Optimization for Locally Optimal Control

Pieter Abbeel UC Berkeley EECS

Optimal Control (Open Loop)

Optimal control problem:

$$\min_{\substack{x,u \ t=0}} \sum_{t=0}^{H} c_t(x_t, u_t)$$

s.t. $x_0 = \bar{x}_0$
 $x_{t+1} = f(x_t, u_t)$ $t = 0, \dots, H-1$

Solution:

- = Sequence of controls u and resulting state sequence x
- If no noise, sufficient to just execute u
- In general non-convex optimization problem, can be solved with sequential convex programming (SCP)

Optimal Control (Closed Loop)

- Given: \bar{x}_0
- For t = 0, 1, 2, ..., H• Solve $\min_{x_{t:H}, u_{t:H}} \sum_{k=t}^{H} c_t(x_k, u_k)$ s.t. $x_t = \bar{x}_t$ $x_{k+1} = f(x_k, u_k)$ k = t, ..., H - 1
 - Execute u_t
 - Observe resulting state, \bar{x}_{t+1}
- → = an instantiation of Model Predictive Control.
- \rightarrow Initialize with solution from t I to solve fast at time t.

Collocation versus Shooting

- What we considered thus far is a collocation method
 - It considers both x and u simultaneously, optimizes over both of them, and re-linearizes (inside the SCP loop) based on both x and u from the previous round
- Shooting methods
 - Optimize over u directly
 - This can be done as every u results (following the dynamics) in a state sequence x, for which in turn the cost can be computed
 - Upside: Improve sequence of controls over time
 - Versus: collocation might converge to a local optimum that's infeasible
 - Downsides:
 - Derivatives with respect to u as well as the cost for a given u can be numerically unstable to compute (especially in case of unstable dynamical systems)
 [x provides decoupling between time-steps, making computation stable]
 - Not clear how to initialize in a way that nudges towards a goal state