
Particle Filters

Pieter Abbeel
UC Berkeley EECS

Many slides adapted from Thrun, Burgard and Fox, Probabilistic Robotics

 TexPoint fonts used in EMF.

Read the TexPoint manual before you delete this box.:
AAAAAAAAAAAAA

2

§  For continuous spaces: often no analytical formulas for Bayes filter updates

§  Solution 1: Histogram Filters: (not studied in this lecture)

§  Partition the state space

§  Keep track of probability for each partition

§  Challenges:

§  What is the dynamics for the partitioned model?

§  What is the measurement model?

§  Often very fine resolution required to get reasonable results

§  Solution 2: Particle Filters:

§  Represent belief by random samples

§  Can use actual dynamics and measurement models

§  Naturally allocates computational resources where required (~ adaptive
resolution)

§  Aka Monte Carlo filter, Survival of the fittest, Condensation, Bootstrap filter

Motivation

Sample-based Localization (sonar)

n  Given a sample-based representation

 of Bel(xt) = P(xt | z1, …, zt, u1, …, ut)

 Find a sample-based representation

 of Bel(xt+1) = P(xt+1 | z1, …, zt, zt+1 , u1, …, ut+1)

Problem to be Solved

St = {xt
1, xt

2,..., xt
N}

St+1 = {xt+1
1 , xt+1

2 ,..., xt+1
N }

n  Given a sample-based representation

 of Bel(xt) = P(xt | z1, …, zt, u1, …, ut)

 Find a sample-based representation

 of P(xt+1 | z1, …, zt, u1, …, ut+1)

n  Solution:
n  For i=1, 2, …, N

n  Sample xi
t+1 from P(Xt+1 | Xt = xi

t, ut+1)

Dynamics Update

St = {xt
1, xt

2,..., xt
N}

n  Given a sample-based representation of

 P(xt+1 | z1, …, zt)

Find a sample-based representation of

P(xt+1 | z1, …, zt, zt+1) = C * P(xt+1 | z1, …, zt) * P(zt+1 | xt+1)

n  Solution:
n  For i=1, 2, …, N

n  w(i)
t+1 = w(i)

t* P(zt+1 | Xt+1 = x(i)
t+1)

n  the distribution is represented by the weighted set of samples

Observation update

{xt+1
1 , xt+1

2 ,..., xt+1
N }

{< xt+1
1 ,wt+1

1 >,< xt+1
2 ,wt+1

2 >,...,< xt+1
N ,wt+1

N >}

n  Sample x1
1, x2

1, …, xN
1 from P(X1)

n  Set wi
1= 1 for all i=1,…,N

n  For t=1, 2, …

n  Dynamics update:
n  For i=1, 2, …, N

n  Sample xi
t+1 from P(Xt+1 | Xt = xi

t , ut+1)

n  Observation update:
n  For i=1, 2, …, N

n  wi
t+1 = wi

t* P(zt+1 | Xt+1 = xi
t+1)

n  At any time t, the distribution is represented by the weighted set of samples

 { <xi
t, wi

t> ; i=1,…,N}

Sequential Importance Sampling (SIS) Particle Filter

n  The resulting samples are only weighted by the evidence

n  The samples themselves are never affected by the evidence

à Fails to concentrate particles/computation in the high
probability areas of the distribution P(xt | z1, …, zt)

SIS particle filter major issue

n  At any time t, the distribution is represented by the weighted
set of samples

 { <xi
t, wi

t> ; i=1,…,N}

à  Sample N times from the set of particles

à  The probability of drawing each particle is given by its
importance weight

à More particles/computation focused on the parts of the state
space with high probability mass

Sequential Importance Resampling (SIR)

1.  Algorithm particle_filter(St-1, ut , zt):

2. 

3.  For Generate new samples
4.  Sample index j(i) from the discrete distribution given by wt-1

5.  Sample from using and

6.  Compute importance weight
7.  Update normalization factor

8.  Insert
9.  For

10.  Normalize weights

11.  Return St

0, =∅= ηtS
ni …1=

},{ ><∪= i
t

i
ttt wxSS

i
tw+=ηη

i
tx p(xt | xt!1,ut))(

1
ij

tx −

)|(i
tt

i
t xzpw =

ni …1=

η/it
i
t ww =

ut

Sequential Importance Resampling (SIR)
Particle Filter

Particle Filters

Sensor Information: Importance Sampling

Robot Motion

Sensor Information: Importance Sampling

Robot Motion

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

Noise Dominated by Motion Model

[Grisetti, Stachniss, Burgard, T-RO2006]

à Most particles get (near) zero weights and are lost.

n  Theoretical justification: for any function f we have:

n  f could be: whether a grid cell is occupied or not, whether
the position of a robot is within 5cm of some (x,y), etc.

Importance Sampling

n  Task: sample from density p(.)

n  Solution:

n  sample from “proposal density” ¼(.)

n  Weight each sample x(i) by p(x(i)) / ¼(x(i))

n  E.g.:

n  Requirement: if ¼(x) = 0 then p(x) = 0.

Importance Sampling

p ¼

Particle Filters Revisited
1.  Algorithm particle_filter(St-1, ut , zt):

2. 

3.  For Generate new samples
4.  Sample index j(i) from the discrete distribution given by wt-1

5.  Sample from

6.  Compute importance weight

7.  Update normalization factor
8.  Insert
9.  For

10.  Normalize weights
11.  Return St

0, =∅= ηtS
ni …1=

},{ ><∪= i
t

i
ttt wxSS

i
tw+=ηη

i
tx ! (xt | x

j (i)
t!1,ut, zt)

wt
i =

p(zt | xt
i)p(xt

i | xt!1
i ,ut)

! (xt
i | xt!1

i ,ut , zt)

ni …1=

η/it
i
t ww =

n  Optimal =

 à

n  Applying Bayes rule to the denominator gives:

n  Substitution and simplification gives

Optimal Sequential Proposal ¼(.)

