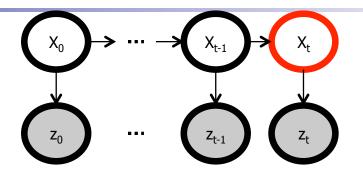
Maximum A Posteriori (MAP) Estimation

Pieter Abbeel
UC Berkeley EECS

Overview

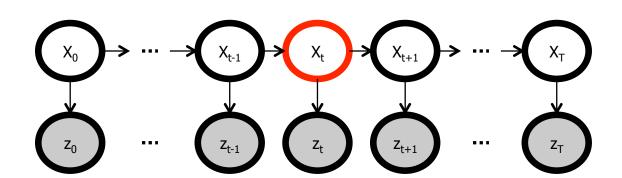
Filtering:

$$P(x_t|z_{0:t})$$



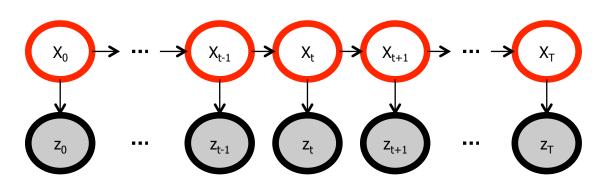
Smoothing:

$$P(x_t|z_{0:T})$$



MAP:

$$\max_{x_{0:T}} P(x_{0:T}|z_{0:T})$$



MAP

$$\max_{x_0, x_1, x_2, x_3} P(x_0, x_1, x_2, x_3 | z_0, z_1, z_2, z_3)$$

$$\propto \max_{x_0, x_1, x_2, x_3} P(x_0, x_1, x_2, x_3, z_0, z_1, z_2, z_3)$$

$$= \max_{x_0, x_1, x_2, x_3} P(z_3|x_3) P(x_3|x_2) P(z_2|x_2) P(x_2|x_1) P(z_1|x_1) P(z_1|x_1) P(z_0|x_0) P(z_0|$$

$$= \max_{x_3} \left(P(z_3|x_3) \max_{x_2} \left(P(x_3|x_2) P(z_2|x_2) \max_{x_1} \left(P(x_2|x_1) P(z_1|x_1) \max_{x_0} \left(P(x_1|x_0) P(z_0|x_0) P(x_0) \right) \right) \right) \right)$$

$$m_1(x_1)$$

$$m_2(x_2)$$

$$m_3(x_3)$$

■ Generally:
$$m_t(x_t) = \max_{x_{0:t-1}} P(x_{0:t}, z_{0:t})$$

$$= \max_{x_{0:t-1}} P(x_t|x_{t-1}) P(z_t|x_t) P(x_{0:t-1}, z_{0:t-1})$$

$$= P(z_t|x_t) \max_{x_{t-1}} P(x_t|x_{t-1}) \max_{x_{0:t-2}} P(x_{0:t-1}, z_{0:t-1})$$

$$= P(z_t|x_t) \max_{x_{t-1}} P(x_t|x_{t-1}) m_{t-1}(x_{t-1})$$

Naively solving by enumerating all possible combinations of x_0,...,x_T is exponential in T!

MAP --- Complete Algorithm

- 1. Init: $m_0(x_0) = P(z_0|x_0)P(x_0)$
- 2. For all $t = 1, 2, \dots, T 1$
 - For all x_t : $m_t(x_t) = P(z_t|x_t) \max_{x_{t-1}} P(x_t|x_{t-1}) m_{t-1}(x_{t-1})$
 - For all x_t : Store argmax in pointer_{t o t-1}(x_t)
- 3. $\max_{x_T} m_T(x_T)$
- 4. $x_T^* = \operatorname{arg} \max_{x_T} m_T(x_T)$
- 5. For all $t = T, T 1, \dots, 1$
 - $x_{t-1}^* = \text{pointer}_{t \to t-1}(x_t^*)$

O(T n²)

Kalman Filter (aka Linear Gaussian) setting

- Summations \rightarrow integrals
- But: can't enumerate over all instantiations
- However, we can still find solution efficiently:
 - the joint conditional $P(x_{0:T} \mid z_{0:T})$ is a multivariate Gaussian
 - for a multivariate Gaussian the most likely instantiation equals the mean
 - \rightarrow we just need to find the mean of $P(X_{0:T} \mid Z_{0:T})$
 - the marginal conditionals $P(X_t \mid Z_{0:T})$ are Gaussians with mean equal to the mean of X_t under the joint conditional, so it suffices to find all marginal conditionals
 - We already know how to do so: marginal conditionals can be computed by running the Kalman smoother.
- Alternatively: solve convex optimization problem