

Optimization over Manifolds with applications to Robotic Needle Steering and Channel Layout Design

Sachin Patil Guest Lecture: CS287 Advanced Robotics

Trajectory Optimization

$$\min_{\boldsymbol{\theta}_{1:T}} \sum_{t} \|\boldsymbol{\theta}_{t+1} - \boldsymbol{\theta}_{t}\|^{2} + \text{ other costs}$$

subject to no collisions joint limits other constraints

Optimization over vector spaces
$$\mathbb{R}^n$$

Not All State-Spaces are 'Nice'

- Nonholonomic system cannot move in arbitrary directions in its state space
- For a simple car: Configuration space is in ℝ²×S¹: [x, y, θ] (the SE(2) group)

Nonholonomy Examples

Car pulling trailers: $\mathbb{R}^2 \times \mathbb{S}^1 \times \mathbb{S}^1 \times ... \mathbb{S}^1$

Bicycle: $\mathbb{R}^2 \times \mathbb{S}^1 \times \mathbb{S}^1$

Rolling Ball: ? $\mathbb{R}^2 \times SO(3)$

C-Spaces as Manifolds

Manifold: Topological space that near each point resembles Euclidean space

Other examples:

Optimization over Manifolds

Optimization over Manifolds

Optimization over Manifolds

Define projection operator from tangent space to manifold

Case Study: Rotation Group (SO(3))

Optimization over SO(3) arises in robotics, graphics, vision etc.

Parameterization: Incremental Rotations

Why not directly optimize over rotation matrix entries?

- Over-constrained (orthonormality)
- Larger number of optimization variables
- Define local parameterization in terms of incremental rotation

r : Incremental rotation to reference rotation defined in terms of axis-angle

Projection Operator

 $e^{[\bar{\mathbf{r}}]}$: Point on SO(3) that can be reached by traveling along the geodesic in direction $\bar{\mathbf{r}}$

where
$$\begin{bmatrix} \mathbf{\bar{r}} \end{bmatrix} = \begin{bmatrix} 0 & -\mathbf{\bar{r}}_z & \mathbf{\bar{r}}_y \\ \mathbf{\bar{r}}_z & 0 & -\mathbf{\bar{r}}_x \\ -\mathbf{\bar{r}}_y & \mathbf{\bar{r}}_x & 0 \end{bmatrix}$$

and
$$e^X = \sum_{k=0}^{\infty} \frac{1}{k} X^k$$
 is the

matrix exponential operator

Optimization Procedure

1) Seed trajectory:
$$\mathcal{R}^{i} = [\hat{R}^{i}_{1}, \dots, \hat{R}^{i}_{n}]$$

2) min Objective subject to: Constraints $\overline{\mathcal{R}}^{i} = [\overline{\mathbf{r}}_{1}^{i}, \dots, \overline{\mathbf{r}}_{n}^{i}]$

- 3) Compute new trajectory: $\mathcal{R}^{i+1} = [\hat{R}_1^i \cdot e^{[\vec{\mathbf{r}}_1]}, \dots, \hat{R}_n^i \cdot e^{[\vec{\mathbf{r}}_n]}]$
- 4) Reset increments: $\overline{\mathcal{R}}^{i+1} = [\mathbf{0}, \dots, \mathbf{0}]$

Steerable Needle

Steerable needles inside phantom tissue

Steerable needles navigate around sensitive structures (simulated)

Steerable Needle

Bevel-tip

Highly flexible

[Webster, Okamura, Cowan, Chirikjian, Goldberg, Alterovitz United States Patent 7,822,458. 2010]

Steerable Needle: Opt Formulation

Steerable Needle Plans

(a) Smaller clearance from obstacles (Cowper's glands) with $\alpha_{\mathcal{O}} = 1$.

(b) Larger clearance from obstacles with $\alpha_{\mathcal{O}} = 10$.

Results

	RRT	collocation $\alpha_{\mathcal{O}} = 1$	shooting $\alpha_{\mathcal{O}} = 1$	collocation $\alpha_{\mathcal{O}} = 10$	shooting $\alpha_{\mathcal{O}} = 10$
solved%	67.3%	76.0%	80.3%	79.0%	89.5%
time (s)	9.8 ± 8.1	1.8 ± 1.2	1.6 ± 1.7	1.9 ± 1.3	1.8 ± 1.7
path length	11.1 ± 1.5	11.3 ± 1.4	11.6 ± 1.7	11.9 ± 1.7	13.1 ± 2.3
twist cost	34.9 ± 10.0	1.4 ± 1.4	1.0 ± 1.0	1.6 ± 1.6	1.0 ± 1.0
clearance	0.5 ± 0.4	0.7 ± 0.5	0.5 ± 0.3	1.3 ± 0.4	1.2 ± 0.5

Performance of our approach on the single needle planning case.

Why is minimizing twist important?

Channel Layout (Brachytherapy Implants)

Channel Layout: Opt Formulation

 $\min_{\bar{\mathcal{X}},\mathcal{U}} \ \alpha_{\Delta} \text{Cost}_{\Delta} + \alpha_{\phi} \text{Cost}_{\phi} + \alpha_{\mathcal{O}} \text{Cost}_{\mathcal{O}},$

s.t. $\log((X_t \cdot \exp(\mathbf{w}_t^{\wedge}) \cdot \exp(\mathbf{v}_t^{\wedge}))^{-1} \cdot X_{t+1})^{\vee} = \mathbf{0}_6,$

Results

	RRT	backward shooting
solved%	74.0%	98.0%
time (s)	30.8 ± 17.9	27.7 ± 9.8
path length	41.3 ± 0.3	38.9 ± 0.1
twist cost	65.5 ± 8.4	4.1 ± 1.1

Performance of our approach on the channel layout planning

Takeaways

- Optimization over manifolds Generalization of optimization over Euclidean spaces
- Define incremental parameterization and projection operators between tangent space and manifold
- Optimize over increments; reset after each SQP iteration!

Parameterization: Euler Angles

What problems do you foresee in directly using Euler angles in optimization?

Parameterization: Euler Angles

- Topology not preserved: $[0, 2\pi] \times [0, 2\pi] \times [0, 2\pi]$
- Not unique, discontinuous
- Gimbal lock

Parameterization: Axis-Angles

Orientation defined as rotation around axis

• 3-vector; norm of vector is the angle

Parameterization: Axis-Angles

Distances are not preserved! Solution: Keep re-centering the axis-angle around a reference rotation (identity)