! (xt | x
i
t!1,ut, zt) p(xt | x

i
t!1,ut, zt)

p(xi
t|xi

t−1, ut, zt) =
p(zt|xi

t, ut, xi
t−1)p(x

i
t|xi

t−1, ut)

p(zt|xi
t−1, ut)

wi
t =

p(zt|xi
t)p(x

i
t|xi

t−1, ut)

π(xi
t|xi

t−1, ut, zt)

=
p(zt|xi

t)p(x
i
t|xi

t−1, ut)

p(xi
t|xi

t−1, ut, zt)

n  Optimal =

n  à

n  Challenges:

n  Typically difficult to sample from

n  Importance weight: typically expensive to compute integral

! (xt | x
i
t!1,ut, zt) p(xt | x

i
t!1,ut, zt)

p(xt | x
i
t!1,ut, zt)

Optimal Sequential Proposal ¼(.)

n  Nonlinear Gaussian State Space Model:

n  Then:

 with

n  And:

Example 1: ¼(.) = Optimal Proposal
Nonlinear Gaussian State Space Model

Example 2: ¼(.) = Motion Model

n  à the “standard” particle filter

Example 3: Approximating Optimal ¼ for Localization

[Grisetti, Stachniss, Burgard, T-RO2006]

n  One (not so desirable solution): use smoothed likelihood
such that more particles retain a meaningful weight --- BUT
information is lost

n  Better: integrate latest observation z into proposal ¼

1.  Initial guess

2.  Execute scan matching starting from the initial guess , resulting in
pose estimate .

3.  Sample K points in region around .

4.  Proposal distribution is Gaussian with mean and covariance:

5.  Sample from (approximately optimal) sequential proposal distribution.

6.  Weight =

Example 3: Approximating Optimal ¼ for
Localization: Generating One Weighted Sample

�

x�
p(zt|x�,m)p(x�|xi

t−1, ut)dx
� ≈ ηi

Build Gaussian Approximation to Optimal Sequential Proposal

Example 3: Example Particle Distributions

[Grisetti, Stachniss, Burgard, T-RO2006]

Particles generated from the approximately optimal proposal
distribution. If using the standard motion model, in all three
cases the particle set would have been similar to (c).

n  Consider running a particle filter for a system with
deterministic dynamics and no sensors

n  Problem:

n  While no information is obtained that favors one particle
over another, due to resampling some particles will
disappear and after running sufficiently long with very high
probability all particles will have become identical.

n  On the surface it might look like the particle filter has
uniquely determined the state.

n  Resampling induces loss of diversity. The variance of the
particles decreases, the variance of the particle set as an
estimator of the true belief increases.

Resampling

n  Effective sample size:

n  Example:

n  All weights = 1/N à Effective sample size = N

n  All weights = 0, except for one weight = 1 à Effective
sample size = 1

n  Idea: resample only when effective sampling size is low

Resampling Solution I

Normalized weights

Resampling Solution I (ctd)

n  M = number of particles

n  r 2 [0, 1/M]

n  Advantages:

n  More systematic coverage of space of samples

n  If all samples have same importance weight, no samples are lost

n  Lower computational complexity

Resampling Solution II: Low Variance
Sampling

n  Loss of diversity caused by resampling from a discrete
distribution

n  Solution: “regularization”

n  Consider the particles to represent a continuous density

n  Sample from the continuous density

n  E.g., given (1-D) particles

 sample from the density:

Resampling Solution III

n  = when there are no particles in the vicinity of the correct state

n  Occurs as the result of the variance in random sampling. An unlucky
series of random numbers can wipe out all particles near the true state.
This has non-zero probability to happen at each time à will happen
eventually.

n  Popular solution: add a small number of randomly generated particles
when resampling.

n  Advantages: reduces particle deprivation, simplicity.

n  Con: incorrect posterior estimate even in the limit of infinitely many
particles.

n  Other benefit: initialization at time 0 might not have gotten anything near the true state, and not
even near a state that over time could have evolved to be close to true state now; adding random
samples will cut out particles that were not very consistent with past evidence anyway, and instead
gives a new chance at getting close the true state.

Particle Deprivation

n  Simplest: Fixed number.

n  Better way:

n  Monitor the probability of sensor measurements

which can be approximated by:

n  Average estimate over multiple time-steps and compare
to typical values when having reasonable state estimates.
If low, inject random particles.

Particle Deprivation:
How Many Particles to Add?

n  Consider a measurement obtained with a noise-free sensor,
e.g., a noise-free laser-range finder---issue?

n  All particles would end up with weight zero, as it is very
unlikely to have had a particle matching the measurement
exactly.

n  Solutions:

n  Artificially inflate amount of noise in sensors

n  Better proposal distribution (e.g., optimal sequential
proposal)

Noise-free Sensors

n  E.g., typically more particles need at the beginning of
localization run

n  Idea:

n  Partition the state-space

n  When sampling, keep track of number of bins occupied

n  Stop sampling when a threshold that depends on the
number of occupied bins is reached

n  If all samples fall in a small number of bins à lower threshold

Adapting Number of Particles: KLD-Sampling

n  z_{1-±}: the upper 1-±
quantile of the standard
normal distribution

n  ± = 0.01 and ² = 0.05
works well in practice

KLD-sampling

KLD-sampling

