SEIF, EnKF, EKF SLAM

Pieter Abbeel
UC Berkeley EECS

Information Filter

- From an analytical point of view == Kalman filter
- Difference: keep track of the inverse covariance rather than the covariance matrix [matter of some linear algebra manipulations to get into this form]
- Why interesting?
 - Inverse covariance matrix = 0 is easier to work with than covariance matrix = infinity (case of complete uncertainty)
 - Inverse covariance matrix is often sparser than the covariance matrix --- for the "insiders": inverse covariance matrix entry (i,j) = 0 if X_i is conditionally independent of X_i given some set $\{X_k, X_l, ...\}$
 - Downside: when extended to non-linear setting, need to solve a linear system to find the mean (around which one can then linearize)
 - See Probabilistic Robotics pp. 78-79 for more in-depth pros/cons and Probabilistic Robotics Chapter 12 for its relevance to SLAM (then often referred to as the "sparse extended information filter (SEIF)")

Ensemble Kalman filter (enKF)

- Represent the Gaussian distribution by samples
 - Empirically: even 40 samples can track the atmospheric state with high accuracy with enKF
 - <-> UKF: 2 * n sigma-points, n = 10⁶ + then still forms covariance matrices for updates
- The technical innovation:
 - Transforming the Kalman filter updates into updates which can be computed based upon samples and which produce samples while never explicitly representing the covariance matrix

KF

enKF

Keep track of μ , Σ

Keep track of ensemble $[x_1, ..., x_N]$

Prediction:

$$\frac{\overline{\mu}_{t}}{\overline{\Sigma}_{t}} = A_{t} \mu_{t-1} + B_{t} \mu_{t}$$

$$\overline{\Sigma}_{t} = A_{t} \Sigma_{t-1} A_{t}^{T} + R_{t}$$

Can update the ensemble by simply propagating through the dynamics model + adding sampled noise

Correction:

$$K_{t} = \overline{\Sigma}_{t} C_{t}^{T} (C_{t} \overline{\Sigma}_{t} C_{t}^{T} + Q_{t})^{-1}$$

$$\mu_{t} = \overline{\mu}_{t} + K_{t} (z_{t} - C_{t} \overline{\mu}_{t})$$

$$\Sigma_{t} = (I - K_{t} C_{t}) \overline{\Sigma}_{t}$$

?

Return $\mu_v \Sigma_t$

enKF correction step

KF: $K_{t} = \overline{\Sigma}_{t} C_{t}^{T} (C_{t} \overline{\Sigma}_{t} C_{t}^{T} + Q_{t})^{-1}$ $\mu_{t} = \overline{\mu}_{t} + K_{t} (z_{t} - C_{t} \overline{\mu}_{t})$ $\Sigma_{t} = (I - K_{t} C_{t}) \overline{\Sigma}_{t}$

- Current ensemble $X = [x_1, ..., x_N]$
- Build observations matrix $Z = [Z_t + V_1 ... Z_t + V_N]$ where V_i are sampled according to the observation noise model
- Then the columns of

$$X + K_t(Z - C_t X)$$

form a set of random samples from the posterior

Note: when computing K_t , leave Σ_t in the format

$$\Sigma_{t} = [\mathbf{x}_{1} - \mu_{t} \dots \mathbf{x}_{N} - \mu_{t}] [\mathbf{x}_{1} - \mu_{t} \dots \mathbf{x}_{N} - \mu_{t}]^{T}$$

How about C?

- Indeed, would be expensive to build up C.
- However: careful inspection shows that C only appears as in:
 - C X
 - \bullet C Σ C^T = C X X^T C^T
- \rightarrow can simply compute h(x) for all columns x of X and compute the empirical covariance matrices required
- Exploit structure when computing inverse of low-rank + observation covariance
- [details left as exercise]

Are the columns of
$$X+k_{\xi}(Z-\zeta_{\xi}X)$$
 really samples from $N(\mu_{\xi}, \Sigma_{\xi})$?

