Non-Convex Optimization through Sequential Convex Programming

Pieter Abbeel UC Berkeley EECS

Non-Convex Optimization

Reminder: Convex optimization:

$$\min_{x} f_0(x)$$

s.t. $f_i(x) \le 0 \quad \forall i$
 $A(j,:)x - b_j = 0 \quad \forall j$

with f_i convex

Non-convex optimization:

$$\min_{x} g_0(x)$$
s.t. $g_i(x) \le 0 \quad \forall i$
 $h_j(x) = 0 \quad \forall j$

with: g_i non-convex h_i nonlinear

Sequential Convex Programming

• To solve:
$$\min_{x} g_{0}(x)$$
 (1)
s.t. $g_{i}(x) \leq 0 \quad \forall i$
 $h_{j}(x) = 0 \quad \forall j$
• Solve: $\min_{x} g_{0}(x) + \mu \sum_{i} |g_{i}(x)|^{+} + \mu \sum_{j} |h_{j}(x)| = \min_{x} f_{\mu}(x)$ (2)
and increase μ in an outer loop until the two sums equal zero.

• To solve (2), repeatedly solve the convex program:

$$\begin{split} \min_{x} & g_{0}(\bar{x}) + \nabla_{x}g_{0}(\bar{x})(x - \bar{x}) & \bar{x} : \text{ current point} \\ & + \mu \sum_{i} |g_{i}(\bar{x}) + \nabla_{x}g_{i}(\bar{x})(x - \bar{x})|^{+} \\ & + \mu \sum_{j} |h_{j}(\bar{x}) + \nabla_{x}h_{j}(\bar{x})(x - \bar{x})| \\ \text{s.t.} & \|x - \bar{x}\|_{2} \leq \varepsilon & \text{(trust region constraint)} \end{split}$$

Sequential Convex Programming

Inputs: $\bar{x}, \mu = 1, \varepsilon_0, \alpha \in (0.5, 1), \beta \in (0, 1), t \in (1, \infty)$ While $(\sum_i |g_i(\bar{x})|^+ + \sum_j |h_j(\bar{x})| \ge \delta$ AND $\mu < \mu_{MAX}$) $\mu \leftarrow t\mu, \quad \varepsilon \leftarrow \varepsilon_0$ // increase penalty coefficient for constraints; re-init trust region size While (1) // [2] loop that optimizes f_{μ} Compute terms of first-order approximations: $g_0(\bar{x}), \nabla_x g_0(\bar{x}), g_i(\bar{x}), \nabla_x g_i(\bar{x}), h_j(\bar{x}), \nabla_x h_j(\bar{x}), \forall i, j$

While (1) // [3] loop that does trust-region size search

Call convex program solver to solve:

Else Update $\bar{x} \leftarrow \bar{x}_{next?}$, Grow trust region: $\varepsilon \leftarrow \varepsilon/\beta$, and Break out of while [3] If ε below some threshold, Break out of while [3] and while [2]

Non-Convex Optimization

- Non-convex optimization with convex parts separated:
 - $\begin{array}{ll} \min_{x} f_{0}(x) + g_{0}(x) & \text{with:} \\ \text{s.t.} \quad f_{i}(x) \leq 0 \quad \forall i & f_{i} \text{ convex} \\ Ax b = 0 \quad \forall j & g_{k}(x) \leq 0 \quad \forall k & g_{k} \text{ non-convex} \\ g_{k}(x) \leq 0 \quad \forall k & h_{l} \text{ nonlinear} \\ h_{l}(x) = 0 \quad \forall l & \end{array}$
- Retain convex parts and in inner loop solve:

$$\min_{x} f_0(x) + g_0(x) + \mu \sum_{k} |g_k(x)|^+ + \mu \sum_{l} |h_l(x)|$$

s.t. $f_i(x) \le 0 \quad \forall i$
 $Ax - b = 0 \quad \forall j$