Non-Convex Optimization through

Sequential Convex Programming

Pieter Abbeel
UC Berkeley EECS

Non-Convex Optimization

- Reminder: Convex optimization:

$$
\begin{array}{ll}
\min _{x} & f_{0}(x) \\
\text { s.t. } & f_{i}(x) \leq 0 \quad \forall i \\
& A(j,:) x-b_{j}=0 \quad \forall j
\end{array}
$$

with f_{i} convex

- Non-convex optimization:

$$
\begin{array}{cl}
\min _{x} & g_{0}(x) \\
\text { s.t. } & g_{i}(x) \leq 0 \quad \forall i \\
& h_{j}(x)=0 \quad \forall j
\end{array}
$$

with:
g_{i} non-convex
h_{j} nonlinear

Sequential Convex Programming

- To solve: $\min _{x} g_{0}(x)$

$$
\begin{array}{ll}
\text { s.t. } & g_{i}(x) \leq 0 \quad \forall i \\
& h_{j}(x)=0 \quad \forall j \tag{2}
\end{array}
$$

- Solve: $\quad \min _{x} g_{0}(x)+\mu \sum_{i}\left|g_{i}(x)\right|^{+}+\mu \sum_{j}\left|h_{j}(x)\right|=\min _{x} f_{\mu}(x)$ and increase μ in an outer loop until the two sums equal zero.
- To solve (2), repeatedly solve the convex program:

$$
\begin{array}{rlr}
\min _{x} & g_{0}(\bar{x})+\nabla_{x} g_{0}(\bar{x})(x-\bar{x}) & \bar{x}: \text { current point } \\
& +\mu \sum_{i}\left|g_{i}(\bar{x})+\nabla_{x} g_{i}(\bar{x})(x-\bar{x})\right|^{+} \\
& +\mu \sum_{j}\left|h_{j}(\bar{x})+\nabla_{x} h_{j}(\bar{x})(x-\bar{x})\right|
\end{array}
$$

$$
\text { s.t. }\|x-\bar{x}\|_{2} \leq \varepsilon
$$

(trust region constraint)

Sequential Convex Programming

Inputs: $\bar{x}, \mu=1, \varepsilon_{0}, \alpha \in(0.5,1), \beta \in(0,1), t \in(1, \infty)$
While $\left(\sum_{i}\left|g_{i}(\bar{x})\right|^{+}+\sum_{j}\left|h_{j}(\bar{x})\right| \geq \delta \quad\right.$ AND $\left.\quad \mu<\mu_{\text {MAX }}\right)$
$\mu \leftarrow t \mu, \quad \varepsilon \leftarrow \varepsilon_{0} \quad / /$ increase penalty coefficient for constraints; re-init trust region size
While (I) // [2] loop that optimizes f_{μ}
Compute terms of first-order approximations: $g_{0}(\bar{x}), \nabla_{x} g_{0}(\bar{x}), g_{i}(\bar{x}), \nabla_{x} g_{i}(\bar{x}), h_{j}(\bar{x}), \nabla_{x} h_{j}(\bar{x}), \quad \forall i, j$
While (I) // [3] loop that does trust-region size search
Call convex program solver to solve:

$$
\begin{aligned}
\left(\bar{f}_{\mu}\left(\bar{x}_{\text {next } ?}\right), \bar{x}_{\text {next } t}\right)= & \min _{x} g_{0}(\bar{x})+\nabla_{x} g_{0}(\bar{x})(x-\bar{x}) \\
& +\mu \sum_{i}\left|g_{i}(\bar{x})+\nabla_{x} g_{i}(\bar{x})(x-\bar{x})\right|^{+}+\mu \sum_{j}\left|h_{j}(\bar{x})+\nabla_{x} h_{j}(\bar{x})(x-\bar{x})\right|
\end{aligned}
$$

$$
\text { s.t. }\|x-\bar{x}\|_{2} \leq \varepsilon
$$

If $\quad \frac{f_{\mu}(\bar{x})-f_{\mu}\left(\bar{n}_{\text {next }}\right)}{f_{\mu}(\bar{x})-f_{\mu}\left(\bar{x}_{\text {next }}\right)} \geq \alpha$
Then shrink trust region: $\varepsilon \leftarrow \beta \varepsilon$
Else Update $\bar{x} \leftarrow \bar{x}_{\text {next }}$, Grow trust region: $\varepsilon \leftarrow \varepsilon / \beta \quad$, and Break out of while [3]
If ε below some threshold, Break out of while [3] and while [2]

Non-Convex Optimization

- Non-convex optimization with convex parts separated:

$$
\begin{array}{lll}
\min _{x} & f_{0}(x)+g_{0}(x) \\
\text { s.t. } & f_{i}(x) \leq 0 \quad \forall i \\
& A x-b=0 \quad \forall j \\
& g_{k}(x) \leq 0 \quad \forall k \\
& h_{l}(x)=0 \quad \forall l
\end{array}
$$

with:
f_{i} convex
g_{k} non-convex
h_{1} nonlinear

- Retain convex parts and in inner loop solve:

$$
\begin{array}{ll}
\min _{x} \quad f_{0}(x)+g_{0}(x)+\mu \sum_{k}\left|g_{k}(x)\right|^{+}+\mu \sum_{l}\left|h_{l}(x)\right| \\
\text { s.t. } & f_{i}(x) \leq 0 \quad \forall i \\
& A x-b=0 \quad \forall j
\end{array}
$$