One column: $y^{0}=x^{\omega}+k_{\xi}(z_{\xi},v^{\omega}-\zeta_{\xi}x^{\omega})$

Where x^{ω} is $N'(\tilde{\mu}_{\xi}, \tilde{\Sigma}_{\xi})$ is $N'(0, \mathbf{R}_{\xi})$

$$\mathbb{E}[x^{\omega}] = \tilde{\mu}_{\xi}+k_{\xi}(Z_{\xi}+0-\zeta_{\xi},\tilde{\mu}_{\xi})$$

$$= \tilde{\mu}_{\xi}+k_{\xi}(Z_{\xi}-\zeta_{\xi}\tilde{\mu}_{\xi})$$

$$= \tilde{\mu}_{\xi}+k_{\xi}(Z_{\xi}-\zeta_{\xi})$$

$$= \tilde{\mu}_{\xi}+k_{\xi}(Z_{\xi}-\zeta_{\xi}-\zeta_{\xi})$$

$$= \tilde{\mu}_{\xi}+k_{\xi}(Z_{\xi}-\zeta_{\xi}-\zeta_{\xi})$$

$$= \tilde{\mu}_{\xi}+k_{\xi}(Z_{\xi}-\zeta_{\xi}-\zeta_{\xi}-\zeta_{\xi})$$

$$= \tilde{\mu}_{\xi}+k_{\xi}(Z_{\xi}-\zeta_{\xi}-\zeta_{\xi}-\zeta_{\xi}-\zeta_{\xi}-\zeta_{\xi})$$

$$= \tilde{\mu}_{\xi}+k_{\xi}(Z_{\xi}-\zeta_{$$

References for enKF

- Mandel, 2007 "A brief tutorial on the Ensemble Kalman Filter"
- Evensen, 2009, "The ensemble Kalman filter for combined state and parameter estimation"

KF Summary

- Kalman filter exact under linear Gaussian assumptions
- Extension to non-linear setting:
 - Extended Kalman filter
 - Unscented Kalman filter
- Extension to extremely large scale settings:
 - Ensemble Kalman filter
 - Sparse Information filter
- Main limitation: restricted to unimodal / Gaussian looking distributions
- Can alleviate by running multiple XKFs + keeping track of the likelihood;
 but this is still limited in terms of representational power unless we allow a very large number of them

EKF/UKF SLAM

- State: $(n_R, e_R, \theta_R, n_A, e_A, n_B, e_B, n_C, e_C, n_D, e_D, n_E, e_E, n_F, e_F, n_G, e_G, n_H, e_H)$
 - Now map = location of landmarks (vs. gridmaps)
- Transition model:
 - Robot motion model; Landmarks stay in place

Simultaneous Localization and Mapping (SLAM)

- In practice: robot is not aware of all landmarks from the beginning
- Moreover: no use in keeping track of landmarks the robot has not received any measurements about
- → Incrementally grow the state when new landmarks get encountered.

Simultaneous Localization and Mapping (SLAM)

- Landmark measurement model: robot measures [x_k; y_k], the position of landmark k expressed in coordinate frame attached to the robot:
 - $h(n_R, e_R, \theta_R, n_k, e_k) = [x_k; y_k] = R(\theta) ([n_k; e_k] [n_R; e_R])$
- Often also some odometry measurements
 - E.g., wheel encoders

Victoria Park Data Set Vehicle

[courtesy by E. Nebot]

Data Acquisition

[courtesy by E. Nebot]

Victoria Park Data Set

[courtesy by E. Nebot]

Estimated Trajectory

EKF SLAM Application

EKF SLAM Application

Landmark-based Localization

EKF-SLAM: practical challenges

Defining landmarks

- Laser range finder: Distinct geometric features (e.g. use RANSAC to find lines, then use corners as features)
- Camera: "interest point detectors", textures, color, ...

Often need to track multiple hypotheses

- Data association/Correspondence problem: when seeing features that constitute a landmark --- Which landmark is it?
- Closing the loop problem: how to know you are closing a loop?
- Can split off multiple EKFs whenever there is ambiguity;
- Keep track of the likelihood score of each EKF and discard the ones with low likelihood score
- Computational complexity with large numbers of landmarks.

+				