly, the hidden variables
tend to be the same each time.

~ muscle memory for human pilots

Abbeel, Coates, Ng, IJRR 2010



Trajectory-Specific Local Models

= Learn locally-weighted model from alighed demonstrations

= Since data is aligned in time, we can weight by time to
exploit repeatability of unmodeled variables.

. (t—1t/)?
= For model at time t: W(t/) — e T o2

= Obtain a model for each time t into the maneuver by
running weighted regression for each time t

Abbeel, Coates, Ng, IJRR 2010



Learning Dynamic Maneuvers

s Learning a target trajectory

= Learning a dynamics model

= Autonomous flight results

Abbeel, Coates, Ng, IJRR 2010



Experimental Setup

------------------------------------------------------------------------------------------------------------------------
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Extended Kalman Filter Offboard Cameras 1280x960@20Hz
RHDDP controller :

“Position”

3-axis
magnetometer,
accelerometer,
gyroscope
(“Orientation”)

Controls
@ 20Hz
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“ Mlcrostra|n3DM GX1 @333Hz
RPM sensor @20-30Hz
Sonar

Abbeel, Coates, Quigley, Ng, NIPS 2007




Experimental Procedure

1. Collect sweeps to build a baseline dynamics model

2. Our expert pilot demonstrates the airshow several times.

3. Learn a target trajectory.
4. Learn a dynamics model.

5. Find the optimal control policy for learned target and
dynamics model.

6. Autonomously fly the airshow

7. Learn an improved dynamics model. Go back to step 4.

9 Learn to ﬂy new maneuvers in < 1hour.
Abbeel, Coates, Ng, JRR 2010



Results: Autonomous Airshow
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Results: Flight Accuracy




Autonomous Autorotation Flights

Abbeel, Coates, Hunter, Ng, ISER 2008



Chaos [“flip/roll” parameterized by yaw rate]




